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Abstract. In this paper we introduce anonymous yet authorized and
bounded cloud resource schemes. Contrary to many other approaches to
security and privacy in the cloud, we aim at hiding behavioral informa-
tion, i.e. consumption patterns, of users consuming their cloud resources,
e.g. CPU time or storage space, from a cloud provider. More precisely,
users should be able to purchase a contingent of resources from a cloud
provider and be able to anonymously and unlinkably consume their re-
sources till their limit (bound) is reached. Furthermore, they can also
reclaim these resources back anonymously, e.g. if they delete some stored
data. We present a definition of such schemes along with a security
model and present an instantiation based on Camenisch-Lysyanskaya
signatures. Then, we extend the scheme to another scheme providing
even more privacy for users, i.e. by even hiding the issued resource limit
(bound) during interactions and thus providing full anonymity to users,
and present some useful extensions for both schemes. We also support
our theoretical claims with experimental results obtained from an imple-
mentation that show the practicality of our schemes.

1 Introduction

Cloud computing is an emerging paradigm, but some significant attention re-
mains justifiably focused on addressing security and privacy concerns. Reasons
are among others that customers have to trust the security mechanisms and con-
figuration of the cloud provider and the cloud provider itself. Recently, different
cryptographic solutions to improve privacy, mainly focusing on private storage,
private computations and private service usage have been proposed and will be
briefly discussed below.

Storing data encrypted seems to be sine qua non in many cloud storage set-
tings, since cloud providers, having access to the storage infrastructure, can
neither be considered as fully trustworthy nor are resistant to attacks. Kamara
and Lauter [25] propose several architectures for cryptographic cloud storage and
provide a sound overview of recent non-standard cryptographic primitives like
searchable encryption and attribute-based encryption, which are valuable tools
in this context. Other issues are data privacy and verifiability when outsourcing
data and performing computations on these data using the cloud as computa-
tion infrastructure. The recent introduction of fully homomorphic encryption
[24] is a promising concept for performing arbitrary computation on encrypted
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data. Up to now these concepts are far from being practical, although for some
practical applications somewhat homomorphic schemes seem to be promising
[26]. Another interesting issue from a privacy perspective is to hide user’s us-
age behavior (access patterns and frequencies) when accessing cloud services.
More precisely, users may not want the cloud provider to learn how often they
use a service or which resources they access. Nevertheless, cloud providers can
be assumed to have access restricted to authorized users and additionally users
may want to enforce (attribute-based) access control policies. Some approaches
to realize this are anonymous credential systems [3], oblivious transfer [6,7] or
oblivious RAM [23].

In this paper we discuss an additional aspect, which may be valuable when
moving towards privacy friendly cloud computing and seems to be valuable when
used in conjunction with the aforementioned approaches. In particular, we focus
on the anonymous yet authorized and bounded use of cloud resources like CPU
time (e.g. CPU per hour) or storage space. Thereby, we note that in this paper
we illustrate our concept by means of the resource storage space. Think for
instance of anonymous document publishing services provided by organizations
like WikiLeaks or the American Civil Liberties Union (ACLU) who may use
third party cloud storage services like Amazon’s S31 as their document stores.
In this example, WikiLeaks or ACLU may wish to store documents in the cloud,
but may not want to learn the cloud provider, e.g. Amazon, how much storage
they (and their users respectively) store. These organizations may also force
their users to respect storage limits, since they will have to pay for the storage,
but at the same time provide their users with anonymity. Another example are
clients who outsource computations to the cloud and want to hide their pattern.

Our Contribution.We consider a setting where users should be able to register
and obtain a resource bound (limit) from a cloud provider (CP) in form of a
“partially blindly signed” token. This token includes an identifier, the already
consumed resources and the limit, wheres the limit in fact is the only value signed
in clear. This limit determines how much of a resource, e.g. CPU time, storage
space, a user is allowed to consume. Then, users should be able to consume their
resources in an anonymous and unlinkable yet authorized fashion. For instance, if
a user wants to consume l resources, he has to convince the CP that he possesses
a signed token with a valid identifier (double-spending protection) and that his
consumed resources (including l) do not exceed his bound. If this holds, the
anonymous user is allowed to consume the resources and obtains an updated
signature for a token corresponding to a new identifier and updated consumed
resources. Note, due to the anonymity and unlinkability properties, the CP is
unable to track how much a user has already consumed, however, can be sure
that he solely consumes what he has been granted. Furthermore, a user may also
reclaim resources back, e.g. when deleting data or computations did not require
the preassigned time, while still hiding the pattern.

We for the first time consider this problem and provide a definition for the
concept of anonymous yet authorized and bounded cloud resource schemes along

1 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/
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with a security model. Furthermore, we present an efficient instantiation of such
schemes and extend the scheme to another scheme providing even more privacy
for users and present some useful extensions for both schemes. Our schemes
are obtained using recent signature schemes due to Camenisch and Lysyanskaya
[11,12] along with efficient zero-knowledge proofs for proving properties of signed
messages. We note that many of the approaches discussed subsequently employ
similar features of CL signatures as our approach does. But the signer controlled
interactive update of signed messages discussed in Section 4.1, which is an im-
portant functionality behind our protocols, seems to be novel2. Furthermore,
we note that we base our concrete scheme on groups of known order and the
essential ingredient is the pairing based CL signature scheme [12].

Related Work. Pairing based CL signatures [12] and it’s strong RSA based
pendant [11] are useful to construct various privacy enhancing cryptographic
protocols. Among them are anonymous credential systems [19] and group signa-
tures [12] as well as privacy protecting multi-coupon systems [15,17], anonymous
subscriptions [5], electronic toll pricing [4], e-cash systems [9] and n-times anony-
mous authentication schemes [8] based on compact e-cash or unclonable group
identification schemes [21] (which achieve similar goals as in [8]). To solve our
problem, the most straightforward solutions seems e-cash, i.e. CP issues k coins
to a user and a user can use one coin per resource unit. However, to achieve a
suitable granularity this induces a large amount of “small valued coins” which
makes this approach impractical. The same holds for compact e-cash schemes
[9], where a user can withdraw a wallet of 2l coins at a time and thus the with-
drawal procedure is much more efficient. However, in compact e-cash coins from
the wallet can only be spend one by one and the above problem still exists.
In divisible e-cash [14,2], which allows a user to withdraw a wallet of value 2l

in a single withdraw protocol, spending a value 2m for m ≤ l can be realized
more efficient than repeating the spending 2m times. However, in the former
solution even for a moderate value of l = 10 the spending of a single coin re-
quires 800 exponentiations which makes it very expensive. The latter approach
is more efficient but statistical, meaning that users can spend more money than
withdrawn. Nevertheless, we may consider our scheme as some type of a divisible
e-cash scheme, since it allows to withdraw a contingent of resources and to spend
arbitrary amounts of these resources until the contingent is consumed. But we
want to mention that we have not designed these schemes with e-cash as an
application in mind and do not support usual properties of e-cash schemes such
as double-spender identification and spending with arbitrary merchants.

Multi-coupons [15,17] represent a collection of coupons (or coins or tokens)
which is issued in a single withdraw protocol and every single coupon of the MC
can be spend in an anonymous and unlinkable fashion. But in our scenario, they
suffer from the same problem as simple e-cash solutions.

Recently, Camenisch et al. proposed an interesting protocol for unlinkable
priced oblivious transfer with rechargeable wallets [7]. This does not exactly

2 As we were recently informed, the general idea of updating signatures has already
been used in independent work [10] based on Boneh-Boyen signatures.
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fit our scenario but could be mapped to it. However, [7] do not provide an
efficiency analysis in their work and their protocols seem to be quite costly. Their
rechargeable wallets are an interesting feature and recharching is also supported
by our second scheme in Section 4.4.

2 Definition

2.1 Problem Description and Motivation

In our setting we have a cloud provider (CP) and a set of users U . Our main goal
is that users are able to purchase a contingent of resources (we focus on storage
space here) and CP does not learn anything about the resource consumption
behavior of users. In particular, users can store data at the CP as long as there
are still resources from their contingent available. The CP is in any interaction
with the user convinced that a user is allowed to consume (or reclaim) resources
but cannot identify the user nor link any of the user’s actions. Clearly, if the
resource is storage space and the data objects contain information on the user,
then this may break the anonymity property. Nevertheless, then we can assume
that data is encrypted which seems to be sine qua non in many cloud storage
settings.

Our main motivation is that it is very likely that only a few large cloud
providers will own large portions of the infrastructure of the future Internet.
Thus, these cloud providers will eventually be able to link data and information
about resource consumption behavior of their consumers (users) allowing them
to build extensive dossiers. Since for many enterprises such a transparency can
be too intrusive or problematic if these information are available to their com-
petitors we want to hide these information from cloud providers. As for instance
argued in [18], activity patterns may constitute confidential business information
and if divulged could lead to reverse-engineering of customer base, revenue size,
and the like.

2.2 Definition of the Scheme

An anonymous yet authorized and bounded cloud resource scheme is a tuple
(ProviderSetup, ObtainLimit, Consume, Reclaim) of polynomial time algo-
rithms or protocols between users U and cloud provider CP respectively:

– ProviderSetup. On input a security parameter k, this algorithms outputs
a key pair sk and pk of a suitable signature scheme and an empty blacklist
BL (for double-spending detection).

– ObtainLimit. In this protocol a user u wants to obtain a token t for a
resource limit of L units from the CP. The user’s output is a token t with
corresponding signature σt issued by CP. The token contains the limit L
and the actually consumed resources s (wheres both may be represented by
a single value L′ := L − s). The output of CP is a transcript TOL of the
protocol.
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– Consume. In this protocol user u wants to consume l units from his remaining
resources. The user shows value t.id of a token t and convinces the CP that
he holds a valid signature σt for token t. If the token was not already spend
(t.id is not contained in BL), the signature is valid and there are still enough
resources left, i.e. s′+ l ≤ L (or L′− l ≥ 0), then the user’s output is accept
and an updated token t′ for resource limit L and actually consumed resources
s′+ l (or L′− l) with an updated signature σt′ from CP. Otherwise the user’s
output is reject. The output of CP is a transcript TC .

– Reclaim. In this protocol user u wants to reclaim l units, e.g. he wants to
delete some data of size l. The protocol is exactly the same as the Consume

protocol. Except for the accept case the updated token t′ contains s′− l (or
L′ + l) as the actually consumed resources and the transcript is denoted as
TR. We emphasize that u needs to prove by some means that he is allowed
to reclaim l resources, e.g. when deleting some data, the user needs prove
knowledge of some secret associated with the data during the integration.
Otherwise, users could simply run arbitrary many Reclaim protocols to il-
licitly reclaim resources and indirectly improve their actual resource limit
(see end of Section 4.3 for a discussion).

2.3 Security Model

We now describe our formal model for the security requirements of an anonymous
yet authorized and bounded cloud resource scheme and say such a scheme is
secure if it satisfies the properties correctness, unlinkability and unforgeability.

Correctness. If an honest user runs an ObtainLimit protocol with an honest
CP for resource limit L, then he obtains a token t with corresponding signature
σt for resource limit L. If an honest user runs a Consume or Reclaim protocol
with an honest CP for value l, then the respective protocol will output accept
and a valid token-signature pair (t′, σt′) with t′.s = t.s± l (or t′.L′ = t.L′± l). If
the limit is explicitly included we additionally require for the Consume protocol
that t.s+ l ≤ t.L.

Unlinkability. It is required that no collusion of users and the CP can learn
the resource consumption habit of an honest user. Note, that this in particular
means that issuing and showing of a token cannot be linked. With exception of
the issued resource limit, the tokens reveal no information about the actually
consumed resources (if the issued limit is not included then there is absolutely
no link). Formally, we consider a game and provide the adversaryA with (sk, pk)
and BL generated by the ProviderSetup algorithm. Furthermore, A obtains a
fixed (large) resource limit L. Then, during the game A can

– execute ObtainLimit protocols (if included w.r.t. resource limit L) with
honest users in an arbitrary manner,

– execute Consume and Reclaim protocols with honest users.

At some point, A outputs two transcripts T 0
OL and T 1

OL of previously executed
ObtainLimit protocols, whereas we require that the sum of all values consumed
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during all Consume protocols is at most L− v. Then, a bit b is secretly and ran-
domly chosen and A runs a Consume with value at most v (or Reclaim) protocol
with the user who was issued his initial token during the ObtainLimit protocol
corresponding to T b

OL. Finally, A outputs a bit b′ and we say that A has won the
game if b = b′ holds. We require that for every efficient adversary A the proba-
bility of winning the game differs from 1/2 at most by a negligible fraction (the
intuition why we require the sum to be L− v and the last Consume is performed
with respect to value v at most is to rule out trivial attacks3).

Unforgeability. It is required that no collusion of users can spend more tokens
(which will be accepted in Consume or Reclaim protocols) than they have been
issued. Furthermore, no collusion of users must be able to consume more re-
sources than they have obtained. Formally, we consider a game and provide the
adversary A with a public key pk generated by the ProviderSetup algorithm.
Then, during the game A can

– execute ObtainLimit protocols with an honest CP and
– execute Consume and Reclaim protocols with an honest CP.

At some point, A specifies a sequence t = (t1, . . . , tn) of valid tokens (which
were not already shown) and at the end of the game the verifier

– outputs a token t′ either not contained in t
– or a modified token t′′ corresponding to a token ti in t, whereas it holds that

t′′.id �= ti.id and/or t′′.L �= ti.L and/or t′′.s �= ti.s (or if L is not explicitey
included t′′.L′ �= ti.L

′).
– and conducts a Consume or Reclaim protocol with an honest CP.

We require that for every efficient adversary A the probability that the Consume
or Reclaim protocol in the last step terminates with accept is negligible.

3 Preliminaries

An essential ingredient for our construction are honest-verifier zero-knowledge
proofs of knowledge (Σ-protocols). We use the notation from [13], i.e. a proof
of knowledge of a discrete logarithm x = logg y to the base g will be denoted
as PK{(α) : y = gα}, whereas Greek letters always denote values whose knowl-
edge will be proven. We note, that compositions of single Σ-protocols using
conjunctions and disjunctions can be efficiently realized [20]. Furthermore, the
non-interactive version of a (composed) proof obtained by applying the Fiat-
Shamir transform [22] is denoted as a signature of knowledge or SPK for short.

3 The adversary could run one single ObtainLimit protocol and run Consume till the
user can have no more available resources, i.e. Consume protocols will terminate with
reject. Then before going into the challenge phase, the adversary can run another
ObtainLimit protocol and output those two transcripts. Obviously, he will be able to
assign a Consume protocol to the correct user, since one will terminate with reject

and the other one with accept.
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Bilinear Maps. Let G and Gt be two groups of prime order p, let g be a gen-
erator of G and e : G ×G → Gt a bilinear map between these two groups. The
map e must satisfy the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) �= 1.
3. Computable: there is an efficient algorithm to compute e(u, v) for any u, v ∈

G.

Though the group operation in G is in general an additive one, we express both
groups using multiplicative notation. This notion is commonly used, since Gt is
always multiplicative and it is more easy to capture the sense of cryptographic
protocols.

Pedersen Commitments. Pedersen commitments [30] represent a widely used
commitment scheme working in any groupG of prime order p. Let g, h be random
generators of G, whereas logg h is unknown. To commit to a value s ∈ Zp, one
chooses r ∈R Zp and computes C(s, r) = gshr, which unconditionally hides
s as long as r is unknown. To open the commitment, one simply publishes
(s, r, C(s, r)) and one verifies whether gshr = C(s, r) holds. For simplicity, we
often write C(s) for a commitment to s instead of C(s, r). We note that the
Pedersen commitment inherits an additive homomorphic property, i.e. given two
commitments C(s1, r1) = gs1hr1 and C(s2, r2) = gs2hr2 then one is able to
compute C(s1 + s2, r1 + r2) = C(s1, r1) · C(s2, r2) without either knowing any
of the hidden values s1 or s2. Furthermore, note that a proof of knowledge
PK{(α, β) : C = gαhβ} of the ability to open a Pedersen commitment can be
realized using a proof of knowledge of a DL representation of C with respect to
the elements g and h [28].

Range Proofs. An elegant proof that a number hidden within a Pedersen
commitment lies in an interval [a, b] in the setting of prime order groups was
presented in [27]. Although this proof might be impractical in general, since it
requires O(log b) single bit-proofs, it is efficient for the application that we have
in mind due to relatively small values of b. The basic idea is to consider for a
number x ∈ [0, b] its binary representation x = x02

0 + x12
1 + . . . + xk−12

k−1,
whereas xi ∈ {0, 1}, 0 ≤ i < k. Thereby, k = [log2 b] + 1 represents the number
of digits, which are necessary to represent every number within [0, b]. Now, in
essence one proves that the binary representation of x lies within the interval
[0, 2k − 1]. This can be done by committing to each xi using an Okamoto com-
mitment [29] (essentially a Pedersen bit commitment) along with a proof that
this commitment hides either 0 or 1 and demonstrating that for commitments
to x and all xi’s it holds that x = x02

0 + x12
1 + . . . + xk−12

k−1. The concrete
range proof is a Σ-protocol for a proof of knowledge

PK{(α0, . . . , αk−1) :

k−1∧

i=0

(Ci = hαi ∨Cig
−1 = hαi)}

or PK{(α, β) : C = gαhβ ∧ (0 ≤ α ≤ b)} for short.
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Camenisch-Lysyanskaya Signature Scheme. Camenisch and Lysyanskaya
have proposed a signature scheme in [12] which satisfies the usual correctness
and unforgeability properties of digital signatures and is provably secure under
the LRSW assumption for groups with bilinear maps, which implies that the
DLP is hard (cf. [12]). We present the CL signature scheme below:

Key Generation. Let G and Gt be groups of prime order p and e : G×G → Gt

a bilinear map. Choose x, y, z1, . . . , zl ∈R Zp. The private key is sk = (x, y, {zi})
and the public key is pk = (X,Y, {Zi}, e, g,G,Gt, p), whereas X = gx, Y = gy

and Zi = gzi .

Signing. On input message (m0, . . . ,ml), sk and pk, choose a ∈R G, compute

Ai = azi , b = ay, Bi = (Ai)
y and c = ax+xym0

∏l
i=1 A

xymi

i . Output the signature
σ = (a, {Ai}, b, {Bi}, c).
Verification. On input of (m0, . . . ,ml), pk and σ = (a, {Ai}, b, {Bi}, c) check
whether

– Ai’s are formed correct: e(a, Zi) = e(g,Ai)
– b and Bi’s are formed correct: e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi)

– c is formed correct: e(X, a) · e(X, b)m0
∏l

i=1 e(X,Bi)
mi = e(g, c)

What makes this signature scheme particularly attractive is that it allows a
receiver to obtain a signature on committed messages (using Pedersen commit-
ments), while the messages are information-theoretically hidden from the signer
(messages here means elements of the message tuple). Additionally, the receiver
can randomize a CL signature such that the resulting signature is unlinkable to
the original signature. Furthermore, receivers can use efficient zero-knowledge
proofs to prove knowledge of a signature on committed messages. We will elabo-
rate on the aforementioned functionalities more detailed in Section 4.1 and will
show how to extend this functionality to interactive updates of signatures, the
signed commitments and messages respectively.

4 Scheme

In this section we present our scheme along with an optional modification in
order to increase the privacy in some settings even further. We start with the
presentation of an important observation of CL signatures which is central to
our constructions. Then, we first give a high level description followed by a
detailed description of the schemes. Additionally, we present an performance
evaluation of a prototypical implementation which supports the efficiency of the
schemes. Finally, we present some extensions as well as system issues and provide
a security analysis of the protocols.

4.1 Interactive Update of Signed Messages

As already noted, CL signatures allow signing of committed messages (using
Pedersen commitments), while the signer does not learn anything about them.
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Assume that the signer holds a private key sk = (x, y, z) and publishes the cor-
responding public key pk = (X,Y, Z, e, g,G,Gt, p).

Blind Signing. If a receiver wants to obtain a blind signature for message m,
he chooses r ∈R Zp, computes a commitment C = gmZr and sends C along with
a signature of knowledge SPK{(α, β) : C = gαZβ} to the signer (the ability to
open the commitment is necessary for the security of the scheme, cf. [12]). If the
verification of the proof holds, the signer computes a signature σ = (a,A, b, B, c)
for the commitment C by choosing k ∈R Zp, setting a = gk and computing
σ = (a, az, ay, ayz, axCkxy) and sends σ to the receiver.

Verification. In order to show the signature to a verifier, the receiver random-
izes the signature by choosing r, r′ ∈R Zp and computing σ′ = (a′, A′, b′, B′, c′)
as σ′ = (ar, Ar, br, Br, crr

′
) and sends σ′ with the message m along with a sig-

nature of knowledge SPK{(γ, δ) : vγσ = vvδr} to the verifier. Therefore, both
need to compute vσ = e(c′, g), v = e(X, a′) · e(X, b′)m and vr = e(X,B′). The
verifier checks the proof and checks whether A′ as well as b′ and B′ were cor-
rectly formed. Note, that the proof can be conducted by means of a standard
DL-representation proof [16], which can easily be seen by rewriting the proof as
SPK{(γ, δ) : v = vγσ(v

−1
r )δ}.

Remark. Observe, that we can realize a concept which is similar to partially
blind signatures. However, in contrast to existing partially blind signature schemes
[1], where the signer can integrate some common agreed upon information in the
signature, here, the signer arithmetically adds a message to the “blinded mes-
sage” (hidden in the commitment). Therefore, during the signing, the signer
simply updates the commitment to C′ = CgmS and uses C′ instead of C for
signing. The receiver then obtains a signature for message m+mS, whereas mS

is determined by the signer and m is hidden from the signer.

Update. The interesting and from our point of view novel part is that a signer
can use a somewhat related idea to “update” a randomized signature without
showing the message. Assume that a receiver holds a randomized signature σ′

for message (m′, r) whereas m′ = m + mS and wants the signer to update
the signature such that it represents a signature for message (m′ +m′

S , r + 1).
Since showing m′, as within the signature above, would destroy the unlinka-
bility due to both messages are known, the receiver can solely prove that he
knows the message in zero knowledge and both can then interactively update
the signature. Therefore in the verification the receiver provides a signature of
knowledge SPK{(α, β, γ) : vασ = vvβm′vγr } to the verifier, whereas vσ = e(g, c′),
v = e(g, a′), vm′ = e(g, b′) and vr = e(g,B′), which convinces the signer that the
receiver possesses a valid signature for unknown message (m′, r). Then, for the
update, i.e. to add m′

S it is sufficient for the signer to compute C̃m′+m′
S
= a′m

′
SA′

and send it to the receiver. The receiver computes Cm′+m′
S
= (C̃m′+m′

S
)r

′
and

provides a signature of knowledge SPK{(α, β, γ) : vασ = vvβm′vγr ∧ C̃m′+m′
S
=

(Cm′+m′
S
)α}. Note that this proof convinces the signer that the receiver has

randomized the commitment of the signer using the same random factor (r′)
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as within the randomization of the signature. Then, the signer computes the
updated signature σ′′ = (ar̃, A′̃r, b′̃r, B ′̃r, (c′(Cm′+m′

S
)xy)r̃) for r̃ ∈ Zp and gives

σ′′ = (a′′, A′′, b′′, B′′, c̃′′) to the receiver. The receiver sets c′′ = (c̃′′)r
′−1

and now
holds a valid signature for message (m′+m′

S, r+1) which he can in turn random-
ize. Therefore, observer that in the signature tuple only the last element actually
includes the messages and we have c′ = crr

′
= (axC′kxy)rr

′
= (ax+xy(m′+zr))rr

′

and (Cm′+m′
S
)xy = (axy(m

′
S+z))r. By taking these results together we have a

well formed signature component c′′ = (ax+xy(m′+m′
S+z(r+1)))rr

′
. The remaining

elements of the signature are easy to verify for correctness.

Remark. This functionality can easily be extended to signatures on arbitrary
tuples of messages, will be a building block for our scheme and may also be of
independent interest. Note that issuing a new signature in every step without
revealing the hidden messages would not work and thus we use this “update
functionality”.

4.2 High Level Description of the First Scheme

Before presenting the detailed protocols, we provide a high level description. The
aim of our construction is to let the user solely prove in each Consume protocol
that enough resources, i.e. storage space, is available. In this setting, the user
does not provide any useful information about the actual consumed space to
the verifier, but the verifier learns only the fact that the user is still allowed to
consume storage space.

ProviderSetup. The cloud provider generates a key-pair (sk, pk) for the CL
signature scheme, publishes pk, initializes an empty blacklist BL and fixes a set
L = {L1, . . . , Ln} of space limits.

ObtainLimit. A user chooses a limit L ∈ L and obtains a CL signature σt for
a token t = (C(id), C(s), L), whereas the initially consumed storage space s is
set to be s = 1.

Consume. Assume that the user holds a token t = (C(id), C(s), L) and corre-
sponding signature σt. Note, that id (the token-id) and s were signed as com-
mitments and thus the signer is not aware of these values. When a user wants
to integrate a data object d, the user computes C(id′) for the new token, ran-
domizes the signature σt to σ′

t and proves that σ′
t is a valid signature for id

and L (by revealing these two elements) and an unknown value s that satisfies
(s + |d|) ∈ [0, L] or equivalently s ∈ [0, L − |d|], i.e. when integrating the new
data object d the user needs to prove that after adding of |d| space units at most
L storage space will be consumed. If id is not contained in BL and this proof
succeeds, the signature will be updated to a signature for C(id+ id′), C(s+ |d|)
and L. Consequently, the provider adds id to BL and the user obtains an up-
dated signature for a token t′ = (C(id+ id′), C(s+ |d|), L). Otherwise, the cloud
provider will reject the integration of a new data object.
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Reclaim. Assume that the user holds a token t = (C(id), C(s), L) and corre-
sponding signature σt. When a user wants to delete a data object d, as above, the
user computes C(id′) for the new token, randomizes the signature σt to σ′

t and
“proves” that he is allowed to delete d and that σ′

t is a valid signature for id and L
(by revealing these two elements). If id is not contained in BL and the signature
is valid, the user obtains a signature for a token t′ = (C(id+ id′), C(s− |d|), L).
Otherwise, the cloud provider will reject to delete d.

4.3 Detailed Description of the First Scheme

ProviderSetup: The cloud provider generates a key-pair for the CL signa-
ture scheme to sign tokens of the form t = (id, s, L). More precisely, the cloud
provider signs tokens of the form t = (id, rid, s, rs, L), but we usually omit
the randomizers for the ease of presentation. Consequently, the cloud provider
obtains the private key sk = (x, y, z1, z2, z3, z4) and publishes the public key
pk = (X,Y, Z1, Z2, Z3, Z4, e, g,G,Gt, p). Furthermore, he initializes an empty
blacklist BL and fixes a set L = {L1, . . . , Ln} of available limits.

ObtainLimit: A user registers with the cloud provider and obtains a space limit
Li ∈ L (we do not fix any concrete protocol for this task here since no anonymity
is required). After the user has registered and both have agreed on Li (which we
denote as L below for simplicity), they proceed as depicted in Protocol 1.

1. The user chooses a token-identifier id ∈R {0, 1}lid and randomizers rid, rs ∈R Zp for the
commitments and we let the user start with value s = 1. Then, he computes the commitments
Cid = gidZ

rid
1 and Cs = Zs

2Z
rs
3 and sends them along with a signature of knowledge

SPK{(α, β, γ) : Cid = gαZβ
1 ∧ Cs = Z2Z

γ
3 } (1)

to prove the ability to open the commitments, whereas the second part in the proof also con-
vinces the cloud provider that s = 1.

2. If the verification of the signature of knowledge in (1) holds, the cloud provider computes a CL

signature for (Cid, Cs, L) as follows: He chooses k ∈R Zp, computes a = gk, b = ay , Ai = azi ,

Bi = Ay
i for 1 ≤ i ≤ 4 and c = ax(CidCsZ

L
4 )kxy and sends σ = (a, {Ai}, b, {Bi}, c) to the

user.
3. The user verifies whether the signature is valid and if this holds the user is in possession

of a valid signature σ for a token t = (id, s, L), whereas the cloud provider is not aware
of id and knows that s = 1. Furthermore, the user locally randomizes the signature σ to

σ′ = (a′, {A′
i}, b′, {B′

i}, c′) by choosing r, r′ ∈ Zp and computing σ′ = (ar, {Ar
i}, br, {Br

i}, crr
′
).

Remark. All further actions are fully anonymous and in practice also unlinkable, since we can
assume that one limit will be issued to a quite large number of users (and the limit is the only
information that could potentially be used for linking)!

Prot. 1. The ObtainLimit protocol

Consume: A user holds a randomized signature σ′ = (a′, {A′
i}, b′, {B′

i}, c′) for
a token t = (id, s, L) and wants to integrate a data object d. The protocol to
integrate a data object and obtain a new token is depicted in Protocol 2.
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1. The user sends the randomized signature σ′, the “visible part” (id, L) of the token t and a data
object d along with a signature of knowledge

SPK{(α, β, γ, δ) : v
α
σ = vv

β
rid

v
γ
s v

δ
rs

∧ (0 ≤ γ ≤ 2
lL−l|d| − 1)} (2)

for the validity of the randomized signature containing a proof that still enough space is available
to the cloud provider. It must be noted, that the presentation of the proof in (2) represents a
shorthand notation for the signature of knowledge

SPK{(α, β, γ, δ, ε, ε1, . . . , εk, ζ, ζ1, . . . , ζk) : v = vα
σ (v−1

rid
)β(v−1

s )γ(v−1
rs

)δ ∧
C = gβZ′ζ

1 ∧

C =
k∏

i=1

(gεiZ
′ζi
1 )2

i−1 ∧

k∧

i=1

(Ci = Z
ζi
1 ∨ Cig

−1 = Z
′ζi
1 )}

Essentially, besides the DL-representation proof for the validity of the randomized signature,
we use an additional commitment C = gsZ′r

1 to the value s with a new randomizer r computed
as

r = r12
0 + r22

1 + . . .+ rk2
k−1 MOD p

for ri’s chosen uniformly at random from Zp and the single commitments for the range proof

are Ci = gsiZ
′ri
1 . It also must be mentioned, that k represents lL − l|d|, the binary length

of L − |d|. Furthermore, note that in case of s = 1, i.e. in the first execution of the Consume
protocol, it would not be necessary to provide a range proof. However, when performing a range
proof, the initial Consume protocol is indistinguishable from other protocol executions and thus
provides stronger privacy guarantees.

2. The cloud provider checks whether id ∈ BL. If id is not blacklisted, the cloud provider verifies
the validity of the signature for the part (id, L) of the token t. Therefore, the cloud provider
locally computes the values

vσ = e(g, c′), vrid = e(X,B′
1), vs = e(X,B′

2), vrs = e(X,B′
3) and

v = e(X, a′) · e(X, b′)id · e(X,B′
4)

L

from pk, (id, L) and σ′ and verifies the signature of knowledge (2) Additionally, he checks
whether the A′

i’s as well as b′ and B′
i’s are correctly formed. A positive verification convinces

the cloud provider that enough storage space is available to integrate d and a signature for an
updated token t′ can be computed in cooperation with the user as follows: Firstly, we need
an observation regarding the signature σ′. Note, that the only element of the signature that
depends on the message is c′, which can be rewritten as

c′ = (ax+xy(id+z1rid+z2s+z3rs+z4L))rr
′
= (ax+xyidA

xyrid
1 Axys

2 Axyrs
3 AxyL

4 )rr
′

and in order to update a signature for the id-part (to construct a new id for the new token) it
is sufficient to update a and A1. To update the s-part, which amounts to update the currently
consumed space, it is sufficient to update A2 and A3. The latter update needs to be computed
by the cloud provider to be sure that the correct value |d| is integrated and the former one
needs to be computed by the user to prevent the cloud provider from learning the new token

identifier. Hence, the cloud provider computes C̃s+|d| = A
′|d|
2 A′

3 and sends C̃s+|d| to the user,
who verifies whether |d| has been used to update the commitment. The user in turn chooses a

new identifier and randomizer id′, rid′ ∈R Zp, computes Cid+id′ = (a′id′A
′r

id′
1 )r

′
, Cs+|d| =

(C̃s+|d|)v = (A
′|d|
2 A′

3)
r′ and sends (Cid+id′ , Cs+|d|) along with a signature of knowledge:

SPK{(ε, ζ, η, φ, ι, κ) : Cid+id′ = a′εA′ζ
1 ∧

C̃s+|d| = (Cs+|d|)
η ∧ v = vη

σ(v
−1
rid

)φ(v−1
s )ι(v−1

rs
)κ}

to the cloud provider.
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Note, that the user additionally to the knowledge of the ability to open the commitments
proves that he has randomized the commitment C̃s+|d| to a commitment Cs+|d| using the same

randomization factor (r′) as used to randomize the signature σ without revealing this value.
After positive verification of this signature of knowledge, the cloud provider chooses r̃ ∈R Zp

and computes an updated signature

σ′′ = (a′̃r, {A′̃r
i }, b′̃r , {B ′̃r

i }, (c′(Cid+id′Cs+|d|)
xy)r̃) (3)

and sends this updated signature σ′′ = (a′′, {A′′
i }, b′′, {B′′

i }, c̃′′) to the user. The user sets

c′′ = (c̃′′)r
′−1

and obtains a valid signature for a token t′ = (id + id′, s + |d|, L) or more
precisely a token t′ = (id+ id′, rid + rid′ , s+ |d|, rs +1, L), which he verifies for correctness (it
is quite easy to verify that σ′′ is indeed a valid signature). Consequently, the user can randomize
σ′′ and run a new Consume protocol for a data object d′ with token t′ = (id + id′, s + |d|, L).

Prot. 2. The Consume protocol

Reclaim: Reclaiming resources, i.e. deleting a data object, is achieved by a
slight adaption of the Consume protocol. In step 1, instead of the SPK (2) the
user provides the subsequent signature of knowledge (the proof that enough
space is available is not necessary)

SPK{(α, β, γ, δ) : vασ = vvβridv
γ
s v

δ
rs}

And in step 3, the cloud provider computes C̃s−|d| = A
′p−|d|
2 A′

3 instead of

C̃s+|d| = A
′|d|
2 A′

3.

Remark. As we have already mentioned, a cloud provider should only perform
a Reclaim protocol if the user is able to prove the possession of the data ob-
ject d (and we may assume that only owners delete their data objects). It is
not the focus of this paper to provide a solution to this task. However, a quite
straightforward solution would be to commit to some secret value for every data
object and the cloud provider requires a user to open the commitment or prove
knowledge that he is able to open the commitment to delete a data object.

4.4 A Modified Scheme Providing Even More Privacy

In order to increase privacy further, it may be desirable that the initially issued
limit L is hidden from the CP during Consume or Reclaim protocols. We, how-
ever, note that if the number of initial tokens associated to CP-defined limits in
L is huge, the respective anonymity sets may be of reasonable size for practical
application and this adaption may not be necessary. Nevertheless, we provide an
adaption of our protocols which removes the necessity to include L, does only
include the available amount of resources (denoted as s) and hides this value
s from the CP during any further interactions. We present the modification
below:

ProviderSetup. Now, tokens are of the form t = (id, rid, s, rs) and thus the
private key is sk = (x, y, z1, z2, z3) and the public key is pk = (X,Y, Z1, Z2, Z3,
e, g,G,Gt, p).
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ObtainLimit. The user computes commitments Cid = gidZrid
1 and Cs = Zrs

3

and provides SPK{(α, β, γ) : Cid = gαZβ
1 ∧ Cs = Zγ

3 }. The element c of the
signature is now computed by the CP as c = ax(CidCsZ

L
2 )

kxy and the user can
randomize this signature for token t = (id, rid, L, rs) as usual.

Consume. Here the user only provides id of the actual token and a signature
of knowledge

SPK{(α, β, γ, δ) : vασ = vvβridv
γ
s v

δ
rs ∧ (2l|d| − 1 ≤ γ ≤ 2lL − 1)}

In this setting L does not represent a user-specific limit but the maximum of
all issued limits (or any large enough number), whereas this proof convinces
the CP that enough resources to integrate d are still available (note that the
local computations of the CP for the verification of the signature in step 2 have
to be adapted, which is however straightforward). In step 3, the update of the
signature remains identical to the first scheme with the exception that the CP

computes the commitment as C̃s−|d| = A
′p−|d|
2 A′

3, which updates the remaining
resources, e.g. in the first run of the Consume protocol to s := L− |d|.
Reclaim. The reclaim protocol remains identical to the first scheme with the

exception that C̃s+|d| = A
′|d|
2 A′

3.

4.5 Performance Evaluation

In this section we provide a performance evaluation of our first scheme. We have
implemented the user’s and the cloud provider’s parts of the protocols in Java
using the jPBC4 library version 1.2.0. This library provides a Java porting of
as well as a Java wrapper for the Pairing-Based Cryptography Library (PBC)5.
In particular, we have used the Java PBC wrapper which calls the PBC C
library and is significantly faster than the pure Java implementation. All our
experiments were performed on an Intel Core 2 duo running at 2.6 GHz with
3GB RAM on Linux Ubuntu 10.10.

As the cryptographic setting we have chosen a symmetric pairing e : G×G →
Gt constructed on the supersingular elliptic curve y2 = x3 +x over a prime field
Fq where |q| = 512 bits and q ≡ 3 (mod 4). The group G represents a subgroup
of E(Fq) of order r = 160 bits. The embedding degree is k = 2 and thus Gt is a
subgroup of Fq2 and with our choice of the parameters we obtain a DL security
of 1024 bit. For the non-interactive proofs of knowledge we have used the SHA-
256 hash function as a single parameter random oracle.

Experiments. For evaluating the computational performance of the client and
the server implementation we have taken the average timing from 100 experi-
ments. Therefore we have chosen the resource bounds (limits) as L = 10i for
i = 3, . . . , 9 (see Figure 1). Within every of the 100 experiments per bound, the
user has conducted 10 Consume as well as 10 Reclaim operations with |d| sam-
pled uniformly at random from [1, 10i−2]. Figure 1 presents the performance of

4 http://libeccio.dia.unisa.it/projects/jpbc/
5 http://crypto.stanford.edu/pbc/

http://libeccio.dia.unisa.it/projects/jpbc/
http://crypto.stanford.edu/pbc/
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the ObtainLimit, the Consume and the Reclaim protocols from a computational
and bandwidth perspective, whereas point compression for elements in G is used
to reduce the bandwidth consumption. As one can see, all protocols are highly
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Fig. 1. Experimental results from a Java implementation of our first scheme

efficient from the user’s as well as the cloud provider’s perspective, both in the
computational effort and the bandwdith consumption. This holds, although the
code has not been optimized for performance and pre-computations have not
been used. Hence, our evaluation shows that from the efficiency point of view
our protocols are entirely practical.

4.6 Extensions and System Issues

Below, we present extensions of our schemes and aspects which seem to be
important when deploying them for practical applications.

Limited Validity. One could rightly argue that in a large scale cloud the double
spending detection of token identifiers using a blacklist (database) does not scale
well. In order to overcome this limitation, we can extend our schemes such that
a resource limit associated to a token only has a limited validity. Then, before
the validity ends a user has to provide the actual token, i.e. the identifier and the
available resources (either s and L or solely s in the second scheme) along with
the corresponding signature. Then the user runs a new ObtainLimit protocol
with the CP. Note that in case of the first scheme users should not end up with
a new limit L representing the remaining resources, since this is very likely to
be unique. Thus users should take one of the predefined limits. We now sketch
how this adaption for the first scheme looks like (for the second one it can
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be done analogously): The keys of the CP are adapted such that the public
key is pk = (X,Y, Z1, Z2, Z3, Z4, Z5, Z6, e, g,G,Gt, p). Token are augmented by
elements (V, rV ) whereas the former represent the validity period, e.g. a hash
computed from an encoding in Unix time. In the ObtainLimit protocol the user
additionally computes ZrV

6 (and proves knowledge of this DL) and the c part
of the signature is adapted to c = ax(CidCsZ

L
4 Z

V
5 ZrV

6 ) whereas the CP here
integrates the validity V . The remainig ideas stay the same with exception that
in the Consume protocol, the SPK needs to be adapted to

SPK{(α, β, γ, δ, ε, ζ) : vασ = vvβridv
γ
s v

δ
rsv

ε
V v

ζ
rV ∧

(0 ≤ γ ≤ 2lL−l|d| − 1) ∧ (2ltime − 1 ≤ ε ≤ 2lp − 1)}
whereas p represents the maximum validity period and time the representation
of the actual date and time (in the Reclaim protocol we only need the second
range proof). For the update of the signature and the token respectively, the

user has to additionally compute CV = (A′
5A

′r′V
6 )r

′
and augment the proof of

knowledge in step 3 of Protocol 2 to

SPK{(ζ, η, φ, ι, κ, λ, μ, ν, ξ) : Cid+id′ = a′ζA′η
1 ∧CV = A′φ

5 A′ι
6 ∧

C̃s+|d| = (Cs+|d|)φ ∧ v = vφσ(v
−1
rid

)κ(v−1
s )λ(v−1

rs )μ(v−1
V )ν(v−1

rV )ξ}
Note that these modifications do influence the overall performance of the Consume
protocol approximately by a factor of two, which though performs very good in
practice when compared with our experimental results.

Elasticity. Clouds extremely benefit from users being able to request resources
“on the fly”. In our first scheme this can only be achieved by means of requesting
additional tokens, i.e. running additional ObtainLimt protocols for the required
resource, and users have then to manage a list of tokens. The second scheme
allows for such updates, whereas we can simply use the Reclaim protocol of
Section 4.4 (we may denote it as Recharge in this case), whereas |d| is simply
replaced by the amount of resources to be extended.

Tariff Schemes. If we consider the resource bound as “credits”, then the CP
can apply different tariff schemes at different points in time. This can simply be
realized by using a different weight wi for tariff scheme i and using |d|′ = |d| ·wi

instead of |d| in our schemes.

4.7 Security Analysis

Regarding the security we have the following theorem whereas due to space
constraints we refer the reader to the full version of this paper for the proof.

Theorem 1. Assuming that the LRSW assumption in G (CL signature scheme
is secure) and the DL assumption in G hold (the commitments are secure) and
the proofs of knowledge are honest-verifier zero-knowledge, then the anonymous
yet authorized and bounded cloud resource scheme presented in section 4.3 is
secure with respect to the security model defined in section 2.3.
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5 Conclusion

In this paper we have investigated the problem of anonymous yet authorized and
bounded use of cloud resources. We have presented a scheme, it’s modification
providing even more privacy, have presented extensions valuable for practical
application and have supported the efficiency of the proposed scheme by a per-
formance analysis based on a prototypical implementation.

Concluding we present anonymity revocation as an open problem. It is not
clear to us how anonymity revocation could be suitably realized in this setting.
We argue that it does not seem to be meaningful to use identity escrow within
every transaction, i.e. to verifiably encrypt the user’s identity. It is absolutely not
clear who would have the power to perform anonymity revocation. In contrast,
if at all, it seems more suitable to employ techniques like used within e-cash
[9] or (n-times) anonymous authentication [9,21]. However, it is not clear to us
how to achieve this, since in the aforementioned approaches spend protocols or
authentications are atomic and in our setting we do not know in advance how
often a user will consume or reclaim resources. We leave this functionality as an
open problem for future work.
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17. Chen, L., Escalante B., A.N., Löhr, H., Manulis, M., Sadeghi, A.-R.: A Privacy-
Protecting Multi-Coupon Scheme with Stronger Protection Against Splitting. In:
Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886,
pp. 29–44. Springer, Heidelberg (2007)

18. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security?
Tech. Rep. UCB/EECS-2010-5, University of California, Berkeley (2010)

19. Coull, S., Green, M., Hohenberger, S.: Controlling Access to an Oblivious Database
Using Stateful Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)

20. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

21. Damg̊ard, I.B., Dupont, K., Pedersen, M.Ø.: Unclonable Group Identification. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

23. Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Peter, A., Sion, R.,
Sotakova, M.: Oblivious Outsourced Storage with Delegation. In: Financial Cryp-
tography and Data Security. LNCS, Springer, Heidelberg (2011)

24. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: STOC,
pp. 169–178 (2009)

25. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR,
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