
Intermodeling, Queries, and Kleisli Categories

Zinovy Diskin1,2, Tom Maibaum1, and Krzysztof Czarnecki2

1 Software Quality Research Lab,
McMaster University, Canada

2 Generative Software Development Lab,
University of Waterloo, Canada

{zdiskin,kczarnec}@gsd.uwaterloo.ca, tom@maibaum.org

Abstract. Specification and maintenance of relationships between mod-
els are vital for MDE. We show that a wide class of such relationships can
be specified in a compact and precise manner, if intermodel mappings
are allowed to link derived model elements computed by corresponding
queries. Composition of such mappings is not straightforward and re-
quires specialized algebraic machinery. We present a formal framework,
in which such machinery can be defined generically for a wide class of
metamodel definitions. This enables algebraic specification of practical
intermodeling scenarios, e.g., model merge.

1 Introduction

Model-driven engineering (MDE) is a prominent approach to software devel-
opment, in which models of the domain and the software system are primary
assets of the development process. Normally models are inter-related, perhaps
in a very complex way, and to keep them consistent and use them coherently,
relationships between models must be accurately specified and maintained. As
noted in [1], “development of well-founded techniques and tools for the creation
and maintenance of intermodel relations is at the core of MDE.”

Person
 tname: {Mr, Ms} x Str

Model M1

Actor
name: Str

Model M2

 Man
= Woman

?

A major problem for in-
termodel specifications is that
different models may struc-
ture the same information
differently. The inset figure
shows an example: model
(class diagram) M1 considers Persons and their names with titles (attribute
‘tname’), whereas M2 considers Actors and uses subclassing rather than titles.
Suppose that classes Person in model M1 and Actor in M2 refer to the same
class of entities but name them differently. We may encode this knowledge by
linking the two classes with an “equality” link. In contrast, specifying “same-
ness” of tnames and subclassing is not straightforward and seems to be a difficult
problem.

In the literature, such indirect relationships are usually specified by corre-
spondence rules [2] or expressions [3] attached to the respective links (think of

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 163–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 Z. Diskin, T. Maibaum, and K. Czarnecki

expressions replacing the question mark above). When such-annotated links are
composed, it is not clear how to compose the rules; hence, it is difficult to manage
scenarios that involve composition of intermodel mappings. The importance and
difficulty of the mapping composition problem is well recognized in the database
literature [3]; we think it will also become increasingly important in software
engineering with the advancement and maturation of MDE methods.

The main goal of the paper is to demonstrate that the mapping composition
problem can be solved by applying standard methods of categorical algebra,
namely, the Kleisli construction, but applied in a non-standard way. In more
detail, we present a specification framework, in which indirect links are replaced
by direct links between derived rather than basic model elements. Here “derived”
means that the element is computed by some operation over basic elements. We
call such operations queries, in analogy with databases; the reader may think
of some predefined query language that determines a class of legal operations
and the respective derived elements. We will call links and mappings involving
queries q-links and q-mappings.

As q-mappings are sequentially composable, the universe of models and q-
mappings between them can be seen as a category (in precise terms, the Kleisli
category of the monad modeling the query language). Hence, intermodeling sce-
narios become amenable to algebraic treatment developed in category theory.
We consider connection to categorical machinery to be fruitful not only theoret-
ically, but also practically as a source of useful design patterns. In particular,
we will show that q-mappings are instrumental for specifying and guiding model
merge.

The paper is structured as follows. Sections 2 and 3 introduce our running
example and show how q-links and q-mappings work for the problem of model
merge. Section 4 explains the main points of the formalization: models’ confor-
mance to metamodels, retyping, the query mechanism and q-mappings. Section
5 briefly describes related work and Section 6 concludes.

2 Running Example

To illustrate the issues we need to address, let us consider a simple example
of model integration in Fig. 1. Subfigure (a) presents four object models. The
expression o:Name declares an object o of class Name; the lower compartment
shows o’s attribute values, and ellipses in models P1, P2 refer to other attributes
not shown. In model A, class Woman extends class Actor. When we refer to
an element e (an object or an attribute) of model X , we write e@X . Arrows
between models denote intermodel relationships explained below.

Suppose that models P1 and P2 are developed by two different teams charged
with specifying different aspects of the same domain—different attributes of the
same person in our case. The bidirectional arrow between objects p1@P1 and
p2@P2 means that these objects are different representations of the same per-
son. Model P1 gives the first name; P2 provides the last name and the title of the
person (‘tname’). We thus have a complex relationship between the attributes,

Intermodeling, Queries, and Kleisli Categories 165

s:Student
name=Ann
age=22

Model S Model P1
p1:Person
name=Ann
bdate=01/01/90

 - - - -

p2:Person
tname=Ms.Lee
 - - - -

w: Woman Actor
name=Lee

Model P2 Model A

a2ps2p pp

(a) four models linked informally

S ≈≈≈≈≈
s2p

⇒ P1 ⇐∝∝∝∝∝∝∝∝∝∝∝∝∝∝∝
pp

⇒ P2 ⇐≈≈≈≈≈
a2p

A

[merge]

P
��

��

(b) schema of the system

Fig. 1. Running example: four models and their relationships, informally

shown by a dashed link (brown with a color display): both attributes talk about
names but are complementary. Together, the two links form an informal mapping
pp between the models.

We also assume that model P1 is supplied with a secondary model S, rep-
resenting a specific view of P1 to be used and maintained locally at its own
site (in the database jargon, S is a materialized view of P1). Mapping s2p, con-
sisting of three links, defines the view informally. Two solid-line links declare
“sameness” of the respective elements. The dash-dotted link shows relatedness
of the two attributes but says nothing more. Similarly, mapping a2p is assumed
to define model A as a view to model P2: the solid link declares “sameness” of
the two objects, and the dash-dotted link shows relatedness of their attributes
and types. Mappings s2p, pp and a2p bind all models together, so that a virtual
integrated (or merged) model, say P , should say that Ms. Ann Lee is a 22 year
old student and female actor born on Jan 1, 1990. Diagram Fig. 1(b) presents
the merge informally: horizontal fancy arrows denote intermodel mappings, and
dashed inclined arrows show mappings that embed the models into the merge.

Building model management tools capable of performing integration like above
for industrial models (normally containing thousands of elements) requires clear
and precise specifications of intermodel relationships. Hence, we need a frame-
work in which intermodel mappings could be specified formally; then, operations
on models and model mappings could be described in precise algebraic terms.
For example, merging would appear as an instance of a formal operation that
takes a diagram of models and mappings and produces an integrated model to-
gether with embeddings as shown in Fig. 1(b). We want such descriptions to be
generic and applicable to a wide class of scenarios over different metamodels.
Category theory does provide a suitable methodological framework (cf. [4,5,6]),
e.g., homogeneous merge can be defined as the colimit of the corresponding di-
agram [7,8], and heterogeneity can be treated as shown in [9]. However, the
basic prerequisite for applying categorical methods is that mappings and their

166 Z. Diskin, T. Maibaum, and K. Czarnecki

composition must be precisely defined. It is not straightforward even in our
simple example, and we will briefly review the problems to be resolved.

Thinking in terms of elements, a mapping should be a set of links between
models’ elements as shown by ovals in Fig. 1(a). We can consider a link formally
as a pair of elements, and it works for those links in Fig. 1(a), which are shown
with solid lines. Semantically, such a link means that two elements represent the
same entity in the real world. However, we cannot declare attributes ‘age’ in
model S (we write ‘age’@S) and ‘bdate’@P1 to be “the same” because, although
related, they are different. Even more complex is the relationship between at-
tribute ‘tname’ in base model P2 and the view model A: it involves attributes
and types (the Woman-Actor subclassing) and is shown informally by a two-to-
one dash-dotted link. Finally, the dashed link between elements ‘name’@P1 and
‘tname’@P2 encodes a great deal of semantic information described above.

As stated in the Introduction, managing indirect links via their annotation by
correspondence rules or expressions leads to difficult problems in mapping com-
position. In contrast, the Kleisli construction developed in categorical algebra
provides a clear and concise specification framework, in which indirect relation-
ships are modeled by q-mappings; the latter are associatively composable and
constitute a category. The next section explains the basic points of the approach.

3 Intermodeling and Kleisli Mappings

We consider our running example and incrementally introduce main features of
our specification framework.

3.1 From Informal to Formal Mappings

s:Student
name=Ann

p:Person
name=Ann

Model S0:S f0:m

Student
name:Str

m
Metamodel
 S

Person
name:Str

Metamodel
 P

Model P0:P

Type Discipline. Before matching models,
we need to match their metamodels. Suppose
that we need to match models S0 and P0 over
corresponding metamodels SSS andPPP , resp. (see
the inset figure on the right), linking objects
s@S0 and p@P0 as being “the same”. These
objects have different types (’Student’ and
’Person’, resp.), however, and, with a strict
type discipline, they cannot be matched. In-
deed, the two objects can only be “equated”
if we know that their types actually refer to
the same, or, at least, overlapping, classes
of real world objects. For simplicity, we assume that classes Student@SSS and
Person@PPP refer to the same class of real world entities but are named differ-
ently; and their attributes ‘name’ also mean the same. To make this knowledge
explicit, we match the metamodels SSS and PPP via mapping mmm as shown in the in-
set figure. After the metamodels are matched, we can match type-safely objects s

Intermodeling, Queries, and Kleisli Categories 167

and p, and their attributes as well. The notation f0:mmm means that each link in
mapping f0 is typed by a corresponding link in mapping mmm. Below we will often
omit metamodel postfixes next to models and model mappings if they are clear
from the context.

Student
name: Str
age: Int

Person
name: Str
bdate: Int3

 . . .

?

M-model S M-model, P1

Indirect Linking, Queries and Q-
mappings. As argued above, to specify rela-
tionships between models S and P1 in Fig. 1,
we first need to relate their metamodels (the
inset figure on the right). We cannot “equate”
attributes ‘age’ and ‘bdate’, however. The cor-
nerstone of our approach to intermodeling is
to specify indirect relationships by direct links
to derived elements computed with suitable
queries. For example, attribute ‘age’ can be derived from ‘bdate’ with an obvi-
ous query Q1:

/age = Q1(bdate) = 2012− bdate.byear,

Our notation follows UML by prefixing the names of derived elements by slash;
Q1 is the name of the query; 2012 − bdate.byear is its definition; and ’byear’
denotes the year-field of the bdate-records. Now the relation between metamod-
els SSS and PPP1 is specified by three directed links, i.e., pairs, (Student, Person),
(name, name) and (age, /age) as shown in the bottom of Fig. 2(a) (basic ele-
ments are shaded; the derived attribute ’/age’ is blank). The three links form a
direct mappingm1m1m1: SSS → PPP+

1 , where PPP+
1 denotes metamodel PPP1 augmented with

derived attribute /age. Since mapping m1m1m1 is total, it indeed defines metamodel
SSS as a view of PPP1. Query Q1 can be executed for any model over metamodel PPP1,
in particular, P1 (Fig. 2(a) top), which results in augmenting model P1 with the
corresponding derived element; we denote the augmented model by P+

1 . Now
model S can be directly mapped to model P+

1 as shown in Fig. 2(a), and each
link in mapping f1 is typed by a corresponding link in mapping m1m1m1.

The same idea works for specifying mapping a2p in Fig. 1. The only difference
is that now derived elements are computed by a more complex query (with
two select-from-where clauses, ‘title=Ms’ and ‘title=Mr’) as shown in Fig. 2(b):
mapping m2m2m2 provides a view definition, which is executed for model P2 and
results in view model A and traceability mapping f2. Thus, we formalize arrows
s2p, a2p in Fig. 1 as q-mappings, that is, mappings into models and metamodels
augmented with derived elements. Ordinary mappings can be seen as degenerate
q-mappings that do not use derived elements.

Links-with-New-Data via Spans. In Section 2, relationships between mod-
els P1 and P2 in Fig. 1 were explained informally. Fig. 3 gives a more pre-
cise description. We first introduce a new metamodel PPP12 (the shaded part
of metamodel PPP+

12), which specifies new concepts assumed by the semantics.
Then we relate these new concepts to the original ones via mappings rrr1, rrr2; the
latter one uses derived elements. Queries Q41,2 are projection operations, and
query Q3 is the pairing operation. In particular, mapping rrr2 says that attribute
‘fname’@PPP+

12 does not match any attribute in model PPP+
2 , ‘lname’@PPP+

12 is the

168 Z. Diskin, T. Maibaum, and K. Czarnecki

p1:Person
name=Ann
bdate=01/01/90
/age=2012-1990
 = 22
 . . .

s:Student
name=Ann
age=22

Model P1
+: P1

+ Model S:S f1:m1

Student
name: Str
age: Int

m1 Metamodel, P1
+ Metamodel S

Person
name: Str
bdate: Int3
/age=Q1(bdate)
 : Int
 . . .

 Person
tname: {Mr,Ms} x Str

Metamodel P2
+

w:Woman
name=Lee

 Actor
name: Str

Metamodel A

Woman

 Man

p2:Person
tname=Ms.Lee

/p2‘: MsPerson

/name=Lee

f2:m2

m2

/MsPerson
 /name: str

/MrPerson
 /name: str

Model P2
+:P2

+ Model A:A

(a) (b)

Fig. 2. Indirect matching via queries and direct mappings

Person
name: Str
bdate: Int3

 . . .

Metamodel P12
+ r1

Person
tname: {Ms,Mr} x Str
/title =Q41(tname):{Ms,Mr}
/name=Q42(tname):Str
 . . .

Metamodel P2
+ r2

Person
fname: Str
title: {Ms,Mr}
lname: Str
/tname = Q3(_, _):
 {Ms,Mr} x Str

Metamodel P1

p1:Person
name=Ann
bdate=01/01/90
 . . .

Model P12
+ e1

p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee

e2
p:Person
fname=
title=
lname=
/tname=

Model P1 Model P2
+

Fig. 3. Matching via spans and queries

Intermodeling, Queries, and Kleisli Categories 169

same as ‘/name’@PPP+
2 (i.e., the second component of ‘tname’), and ‘tname’@PPP+

2

“equals” the pair of attributes (title, lname) in PPP+
12.

Person
name: Str
bdate: Int3

Metamod.P12
+

r11

Person
fname: Str
title: {Ms,Mr}
lname: Str
/tname: Str

Metamod.P1

Person
name: Str

Metamod. r1

r12

Fig. 4. Partial mappings via spans

On the level of models, we in-
troduce a new model P12 to de-
clare sameness of objects p1@P1

and p2@P2, and to relate their at-
tribute slots. The new attribute
slots are kept empty—they will
be filled-in with the correspond-
ing local values during the merge.

It is well-known that algebra of
totally defined functions is much
simpler than that of partially de-
fined ones. Neither of the map-
pings rrrk, ek (k = 1, 2) is total (re-
call that PPP2 and P2 may contain other attributes not shown in our diagrams). To
replace these partial mappings with total ones, we apply a standard categorical
construction called a span, as shown in Fig. 4 for mapping rrr1. We reify rrr1 as a
new model rrr1 equipped with two total projection mappings rrr11, rrr12.

Thus, we have specified all our data via models and functional q-mappings as
shown in the diagram below; arrows with hooked tails denote inclusions of models
into their augmentations with derived elements computed with queries Qi.

S Q1(P1) P1 P2 A

f1 f2
e1

P12

e2

Q4(P2)Q3(P12) Q2(P2)

3.2 Model Merging: A Sample Multi-mapping Scenario

We want to integrate data specified by the diagram above. We focus first on
merging models P1, P2 and P12 without data loss and duplication. The type
discipline prescribes merging their metamodels first. To merge metamodels PPP+

1 ,
PPP+

2 , and PPP+
12 (see Fig. 3), we take their disjoint union (no loss), and then glue

together elements related by mappings rrr1,2 (to avoid duplication). The result is
shown in Fig. 5(a). There is a redundancy in the merge since attribute ‘tname’
and pair (title, lname) are mutually derivable. We need to choose either of them
as a basic structure, then the other will be derived (see Fig. 5(b1,b2)) and could
be omitted from the model. We call this process normalization. Thus, there
are two normalized merged metamodels. Amongst the three metamodels to be
merged, we favor metamodelPPP12 in which attribute ‘tname’ is considered derived
from ‘title’ and ‘lname’, and hence choose metamodel PPP+

n1 as the merge result
(below we omit the subindex).

170 Z. Diskin, T. Maibaum, and K. Czarnecki

(a)

Person
fname: Str
title: {Ms, Mr}
lname: Str
/tname = Q3(title,name):
 {Ms,Mr} x Str
bdate=01/01/90

Metamodel Pn1
+

Person
fname: Str
/title =Q41(tname): {Ms,Mr}
/name=Q42(tname): Str
tname:
 {Ms,Mr} x Str
bdate=01/01/90

Metamodel Pn2
+

(b1) (b2)

Person
fname: Str
title = Q41(tname):Str
name= Q42(tname):Str
tname=Q3(title,name):
 {Ms,Mr}xStr
bdate=01/01/90

Metamodel P

Fig. 5. Normalizing the merge

p:Person
fname=Ann
title=Ms
lname=Lee
/tname=Ms.Lee
bdate=01/01/90
 . . .
 . . .

p1:Person
name=Ann
bdate=01/01/90

 . . .

p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee
 . . .

i1 i2
+

Model P1:P1
 Model P2

+:P2
+ Model P+:P+

Fig. 6. Result of the merge modulo match in Fig. 3

Now take the disjoint union of models P+
1 , P+

2 , P+
12 (Fig. 3), and glue together

elements linked by mappings e1,2. Note that we merge attribute slots rather than
values; naming conflicts are resolved in favor of names used in metamodel PPP+

12.
The merged model is in Fig. 6. Note how important is the interplay between
basic-derived elements in mapping e2 in Fig. 3: without these links, the merge
would contain redundancies. All three component models are embedded into the
merge by injective mappings i1,2,3 (mapping i3 is not shown).

Merge and Integration, Abstractly. The hexagon area in Fig. 7 presents the
merge described above, now in an abstract way. Nodes in the diagram denote
models; arrows are functional mappings, and hooked-tail arrows are inclusions.
Computed mappings are shown with dashed arrows (blue if colored), and com-
puted model P+ is not framed.

Building model P+ does not complete integration, however. Our system of
models also has two view models, S and A, and to complete integration, we
need to show how views S and A are mapped into the merge P . For this goal,
we need to translate queries Q1 and Q2 to, resp., models P1 and P2 from their
original models to the merge model P+ using mappings i1, i2. We achieve the
translation by replacing each element x@Pk occurring in the expression defining
query Qk (k = 1, 2) by the respective element ik(x)@P+. Then we execute the
queries and augment model P+ with the respective derived elements, as shown
by inclusion mappings η�k (k = 1, 2) within the lane (a-b) in the figure: we add
to model P+ derived attribute /age (on the left) and two derived subclasses,

Intermodeling, Queries, and Kleisli Categories 171

S

Q1(P1)

P1 P2

Q2(P2)

A

f1

P+
f2

e1

P12

e2

Q4(P2)Q3(P12)

Q2(P+)Q1(P+)

P++

i1
i2

+

i2

i1
#

i2
#

(a)

(b)

i3
+

iS iA

Fig. 7. The merge example, abstractly

/MrPerson and /MsPerson (on the right). Since model P+ is embedded into its
augmentations Qk(P

+) (k = 1, 2), and queries Qk preserve data embedding (are
monotonic in database jargon), the result of executing Qk against model Pk can
be embedded into the result of executing Qk against P+. So, we have mappings
i�k making squares [Pk P+ Qk(P

+) Qk(Pk)] (k = 1, 2) commutative.
Finally, we merge queries Q1 and Q2 to model P+ into query Q12, whose exe-

cution adds to model P+ both derived attribute /age and the derived subclasses.
We denote the resulting model by P++ and η12: P

+ ↪→ P++ is the corresponding
inclusion (see the lower diamond in Fig. 7). Now we can complete integration by
building mappings iS : S → P++ and iA: A→ P++ by sequential composition of
the respective components. These mappings say that Ms. Ann Lee is a student
and an actor—information that neither P+ nor P++ provide.

3.3 The Kleisli Construction

The diagram in Fig. 7 is precise but looks too detailed in comparison with the
informal diagram Fig. 1(b). We want to design a more compact yet still precise
notation for this diagram.

Note that the diagram uses frequently the following mapping pattern

X
f� Q(Y) �

η
⊃ Y,

where X,Y are, resp., the source and the target models; Q(Y) is augmentation
of Y with elements computed by a query Q to Y ; and η is the corresponding
inclusion. The key idea of the Kleisli construction developed in category theory
is to view this pattern as an arrow K : X ⇒ Y comprising two components: a
query QK to the target Y and a functional mapping fK : X → QK(Y) into the
corresponding augmentation of the target. Thus, the query becomes a part of
the mapping rather than of model Y , and we come to the notion of q-mapping
mentioned above. We will often denote q-mappings by double-body arrows to
recall that they encode both a query and a functional mapping. By a typical

172 Z. Diskin, T. Maibaum, and K. Czarnecki

abuse of notation, a q-mapping and its second component (the functional map-
ping) will be often denoted by the same letter; we write, say, f : X ⇒ Y and
f : X → Q(Y) using letter f for both. With this notation, the input data for
integration (framed nodes and solid arrows in diagram Fig. 7) are encoded by
the following diagram

S ===
f1⇒ P1 ⇐=

e1•=⇒ P12 ⇐=
e2•=⇒ P2 ⇐===

f2
A

where spans e1, e2 from Fig. 7 are encoded by arrows with bullets in the middle.
Note a nice similarity between this and our original diagram Fig. 1(b)(its upper
row of arrows); however, in contrast to the latter, the arrows in the diagram
above have the precise meaning of q-mappings.

Finally, we want to formalize the integration procedure as an instance of the
colimit operation: as well-known, the latter is a quite general pattern for “putting
things together” [4]; see also [7,10,8] for concrete examples related to MDE. To
realize the merge-as-colimit idea, we need to organize the universe of models and
q-mappings into a category, that is, define identity q-mappings and composition
of q-mappings. The former task is easy: given a model X , its identity q-mapping
11X : X ⇒ X comprises the empty query Q∅, so that Q∅(X) = X , and the
mapping 1X : X → Q∅(X), which is the identity mapping of X to itself.

X Y Z

Qf (Y)

ηQf�

∩f

�

Qg(Z)

ηQg�

∩g

�

Qf (Qg(Z))

ηQf�

∩g #

�

Fig. 8. Q-mapping composition

Composition of q-mappings is, however,
non-trivial. Given two composable q-mappings
f : X ⇒ Y and g : Y ⇒ Z, defining their com-
position f ; g : X ⇒ Z is not straightforward, as
shown by the diagram in Fig. 8 (ignore the
two dashed arrows and their target for a mo-
ment): indeed, after unraveling, mappings f
and g are simply not composable. To man-
age the problem, we need to apply query Qf

to model Qg(Z) and correspondingly extend
mapping g as shown in the diagram. Compo-
sition of two queries is again a query, and thus
pair (f ; g#, Qf◦Qg) determines a new q-mapping from X to Z.

The passage from g to g#—the Kleisli extension operation—is crucial for the
construction. (Note that we have used this operation in Fig. 7 too). On the level
of metamodels and query definitions (syntax only), Kleisli extension is simple
and amounts to term substitution. However, queries are executed for models,
and an accurate formal definition of the Kleisli extension needs non-trivial work
to be done. We outline the main points in the next section.

4 A Sketch of the Formal Framework

Due to space limitations, we describe very briefly the main points of the formal
framework. All the details, including basic mathematical definitions we use, can
be found in the accompanying technical report [11] (the TR).

Intermodeling, Queries, and Kleisli Categories 173

4.1 Model Translation, Traceability and Fibrations

The Carrier Structure. We fix a category G with pullbacks, whose objects
are to be thought of as (directed) graphs, or many-sorted (colored) graphs, or
attributed graphs [12]. The key point is that they are definable by a metameta-
model itself being a graph with, perhaps, a set of equational constraints. In
precise categorical terms, we require G to be a presheaf topos [13], and hence
a G-object can be thought of as a system of sets and functions between them
(e.g., a graph consists of two sets, Nd and Arr, and two functions from Arr to
Nd—think of the source and the target of an arrow). It allows us to talk about
elements of G-objects, and ensures that G has limits, colimits, and other good
properties. We will call G-objects ‘graphs’ (and as a rule skip the quotes), and
write e ∈ G to say that e is an element of graph G.

For a graphM thought of as a metamodel, anM -model is a pair A = (DA, tA)
with DA a graph and tA: DA →M a mapping (arrow in category G) to be
thought of as typing. In a heterogeneous environment with models over different
metamodels, we may say that a model A is merely an arrow tA: DA →MA in G,
whose target MA is called the metamodel of A (or the type graph, and the source
DA is the data carrier (the data graph). In our examples, a typing mapping for
OIDs was set by colons: writing p:Person for a model A means that p ∈ DA,
Person ∈ MA and tA(p) = Person. For attributes, our notation covers even
more, e.g., writing ’name=Ann’ (nested in class Person) refers to some arrow
x: y → Ann in graphDA, which is mapped by tA to arrow value: name→ String
in graph MA, but names of elements x, y are not essential for us. Details can be
found in [10, Sect.3].

A model mapping f : A→ B is a pair of G-mappings, fmeta: MA →MB and
fdata: DA → DB, commuting with typing: fdata; tB = tA; fmeta. Below we will
also write fM for fmeta and fD for fdata. Thus, a model mapping is a commutative
diagram; we usually draw typing mappings vertically and mappings fM , fD
horizontally. We assume the latter to be monic (or injective) in G like in all our
examples. This defines category Mod of models and model mappings.

As each model A is assigned with its metamodelMA, and each model mapping
f : A→ B with its metamodel component fM : MA →MB, we have a projection
mapping ppp: Mod→MMod, where we write MMod for either entire category
G or for its special subcategory of ‘graphs’ that can serve as metamodels (e.g.,
all finite ‘graphs’). It is easy to see that ppp preserves mapping composition and
identities, and hence is a functor.

To take into account constraints, we need to consider metamodels as pairs
M = (GM , CM) with GM a carrier graph and CM a set of constraints. Then
not any typing tA: DA → GM is a model: a legal tA must also satisfy all con-
straints in CM . Correspondingly, a legal mapping f : M → N must be a ’graph’
mapping GM → GN compatible with constraints in a certain sense (see [10] or
[8] for details). We do not formalize constraints in this paper, but in our ab-
stract definitions below, objects of category MMod may be understood as pairs
M = (GM , CM) as above, and MMod-arrows as legal metamodel mappings.

174 Z. Diskin, T. Maibaum, and K. Czarnecki

D �vt
D�v

↗↗rtp

M

t
�
� v

N

t�v
�

Retyping. Any metamodel mapping v : M ← N generates
retyping of models over M into models over N as shown by
the diagram on the right. If an element e ∈ N is mapped to
v(e) ∈ M , then any element in ‘graph’ D typed by v(e), is
retyped by e. Graph D�v consists of such retyped elements of
D, and mapping vt traces their origin. Overall, we have an
operation that takes two arrows, v and t, and produces two arrows, vt and t�v,
together making a commutative square as shown above.

Formally, elements of D�v can be identified with pairs (e, d) ∈ N×D such
that v(e) = t(d), and mappings t�v and vt are the respective projections. The
operation just described is well-known in category theory by the name pullback
(PB) : typing arrow t�v: D�v → N is obtained by pulling back arrow t along arrow
v. If we want to emphasize the vertical dimension of the operation, we will say
that traceability arrow vt is obtained by lifting arrow v along t.

Abstract Formulation via Fibrations. Retyping can be specified as a spe-
cial property of functor ppp: Mod→MMod. That is: for an arrow v : M ← N in
MMod, and an object A over M (i.e., such that ppp(A) = M), there is an arrow
vA : A← A�v over v (i.e., a commutative diagram as above), which is maximal in
a certain sense amongst all arrows (commutative squares) over v. Such an arrow
is called the (weak) ppp-Cartesian lifting of arrow v, and is defined up to canonical
isomorphism. Functor ppp with a chosen Cartesian lifting for any arrow v, which is
compatible with arrow composition, is called a split fibration (see [14, Exercise
1.1.6]). Thus, existence of model retyping can be abstractly described by saying
that we have a split fibration ppp: Mod→MMod.

We will call such a fibration an (abstract) metamodeling framework.

4.2 Query Mechanism via Monads and Fibrations

Background. A monad (in the Kleisli form) over a category C is a triple
(Q, η, #) with Q: C0 → C0 a function on C-objects, η an operation that assigns
to any object X ∈ C0 a C-arrow ηX : X → Q(X), and # an operation that
assigns to any C-arrow f : X → Q(Y) its Kleisli extension f#: Q(X)→ Q(Y)

such that ηX ; f# = f . Two additional laws hold: η#X = 1Q(X) for all X , and

f#; g# = (f ; g#)# for all f : X → Q(Y), g: Y → Q(Z). In our context, if C-
objects are models and a monad over C is given by a query language, object
Q(X) is to be understood as model X augmented with all derived elements
computable by all possible queries. In other words, Q(X) is the object of queries
against model X . We will identify a monad by its first component.

Any monad Q generates its Kleisli category CQ. It has the same objects as
C, but a CQ-arrow f : X ⇒ Y is a C-arrow f : X → Q(Y). Thus, Kleilsi arrows
are a special “all-queries-together” version of our q-mappings. As we have seen
in Sect. 3.3, Fig. 8, composition of CQ-arrows, say, f : X ⇒ Y and g : Y ⇒ Z
is not immediate since f ’s target and g’s source do not match after unraveling
their definitions. The problem is resolved with the Kleisli extension operation
and, moreover, the laws ensure that C-objects and CQ-arrows form a category.

Intermodeling, Queries, and Kleisli Categories 175

A ⊂η
Qexe
A � Q(A) �

f
B

MA

tA
�

⊂η
Qdef
M� Q(M)

�
�v

MB

tB
�

A ⊂ ηQexe
A � Q(A) �

vQ(A)
Q(A)�v

qEx↗↗e r↗↗tp
M

tA
�

⊂ ηQdef
M� Q(M)

�
� v

N
�

A ⇐ vA
= = A�v

vEx↗↗e
M

tA
�
⇐======

v
N

tA�v
�

(a) (b1) (b2)

Fig. 9. Q-mappings (a) and view mechanism (b1,b2)

Lemma 1 ([15]). If category C has colimits of all diagrams from a certain class
D, then the Kleisli category CQ has D-colimits as well.

Query Monads and Their Kleisli Categories. In the TR, we carefully
motivate the following definition:

Definition 1 (main) A monotonic query language over an abstract metamod-
eling framework ppp: Mod→MMod is a pair of monads (Q,Qdef) over categories
Mod and MMod, resp., such that ppp is a monad morphism, and monad Q is
ppp-Cartesian, i.e., is compatible with the Cartesian structure of functor ppp.

In the context of this definition, the Kleisli construction has an immediate prac-
tical interpretation. Arrows in the Kleisli category ModQ are shown in Fig. 9(a).
They are, in fact, our q-mappings, and we will also denote category ModQ by
qMapQ(we thus switch attention from the objects of the category to its arrows).
It immediately allows us to state (based on Lemma 1) that if D-shaped config-
urations of models related by ordinary (not q-) model mappings are mergeable,
then D-shaped configurations of models and q-mappings are mergeable as well.
For example, merge in our running example can be specified as the colimit of
the diagram of Kleilsi mappings on p.10.

Metamodel-level components of q-mappings between models are arrows in
MModQdef

, and they are nothing but view definitions: they map elements of the
source metamodel to queries against the target one Fig. 9(a). Hence, we may
denote MModQdef

by viewDefQdef
. View definitions can be executed as shown

in Fig. 9(b1): first the query is executed, and then the result is retyped along
the mapping v (dashed arrows denote derived mappings).

The resulting operation of view execution is specified in Fig. 9(b2), where dou-
ble arrows denote Kleisli mappings. Properties of the view execution mechanism
are specified by Theorem 1 proved in the TR.

Theorem 1. Let (Q,Qdef) be a monotonic query language over an abstract
metamodeling framework ppp: Mod→MMod. It gives rise to a split fibration
pppQ: qMapQ → viewDefQdef

between the corresponding Kleisli categories.

Theorem 1 says that implementing view computation via querying followed by
retyping is compositional. More precisely, views implemented via querying fol-
lowed by retyping can be composed sequentially, and execution of the resulting
composite view amounts to sequential composition of executions of its compo-
nent views. Such compositionality is an evident requirement for any reasonable
implementation of views, and views implemented according to our framework
satisfy this requirement.

176 Z. Diskin, T. Maibaum, and K. Czarnecki

5 Related Work

Modeling inductively generated syntactic structures (term and formula algebras)
by monads and Kleisli categories is well known, e.g., [16,17]. Semantic structures
(algebras) then appear as Eilenberg-Moore algebras of the monad. In our ap-
proach, carriers of algebraic operations stay within the Kleilsi category. It only
works for monotonic query languages, but the latter form a large, practically in-
teresting class. (E.g, it is known that Select-Project-Join queries are monotonic.)
We are not aware of a similar treatment of query languages in the literature.

Our notion of metamodeling framework is close to specification frames in
institution theory [18]. Indeed, inverting the projection functor gives us a func-
tor ppp−1

Q : viewDefopQdef
→ Cat, which may be interpreted in institutional terms

as mapping theories into their categories of models, and theory mappings into
translation functors. The picture still lacks constraints, but adding them is not
too difficult and can be found in [19]. Conversely, there are attempts to add
query facilities to institutions via so called parchments [20]. Semantics in these
attempts is modeled in a far more complex way than in our approach.

In several papers, Guerra et al. developed a systematic approach to intermod-
eling based on TGG (Triple Graph Grammars), see [1] for references. The query
mechanism is somehow encoded in TGG-production rules, but precise relation-
ships between this and our approach remain to be elucidated.

Our paper [9] heavily uses view definitions and views in the context of defining
consistency for heterogeneous multimodels, and is actually based on constructs
similar to our metamodeling framework. However, the examples therein go one
step “down” in the MOF-metamodeling hierarchy in comparison with our exam-
ples here, and formalization is not provided. The combination of those structures
with structures in our paper makes a two-level metamodeling framework (a fi-
bration over a fibration); studying this structure is left for future work.

6 Conclusion

The central notion of the paper is that of a q-mapping, which maps elements in
the source model to queries applied to the target model. We have shown that
q-mappings provide a concise and clear specification framework for intermod-
eling scenarios, in particular, model merge. Composition of q-mappings is not
straightforward: it requires free term substitution on the level of query defini-
tion (syntax), and actual operation composition on the level of query execution
(semantics). To manage the problem, we model both syntax and semantics of a
monotonic query language by a Cartesian monad over the fibration of models
over their metamodels. Then q-mappings become Kleilsi mappings of the monad,
and can be composed. In this way the universe of models and q-mappings gives
rise to a category (the Kleisli category of the monad), providing manageable
algebraic foundations for specifying intermodeling scenarios.

Acknowledgement. We are grateful for anonymous referees for valuable com-
ments. Financial support was provided with the NECSIS project funded by
Automotive Partnership Canada.

Intermodeling, Queries, and Kleisli Categories 177

References

1. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory
to Practice. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010.
LNCS, vol. 6394, pp. 376–391. Springer, Heidelberg (2010)

2. Romero, J., Jaen, J., Vallecillo, A.: Realizing correspondences in multi-viewpoint
specifications. In: EDOC, pp. 163–172. IEEE Computer Society (2009)

3. Bernstein, P.: Applying model management to classical metadata problems. In:
Proc. CIDR 2003, pp. 209–220 (2003)

4. Goguen, J.: A categorical manifesto. Mathematical Structures in Computer Sci-
ence 1(1), 49–67 (1991)

5. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)
6. Batory, D.S., Azanza, M., Saraiva, J.: The Objects and Arrows of Computa-

tional Design. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

7. Sabetzadeh, M., Easterbrook, S.M.: View merging in the presence of incompleteness
and inconsistency. Requir. Eng. 11(3), 174–193 (2006)

8. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-
merge approach to version control in mde. J. Log. Algebr. Program. 79(7), 636–658
(2010)

9. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models
for Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

10. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 92–165. Springer, Heidelberg (2011)

11. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and Kleisli cate-
gories. Technical Report GSDLab-TR 2011-10-01, University of Waterloo (2011),
http://gsd.uwaterloo.ca/QMapTR

12. Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic Graph
Transformation (2006)

13. Barr, M., Wells, C.: Category theory for computing science. PrenticeHall (1995)
14. Jacobs, B.: Categorical logic and type theory. Elsevier Science Publishers (1999)
15. Manes, E.: Algebraic Theories. Springer, Heidelberg (1976)
16. Jüllig, R., Srinivas, Y.V., Liu, J.: Specware: An Advanced Evironment for the

Formal Development of Complex Software Systems. In: Nivat, M., Wirsing, M.
(eds.) AMAST 1996. LNCS, vol. 1101, pp. 551–554. Springer, Heidelberg (1996)

17. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

18. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of ACM 39(1), 95–146 (1992)

19. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Technical Report GSDLAB 2011-02-01, University of Waterloo (2011)

20. Goguen, J., Burstall, R.: A Study in the Foundations of Programming Method-
ology: Specifications, Institutions, Charters and Parchments. In: Poigné, A.,
Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer
Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)

http://gsd.uwaterloo.ca/QMapTR

	Intermodeling, Queries, and Kleisli Categories
	Introduction
	Running Example
	Intermodeling and Kleisli Mappings
	From Informal to Formal Mappings
	Model Merging: A Sample Multi-mapping Scenario
	The Kleisli Construction

	A Sketch of the Formal Framework
	Model Translation, Traceability and Fibrations
	Query Mechanism via Monads and Fibrations

	Related Work
	Conclusion
	References

