
Provable Chosen-Target-Forced-Midfix

Preimage Resistance

Elena Andreeva and Bart Mennink

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva,bart.mennink}@esat.kuleuven.be

Abstract. This paper deals with definitional aspects of the herding at-
tack of Kelsey and Kohno, and investigates the provable security of sev-
eral hash functions against herding attacks.

Firstly, we define the notion of chosen-target-forced-midfix (CTFM)
as a generalization of the classical herding (chosen-target-forced-prefix)
attack to the cases where the challenge message is not only a prefix
but may appear at any place in the preimage. Additionally, we identify
four variants of the CTFM notion in the setting where salts are explicit
input parameters to the hash function. Our results show that including
salts without weakening the compression function does not add up to
the CTFM security of the hash function.

Our second and main technical result is a proof of CTFM security of
the classical Merkle-Damg̊ard construction. The proof demonstrates in
the ideal model that the herding attack of Kelsey and Kohno is optimal
(asymptotically) and no attack with lower complexity exists. Our security
analysis applies to a wide class of narrow-pipe Merkle-Damg̊ard based
iterative hash functions, including enveloped Merkle-Damg̊ard, Merkle-
Damg̊ard with permutation, HAIFA, zipper hash and hash-twice hash
functions. To our knowledge, this is the first positive result in this field.

Finally, having excluded salts from the possible tool set for improv-
ing narrow-pipe designs’ CTFM resistance, we resort to various message
modification techniques. Our findings, however, result in the negative
and we demonstrate CTFM attacks with complexity of the same order
as the Merkle-Damg̊ard herding attack on a broad class of narrow-pipe
schemes with specific message modifications.

Keywords: Herding attack; Chosen-target-forced-midfix; Provable se-
curity; Merkle-Damg̊ard.

1 Introduction

Hash functions are an important cryptographic primitive finding numerous ap-
plications. Most commonly, hash functions are designed from a fixed input length
compression function to accommodate messages of arbitrary length. The most
common domain extender is the Merkle-Damg̊ard (MD) iteration [8,16], which
has long been believed to be a secure design choice due to its collision secu-
rity reduction. Recently, however, several results cast doubt on its security with

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 37–54, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 E. Andreeva and B. Mennink

respect to other properties. The MD design was showed to not preserve either
second preimage or preimage properties [3]. Moreover, the indifferentiability at-
tack of Coron et al. [7], the multicollision attack of Joux [12] and the herding
attack of Kelsey and Kohno [13] exposed various weaknesses of the MD design.

The herding attack of Kelsey and Kohno, also known as the chosen-target-
forced-prefix (CTFP) attack, considers an adversary that commits to a hash
value y for a message that is not entirely under his control. The adversary then
demonstrates abilities to incorporate an unknown challenge prefix as part of
the original preimage corresponding to the committed value y. While for a ran-
dom oracle the complexity of such an attack is Θ(2n) compression function
calls for y of length n bits, the herding attack on Merkle-Damg̊ard takes about√
n22n/3 compression function executions for a preimage message of length O(n)

as demonstrated by Kelsey and Kohno [13]. A more precise attack bound was
obtained by Blackburn et al. [6].

Several other hash functions have been analyzed with respect to resistance to
herding attacks. In [2], Andreeva et al. showed applications of the herding attack
to dither hash functions, and in [1] they generalized the herding attack of [13] to
several multi-pass domain extenders, such as the zipper hash and the hash twice
design. Gauravaram et al. [9,10] concluded insecurity against herding attacks for
the MD designs where an XOR tweak is used in the final message block.

While this topic has generated significant interest, many important questions
still remain unanswered. All research so far focused on negative results, being
generalized herding attacks on hash function designs, but it is not known whether
one can launch herding attacks with further improved complexity against the MD
design. The task becomes additionally complicated by the lack of formal security
definitions for herding to accommodate the objectives of a proof based approach.
Apart from wide-pipe designs, no scheme known yet is secure against herding
attacks, nor is it clear how to improve the MD design without enlarging its state
size. Some of the possible directions are to either use randomization (salts) or
to apply certain message modification techniques.

Our Contributions. In this work we address the aforementioned open prob-
lems. Firstly, we develop a formal definition for security against herding attacks.
Neven et al. first formalize the notion of chosen-target-forced-prefix security (as
the random-prefix preimage problem) in [17]. Our new notion of chosen-target-
forced-midfix (CTFM) security extends his notion by enabling challenges of not
only prefix type but also as midfixes and suffixes. We achieve this by giving
the adversary the power to output an “order”-defining mixing function g to-
gether with his response, which fixes the challenge message at a selected by the
adversary position in the preimage message.

In addition, we investigate the notion of salted CTFM. Depending on when
the salt value is generated and who is in control of it, four variants of the salted
notion emerge in the setting where randomness (salt) is used. One of the variants
serves no practical purposes because it forces an adversary to commit to a hash

Provable Chosen-Target-Forced-Midfix Preimage Resistance 39

value for an unknown salt, where the salt is defined as an input parameter
to the hash function. Although the other three variants are plausible from a
practical perspective, we show that they do not attribute to an improved CTFM
resistance. This is true for the case where the salt is added in such a way that
the cryptographic strength of the compression function is not compromised on
some other level, i.e. collision or preimage resistance.

Our main technical contribution is to exhibit a CTFM security proof for
the MD domain extender. While until now the research in this area has been
focusing on finding herding attacks against hash function designs, we are the first
to provide a security upper bound for a hash function design. In more detail,
we upper bound the strength of a CTFM attacker in finding in the ideal model
a preimage for the MD design, and show that the herding attack described by
Kelsey and Kohno is optimal (asymptotically). Using new proof techniques we
prove that at least approximately 22n/3/L1/3 compression function queries are
needed for a CTFM attack, where n is size of the commitment y and L is the
maximal allowed length of the preimage in blocks. To the best of our knowledge,
there has not been a positive result of this form before. Due to its generic nature,
the new security techniques introduced in this work not only apply to the MD
design, but directly carry over to a broad spectrum of domain extenders derived
from MD, including strengthened MD, MD with a distinct final transformation
and HAIFA [5]. Additionally, the bound implies optimality of the attacks on
hash twice and the zipper hash function performed by Andreeva et al. [1].

We explore further the question of whether a simple tweak on the narrow-pipe
MD construction would allow us to prove optimal CTFM security. Excluding
randomness or salting from the set of available tools, we investigate tweaks that
modify the message inputs by simple message modification techniques like the
XOR operation. These schemes can be viewed as MD type domain extenders
with a more sophisticated padding. Our findings, however, result in the negative
and we demonstrate CTFM attacks on a class of schemes of this form. The attack
particularly applies also to the MD with checksum design, therewith providing
a simple and elegant alternative to the attack by Gauravaram et al. [10].

2 Preliminaries

By x
$← X we denote the uniformly random sampling of an element from a set

X . By y ← A(x) and y
$← A(x), we denote the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.
For a function f , by rng(f) we denote its range. By Func(n+m,n), for m,n ≥ 1,
we denote the set of compression functions f : {0, 1}n × {0, 1}m → {0, 1}n. As
of now, we assume m = Θ(n).

A hash function H : {0, 1}∗ → {0, 1}n is a function that maps an arbitrar-
ily long input to a digest of n bits, internally using a compression function f ∈
Func(n+m,n). In this work we distinguish between a general hash function
design H, and the notion of an iterated hash function which is a specific type

40 E. Andreeva and B. Mennink

of hash function that executes the underlying compression function in an
“iterated” way. Let pad : {0, 1}∗ → ({0, 1}m)

∗
be an injective padding function.

Let iv ∈ {0, 1}n be a fixed initial value. We define the iterated hash function IH
as follows:

IH(M) = hl, where: (M1, . . . ,Ml)← pad(M);

h0 ← iv;

hi ← f(hi−1,Mi) for i = 1, . . . , l.

(1)

One may include a special final transformation, but we note that this would not
result in any added value against the herding attack. The general iterative prin-
ciple of IH is followed by a wide range of existing modes of operations, including
the traditional (strengthened) MD design [8,16], enveloped MD (includes final
transformation) [4], MD with permutation (includes final transformation) [11],
HAIFA [5] and the zipper hash design [15].

3 Chosen-Target-Forced-Midfix Preimage Resistance

An adversary for a hash function is a probabilistic algorithm with oracle access
to underlying compression function f . Queries to f are stored in a query history
Q. In the remainder, we assume that Q always contains the queries required
for the attack, and we assume that the adversary does not make trivial queries,
i.e. queries to which the adversary already knows the answer in advance. In this
work we consider information-theoretic adversaries only. This type of adversary
has unbounded computational power, and its complexity is measured by the
number of queries made to its oracles.

The goal of an attacker in the original herding attack [13] against a hash func-
tion H is to successfully commit to a hash digest without knowing the prefix of
the preimage message in advance. In the first phase of the attack, the adver-
sary makes an arbitrary amount of queries to f . Then, he commits to a hash
digest y, and receives challenge prefix P . After a second round of compression
function calls, the adversary outputs a response R such that H(P‖R) = y. In
this form the power of the adversary is limited significantly. In particular, if the
hash function is defined so as to process the message blocks in reverse order,
the success probability of the adversary is limited to the preimage advantage.
We generalize the original attack by introducing the chosen-target-forced-midfix
(CTFM) attack. In the CTFM attack, the challenge P does not necessarily need
to be a prefix, but can technically occur at any place in the preimage message.
The generalized attack mainly differs from the original one in the fact that the
adversary not only outputs a bit string R, but also an “order”-defining function
g such that H(g(P,R)) = y. We note that the attack is trivial for some choices
of g (e.g. if it is defined by the identity function on its second argument). Below
we give a concrete specification of g.

Definition 1. Let H : {0, 1}∗ → {0, 1}n be a hash function design employing
compression function f ∈ Func(n+m,n). Let p denote the length of the forced

Provable Chosen-Target-Forced-Midfix Preimage Resistance 41

midfix, and denote by L ≥ 1 the maximal length of the forged preimage in blocks.
Let A be a chosen-target-forced-midfix (CTFM) finding adversary for this hash
function. The advantage of A is defined as

Advctfm
H (A) = Pr

(
f

$← Func(n+m,n), (y, st)← Af , P
$← {0, 1}p,

(g,R)← Af (P, st) : Hf (g(P,R)) = y ∧ ∣∣rng(g)∣∣ ≤ 2Lm
)
.

By Advctfm
H (q) we denote the maximum advantage, taken over all adversaries

making q queries to their oracle.

The function g can technically be any function as long as its range is at most
2Lm, but for some choices of g the definition becomes irrelevant. For instance, if
the mutual information between P and g(P,R) is 0, the CTFM attack is trivial.
More generally, the attack becomes easier if the function g is allowed to split P
into parts. However, this type of functions does not correspond to any practically
relevant CTFM attacks. Therefore, in the remainder, we restrict g to satisfy that
g(P,R1‖R2) = R1‖P‖R2, where R1, R2 are of arbitrary length.

The chosen-target-forced-prefix attack of Kelsey and Kohno is covered for g
restricted to R1 being the empty string. The variant of the herding attack by
Andreeva et al. [1] on the zipper hash function can be seen as a chosen-target-
forced-suffix attack, with R2 being the empty string.

The value p defines the size of the challenge P , and plays an important role in
the security results. A smaller value of p allows for higher success probability in
guessing P in the first phase of the attack. A larger value of p limits the number
of “free” queries of the adversary, the adversary needs to make at least
p/m�
compression function queries for incorporating the challenge P , where m is the
message block size.

4 Salted-Chosen-Target-Forced-Midfix Preimage
Resistance

In this section we discuss the salted variant of CTFM, which we denote by
SCTFM. Depending on whether the challenger generates the salt value S or the
adversary himself, and at which stage of the game the salt is chosen, four salted
variants of CTFM emerge. We view the salt as an explicit input parameter of size
s ≥ 1 to the hash function H, which is not integrated at an internal compression
function level, but processed at the higher (iteration) hash function H level. We
define enci : {0, 1}s × {0, 1}n × {0, 1}m → {0, 1}n+m to take inputs S, chaining
value hi−1 and message block Mi, where i varies between 1 and L (which is the
maximum length of the preimage) to provide a possible function diversification.
The function enci is a bijection on hi−1 andMi and we denote its inverse function
by enc−1

i . More concretely,

enci(S, hi−1,Mi) = (h′
i−1,M

′
i) ∧ enc−1

i (S, h′
i−1,M

′
i) = (hi−1,Mi).

42 E. Andreeva and B. Mennink

We can view the functions enci as keyed permutations on the chaining value and
message block inputs to the compression function, where the key is the salt S.

Our choice of this encoding function is guided by a simple security objective.
Let us define f ′

i as f ′
i(S, hi−1,Mi) = f(enci(S, hi−1,Mi)) for i = 1, . . . , L. We

choose enci to be a bijection on hi−1 and Mi to provide the full set of valid
input points for the function f . Any deviation from this would weaken the cryp-
tographic strength of f , i.e. by allowing an adversary to easily launch collision
attacks on the encoding function as a way to circumvent collision computations
on f . If enci is not a bijection on its variable inputs (notice that once chosen the
salt is fixed), then the function f would be working only with a restricted set of
its domain points.

We provide the definitions of SCTFM security for the four variants indexed
by j = 1, 2, 3, 4.

Definition 2. Let H : {0, 1}∗ → {0, 1}n be a salted hash function design and
p, L be as in Def. 1. Let s denote the size of the salt and let enc = {enci}Li=1

be the family of encoding functions as described above. Let B be a salted-chosen-
target-forced-midfix (SCTFM) finding adversary for this hash function. For j ∈
{1, 2, 3, 4} the advantage of an adversary B is defined as

Advsctfm
H (B) = Pr

(
Ej : Hf,enc(g(P,R), S) = y ∧ ∣∣rng(g)∣∣ ≤ 2Lm ∧ |S| = s

)
.

By Advsctfm
H (q) we denote the maximum advantage, taken over all adversaries

making q queries to their oracle. The events Ej (j = 1, 2, 3, 4) are illustrated by
the following four game experiments:

j Ej

1 f
$← Func(n+m,n), (y, S, st)← Bf , P

$← {0, 1}p, (g,R)← Bf (P, st)

2 f
$← Func(n+m,n), S

$← {0, 1}s, (y, st)← Bf (S), P
$← {0, 1}p, (g,R)← Bf (P, st)

3 f
$← Func(n+m,n), (y, st)← Bf , P

$← {0, 1}p, S $← {0, 1}s, (g,R)← Bf (P, S, st)

4 f
$← Func(n+m,n), (y, st)← Bf , P

$← {0, 1}p, (g,R,S)← Bf (P, st)

We provide a discussion on the adversarial abilities for the four SCTFM secu-
rity notions in comparison with the standard CTFM definition and also to the
relevance of salted definitions in practice.

Variants 1, 2 and 4. We will compare the strength of a SCTFM adversary B
in variant 1, 2 or 4 with a CTFM adversary A. Notice first that in a (non-salted)
CTFM security game, A can gain advantage in the precomputation phase (the
phase before the challenge midfix is known) only by skillfully preparing some
computations for f , such that they are consistent with the evaluation of the
function H in order to compute y. Overall, A can only exploit f . On the other
hand, a SCTFM adversaryB (for either of the variants) encounters the additional

Provable Chosen-Target-Forced-Midfix Preimage Resistance 43

problem that he has to handle the encoding functions enci which may differ each
message block. With respect to the advantage of A, B’s advantage would differ
only in the case B loses control over the outputs of the enci function (which are
inputs to f), i.e. in the case when he does not know the salt value.

But in each of these three variants the SCTFM adversary B knows the salt and
has control over the inputs to f (as is the case with A) before his commitment
to y, and thus his advantage will be the same as the advantage of A. In variant
1, the SCTFM adversary is in full control of the salt value and in variant 2 he
knows the salt before committing to y, therefore he can prepare the respective
computations for f . Notice that, although in variant 4 the salt value is revealed
by the B in the second stage of the game, he is still in full control of the salt
value and his advantage is optimal when he chooses the salt S in the first phase
of the attack, does the respective computations for f , and then reveals S only
in the second phase.

This analysis comes to show that the SCTFM adversary has the same compu-
tational advantage as a CTFM adversary in variants 1, 2 and 4. The conclusion is
that salting in these variants does not help build more secure CTFM hash func-
tions H and one can do as good without additionally increasing the efficiency
and complexity of H.

Variant 3. As opposed to the previous variants, here the SCTFM adversary
B does not have control over the salt value before his commitment to y. In
this scenario, B may lose control over the precomputation, because he is forced
to use an unknown salt. This is the case for example when a Merkle-Damg̊ard
scheme is used where the salt is XORed with each chaining value. The Kelsey
and Kohno attack would fail for such a scheme since the precomputed diamond
does not contain the correct salt value, unless the adversary guessed it correctly
in advance.

Variant 3, however, is not a valid notion because it does not reflect any real
world uses of salts with hash functions. More concretely, variant 3 says that the
SCTFM adversary first commits to some value y and only then is challenged on
the randomness S, which means that he needs to make his precomputations and
commitment without knowing or being able to learn the actual input parameter
of the hash function. It is clear that such scenario fails not only from the point of
view of adversarial abilities, but from a more practical point. The commitment
simply does not make sense since one challenges the committer to make his
best guess at the salt value. The salt shall be available at the point of hash
computation, because it is an explicit input parameter to the hash function. This
is the case with examples of salted hashing, such as password salted hashing and
randomized hashing.

We exhibited 4 variants of salted hashing, where 3 of them have equivalent
complexity as in the non-salted setting and one does not make it for a mean-
ingful salted definition. As opposed to variant 3, the rest of the salted variants
attribute to plausible security definitions. However, the clear conclusion we want

44 E. Andreeva and B. Mennink

to draw here is that salts do not help prevent CTFM attacks and one shall aim
at non-salted solutions. We want to elaborate that this is a conclusion drawn
for a reasonable encoding function. A different encoding function might lead to
weakening the cryptographic strength of the compression function.

5 CTFM Resistance of Merkle-Damg̊ard Design

We consider the resistance of the traditional Merkle-Damg̊ard design against
the chosen-target-forced midfix attack. This Merkle-Damg̊ard hash function is
an iterated hash function as in (1) with the following padding function:

pad(M) = M‖10−|M|−1 mod m, (2)

splitted into blocks of length m. As demonstrated by Kelsey and Kohno [13] and
Blackburn et al. [6], one can obtain a CTFM preimage of length O(n) in about√
n22n/3 compression function executions. When larger preimages are allowed,

the elongated herding attack of [13] results in faster attacks: for 0 ≤ r ≤ n/2, one
can find a CTFP preimage of length L = O(n+2r) in approximately

√
n2(2n−r)/3

queries. As we will demonstrate, this is (asymptotically) the best possible result.
In Thm. 1 we derive an upper bound on Advctfm

MD (q) that holds for any q, and
we consider the limiting behavior in Cor. 1, in which we show that at least
22n/3/L1/3 queries are needed for an attack to succeed. After Cor. 1 we explain
why the same or similar analysis applies to a wide class of MD based functions.

Theorem 1. For any integral threshold t > 0, we have

Advctfm
MD (q) ≤ (L− 1)tq

2n
+

m2�p/m�q
2p

+

(
q2e

t2n

)t

+
q3

22n
.

Proof. See Sect. 5.1. �

The bound of Thm. 1 includes a parameter t used to bound multiple events in the
security analysis, and the bound holds for any integral t. Notice that for larger
value of t, the first factor of the bound becomes large, while for small values the
third term becomes large. Therefore, it is of importance to find a balance for this
value t. Recall that, as explained in the beginning of this section, an adversary
has a higher success probability if larger preimages are allowed. Consequently,
the optimum for t partially depends on the allowed length L. In Cor. 1 we analyze
the limiting behavior of the bound of Thm. 1.

Notice that the bound of Thm. 1 contains a term that not directly depends on
n, the second term. This term essentially represents the “guessing probability”
of the attacker: A may succeed guessing P in advance. If p = |P | is very small,
this factor dominates the bound. Therefore, it only makes sense to evaluate
this bound for p being “large enough”, and we have to put a requirement on
p. Although the requirement looks complicated at first sight, it is satisfied by
any relevant value of p. In particular, it is satisfied for p ≥ 2n/3 for L = O(n)
preimages and even for lower values of p when L becomes larger.

Provable Chosen-Target-Forced-Midfix Preimage Resistance 45

Corollary 1. Let L = O(2n/2) and let p be such that 2�p/m�22n/3

L1/32p
= O(1) for

n→∞. For any ε > 0, we obtain limn→∞ Advctfm
MD

(
2n(2/3−ε)/L1/3

)
= 0.

Proof. The bound of Thm. 1 holds for any t ≥ 1. As L = O(2n/2), there exists

a constant c such that L ≤ c2n/2. We put t = 2n/3

(L/c)2/3
≥ 1. Without loss of

generality, t is integral (one can tweak c a little bit to get integral t). From
Thm. 1:

Advctfm
MD (q) ≤ L1/3c2/3q

22n/3
+

m2�p/m�q
2p

+

(
(L/c)2/3q2e

24n/3

) 2n/3

(L/c)2/3

+
q3

22n
.

For any ε > 0, we obtain:

Advctfm
MD

(
2n(2/3−ε)

L1/3

)
≤ c2/3

2nε
+

m

2nε
2�p/m�22n/3

L1/32p
+
(e

c2/322nε

) 2n/3

(L/c)2/3 +
1

L23nε
.

All terms approach 0 for n → ∞ (notice that for the second term we have
m = Θ(n), and for the third term its exponent is ≥ 1). �

Although the security analysis of Thm. 1 and Cor. 1 focuses on the original
Merkle-Damg̊ard (MD) hash function, a very similar analysis can be directly
derived for a broad class of MD based iterative hash functions, including MD
with length strengthening [14], enveloped MD [4], MD with permutation [11] and
HAIFA [5]. Indeed, a CTFP attack against strengthened MD is provably harder
than an attack against plain MD due to the presence of the length encoding at
the end, and a similar remark applies to HAIFA. For enveloped MD and MD
with permutation, and in general for any MD based function with final trans-
formation, one can use security properties of the final transformation to show
the adversary knows only a limited amount of state values y′ which propagate
to the commitment y through the final transformation, and we can analyze the
success probability with respect to each of these possible commitments y′.1 The
security analysis furthermore applies to the hash twice hash function (where
the padded message is simply hashed twice) and the zipper hash function (where
the padded message is hashed once forward, and once in the opposite direction)
[15], therewith demonstrating the (asymptotic) optimality of the attacks de-
ployed by Andreeva et al. [1]. Indeed, a CTFM attack for zipper or hash twice is
provably harder than an attack for MD, but the attacks of Andreeva et al. are
of similar complexity as the attack of Kelsey and Kohno on MD.

5.1 Proof of Thm. 1

We introduce some definitions for the purpose of security analysis of MD against
the CTFM attack. We consider adversaries making q = q1 + q2 queries to their

1 In detail for enveloped MD and MD with permutation, the condition on event ¬E2

in the proof of Thm. 1 guarantees the adversary to know at most 2 such values y′.
The final success probability is then at most 2 times as large.

46 E. Andreeva and B. Mennink

random oracle f . Associated to the queries made in the attack we consider
a directed graph (V,A). A compression function execution f(hi−1,Mi) = hi

corresponds to an arc hi−1
Mi−→ hi in the graph. The graph is initialized as

({iv}, ∅). We denote by (V (j), A(j)) (for j = −q1, . . . , q2) the subgraph of (V,A)
after the j-th query. Hence, after the first phase of the attack we are left with
graph (V (0), A(0)).

A path hi
Mi+1−→ hi+1 · · · Ml−→ hl in a graph is called “v-tail” (for “valid tail”)

if Mi+1‖ · · · ‖Ml forms the suffix of a correctly padded message. Formally, it is
v-tail if there exists Mi ∈ ({0, 1}m)∗ such that

Mi‖Mi+1‖ · · · ‖Ml‖Ml+1 ∈ rng(pad).

Intuitively, it means that hi → hl is formed by a valid sequence of message
blocks and can possibly occur at the end of a hash function execution. Notice
that the v-tail property of a path carries over to its sub-suffixes. For two state
values hi, hl ∈ {0, 1}n, we define

disthi→hl
(j) =

{
0 ≤ k <∞ ∣∣ (V (j), A(j)) contains v-tail hi −→ hl of length k

}
.

For a P ∈ {0, 1}p, a path hi
Mi+1−→ hi+1 · · · Mk−→ hk is called “P -comprising” if

Mi+1‖ · · · ‖Mk contains P as a substring.

Proof of Thm. 1. Let A be any CTFM adversary making q1+ q2 queries to its
random function f . In other words, at a high level the attack works as follows:
(1) the adversary makes q1 queries to f , (2) he commits to digest y, (3) he

receives a random challenge P
$← {0, 1}p, (4) he makes q2 queries to f , and (5)

he responds with R1, R2 such that H(R1‖P‖R2) = y and
∣∣R1‖P‖R2

∣∣ ≤ Lm.
Denote by Pr (sucA(j)) for j = −q1, . . . , q2 the success probability of A after
the j-th query. Obviously, Advctfm

MD (A) = Pr (sucA(q2)). In the first phase of
the attack, the adversary arbitrarily makes q1 queries to f , and then outputs a

commitment y. Consequently, he receives challenge P
$← {0, 1}p. Consider the

following event E0:

E0 : (V (0), A(0)) contains a P -comprising path.

E0 captures the event of A “guessing” P in the first phase of the attack. We
will split the success probability of the attacker, using the fact that he ei-
ther did or did not guess P in the first phase. In other words, we can write
Pr (sucA(q2)) ≤ Pr (sucA(q2) | ¬E0) +Pr (E0). However, for the purpose of the
analysis we introduce two more events E1,E2. Let t > 0 be any integral threshold.

E1 : α1 > t, where α1 = max
0≤k≤L

|{h ∈ V (q2) | k = min disth→y(q2)}|,
E2 : α2 > 2, where α2 = max

h∈V (q2)
|{h′ ∈ V (q2) | (h′, h) ∈ A(q2)}|.

E1 sorts all nodes in V (q2) in classes with elements at (minimal) distance
0, 1, 2, . . . , L from y, and considers the class with the maximal number of nodes.

Provable Chosen-Target-Forced-Midfix Preimage Resistance 47

E2 considers the event that Q contains a multi-collision of more than two com-
pression function executions. By basic probability theory, we have

Pr (sucA(q2)) ≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 ∨ E1) ,

≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 ∨ E1 | ¬E2) +Pr (E2) ,

≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 | ¬E2)

+Pr (E1 | ¬E2) +Pr (E2) , (3)

and we consider the probabilities on the right hand side separately.

– Pr (sucA(q2) | ¬E0 ∧ ¬E1). By ¬E0, P is not contained in (V (0), A(0)) yet,
but it may be contained partially and hence the adversary will at least
need to make 1 compression function execution. It may be the case that
the adversary makes calls to the compression function for multiple strings
P , and it may be the case that after he queried for P , he knows multiple
paths of different length including P , but this does not violate the analysis.
In general, the suffix R2 of the attack covers at most L− 1 message blocks.
At any time in the attack, there are at most

|{h ∈ V (q2) | disth→y(q2) ∩ {0, . . . , L− 1}|
possible nodes for which a hit results in a collision. By ¬E1, this set is upper
bounded by (L − 1)t. As the adversary makes at most q2 ≤ q compres-
sion function calls that may result in success, the total probability is upper

bounded by (L−1)tq
2n ;

– Pr (E0 | ¬E2). Notice that ¬E2 implies that all nodes in (V (q2), A(q2)), as
well as all nodes in (V (0), A(0)), have at most 2 incoming arcs. We consider
the probability that there exists a P -comprising path. The existence of such
path implies the existence of an arc that supplies the last bit of P . Consider

any arc hj−1
Mj−→ hj , and let M

(i)
j for i = 1, . . . ,m denote the m-th bit. Now,

we can analyze the probability that P
$← {0, 1}p is included as a substring of

a path in (V (0), A(0)), with M
(i)
j corresponding to the last bit of P . Then,

Pr (E0 | ¬E2) is upper bounded by this probability summed over all i and
the number of arcs. We consider the probability for different values of i:
• i ≥ p. P is integrally captured in Mj as M

(i−p+1)
j ‖ . . . ‖M (i)

j = P . This
happens with probability 1/2p for predetermined Mj and random P ;
• i < p. The first i bits of Mj correspond to the last i bits of P , and
that the first p − i bits of P are a suffix of any path ending in hj−1.
Let β =
(p− i)/m�. As by ¬E2 there are at most 2β paths of length β

blocks to hj−1, we can upper bound the probability by 1
2i · 2β

2p−i = 2β

2p .
Now, we can sum over all possible values of i and the number of queries q1.
We obtain

Pr (E0 | ¬E2) ≤
{

(m+p−1)q1
2p if p ≤ m,

m2�p/m�q1
2p if p > m.

In both cases, we derive upper bound m2�p/m�q
2p , given q1 ≤ q;

48 E. Andreeva and B. Mennink

– Pr (E1 | ¬E2). Let k∗ be minimal such that the maximum is achieved, and
let h1, . . . , hα1 be all nodes with distance k∗ from y. Consider the subgraph
(V ,A) of (V (q2), A(q2)) consisting of all2 paths hi → y of length k∗ edges
(for i = 1, . . . , α1). By ways of an elaborate case distinction (see App. A), one
can show that for each node h in (V ,A), all paths to y are of the same length.
This in particular implies that the hi’s (i = 1, . . . , α1) have no ingoing edge,
and that y has no outgoing edge. Therefore, we can classify the nodes in the
subgraph into sets: αk∗

1 = α1 at distance k∗ from y, αk∗−1
1 at distance k∗−1,

etc., α0
1 = 1 at distance 0. Notice that α0

1, . . . , α
k∗−1
1 < αk∗

1 by definition,
but it can be the case that αi−1

1 > αi
1 (for 1 < i < k∗) for technical reasons.

By ¬E2, Q does not contain any 3-way collisions, but only 2-way collisions.
The number of 2-way collisions between the nodes at distances i and i − 1
equals max{αi

1−αi−1
1 , 0}. Consequently, the described subgraph, and hence

(V (q2), A(q2)) itself, contains at least

k∗∑
i=1

max{αi
1 − αi−1

1 , 0} ≥ αk∗
1 − α0

1 = α1 − 1 ≥ t

2-way collisions. Thus, the probability is upper bounded by
(
q
t

) (
q
2n

)t ≤(
q2e
t2n

)t

, where the inequality holds due to Stirling’s approximation (x! ≥
(x/e)x for any x);

– Pr (E2). The occurrence of E2 implies the presence of a 3-way collision in Q,
which exists with probability at most q3/22n only [18].

From equation (3) and above upper bounds on the three probabilities, we obtain:

Advctfm
MD (A) = Pr (sucA(q2)) ≤ (L− 1)tq

2n
+

m2�p/m�q
2p

+

(
q2e

t2n

)t

+
q3

22n
.

As this holds for any adversary making q queries, this completes the proof.

6 On Optimally CTFM Resistant Iterated Hash
Functions

Knowing that irrespectively of adding a salt or not, the original MD design of
Sect. 5 does not withstand the CTFM attack, a natural question arises: is it
possible to secure the MD design by ways of a simple tweak? Naturally, wide-
pipe designs offer optimal CTFM security, but they require a larger state size,
which accounts for an efficiency loss. Note that modes of operation that use the
chaining values in an advanced way (e.g. by adding a final compression function
call with the checksum of the chaining values) implicitly belong to the set of
wide-pipe designs. Another direction may be to tweak the way the message is

2 In case of multiple paths of the same length starting from a node hi, one arbitrarily
chooses a path.

Provable Chosen-Target-Forced-Midfix Preimage Resistance 49

processed by the mode of operation, which is captured by considering the iterated
hash function design of (1) with a more sophisticated padding.

In this section, we launch a CTFM attack against a wide class of iterated hash
functions that differ from the original MD design only in the way the message is
processed. More detailed, we consider the standard iterated hash function design
of (1), with the difference that it employs a sophisticated padding function s-pad
satisfying some criteria. This padding function s-pad may be depending on the
standard padding function pad, and generally does. The attack covers a wide
spectrum of hash functions, and in particular provides an efficient and elegant
alternative to the attacks proposed by Gauravaram et al. [10] on several MD
designs using checksums.

We describe the attack on the base of one representative example hash func-
tion. A generic version of it can be directly extracted from the attack description.
Further, we consider three similar hash functions and a comparison with the at-
tack of [10].

Let pad be the padding function of (2). Let M ∈ {0, 1}∗ and denote pad(M) =
M1‖ · · · ‖Ml. We define a sophisticated padding function s-pad1 : {0, 1}∗ →
({0, 1}m)

∗
on M as follows.

s-pad1(M) = M1

∥∥∥
1⊕

i=1

Mi

∥∥∥M2

∥∥∥
2⊕

i=1

Mi

∥∥∥ · · ·
∥∥∥Ml

∥∥∥
l⊕

i=1

Mi.

For simplicity, denote byNi for i = 1, . . . , 2l the i-th block of s-pad1(M). Let IH1

be defined as an iterated hash function of (1) accommodated with the advanced
padding function s-pad1. We will describe a CTFM attack against IH1, but
before that we briefly recall the attack of Kelsey and Kohno against the MD
hash function. Denote by κ ≥ 1 the size of the diamond we will use.

1. The adversary constructs a diamond of κ levels. He randomly generates 2κ

state values h
(1)
0 , . . . , h

(2κ)
0 , and dynamically finds 2κ−1 compression function

collisions by varying the message values. The same procedure is applied to

the resulting 2κ−1 state values h
(1)
1 , . . . , h

(2κ−1)
1 until one node h

(1)
κ is left;

2. The adversary commits to this state value y := h
(1)
κ and receives challenge

P . Without loss of generality P is of length a multiple of m, and he computes

the path iv
P−→ hp′ ;

3. The adversary finds a message Mhit such that f(hp′ ,Mhit) = h
(j)
0 for some

j ∈ {1, . . . , 2κ}.

The resulting forgery is formed by P‖Mhit‖Mdiam, where Mdiam denotes the

message string that labels the path h
(j)
0 → h

(1)
κ . Phase 1 of the attack requires

about
√
κ2(n+κ)/2 work [13,6], the work for phase 2 is negligible and phase 3

takes about 2n−κ amount of work. The message is of length
p/m� + 1 + κ
blocks.

The construction of the diamond (phase 1) is correct due to the independent
character of the message blocks: given a string Mi‖ · · · ‖Ml of message blocks,

50 E. Andreeva and B. Mennink

one can arbitrarily change one block while still having a valid string of message
blocks. Thus, when constructing the diamond one can vary the message blocks
independently for obtaining collisions. For the sophisticated padding function
s-pad1 this is not possible. If for a given padded message one changes N2i−1 for
i ∈ {1, . . . , l−1}, the values taken by the checksum blocksN2i, . . . , N2i+2, . . . , N2l

should change as well. At first sight, this makes the construction of the diamond
impossible, but by additionally changing N2i+1, one can “stabilize” the values
N2i+2, . . . , N2l and only the blocks N2i−1, N2i, N2i+1 get affected (in case i = l
only N2i−1, N2i get affected). Based on this observation the attack is defined as
follows. Notice, the adversary decides on the length of the forgery in advance:
p′ + 2κ+ 2.

1. The adversary constructs a diamond of κ levels.
– He fixes constants C0, C1, . . . , Cκ ∈ {0, 1}m in advance. These constants

represent

C0 =

p′+2⊕
i=1

Mi, Ci = Mp′+2i+1 ⊕Mp′+2i+2 for i = 1, . . . , κ. (4)

The adversary does not know the blocks Mi yet, but will choose them
so as to comply with (4);

– He randomly generates 2κ state values h
(1)
0 , . . . , h

(2κ)
0 , and dynamically

finds collisions of the following form for j = 1, . . . , 2κ−1

h
(2j−1)
0

C0−→
M

(2j−1)

p′+3−−−−→
C0⊕M

(2j−1)

p′+3−−−−−−→
C1⊕M

(2j−1)

p′+3−−−−−−→

h
(2j)
0

C0−→
M

(2j)

p′+3−−−−→
C0⊕M

(2j)

p′+3−−−−−−→
C1⊕M

(2j)

p′+3−−−−−−→
h
(j)
1 .

These collisions can indeed by dynamically found, simply by varying the
Mp′+3-blocks (recall that C0, C1 are fixed constants). The corresponding
blocks Mp′+4 are computed as Mp′+4 = C1 ⊕Mp′+3 by (4);

– The same procedure is applied to the resulting 2κ−1 state values h
(1)
1 ,

. . . , h
(2κ−1)
1 , where the arcs are labeled by C0 ⊕ C1, Mp′+5, C1 ⊕Mp′+5

and C2 ⊕Mp′+5, respectively. Finally, one node h
(1)
κ is left;

2. The adversary commits to this state value y := h
(1)
κ and receives challenge

P . Without loss of generality P is of length a multiple of m, and he defines

M1, . . . ,Mp′ to be the first corresponding blocks. Denote C−1 =
⊕p′

i=1 Mi.

In accordance to the padding function s-pad he computes the path iv
M1−→

. . .
Mp′−→ C−1−→ h2p′ ;

3. The adversary finds a message Mp′+1 such that

h2p′
Mp′+1−→ C−1⊕Mp′+1−−−−−−→ C−1⊕Mp′+1⊕C0−−−−−−→ h

(j)
0

for some j ∈ {1, . . . , 2κ}.

Provable Chosen-Target-Forced-Midfix Preimage Resistance 51

The resulting forgery is formed by P‖Mp′+1‖Mp′+2‖Mdiam, where Mp′+2 =
C−1⊕Mp′+1⊕C0 by (4) and Mdiam denotes the message string of 2κ blocks that

labels the path h
(j)
0 → h

(1)
κ . By construction, because the values C0, . . . , Cκ have

been fixed in advance, the path iv −→ h
(1)
κ is in accordance with the padding

function s-pad. Phase 1 of the attack requires about 4 · √κ2(n+κ)/2 work, the
work for phase 2 is negligible and phase 3 takes about 3 · 2n−κ amount of work.
The message is of length
p/m�+ 2 + 2κ blocks.

We notice that the same approach can be applied to the following example
hash functions. Consider the following advanced padding functions s-padk(M) :
{0, 1}∗ → ({0, 1}m)

∗
for k = 2, 3, 4:

s-pad2(M) = M1

∥∥∥M2

∥∥∥M1 ⊕M2

∥∥∥M3

∥∥∥M2 ⊕M3

∥∥∥ · · ·
∥∥∥Ml

∥∥∥Ml−1 ⊕Ml,

s-pad3(M) = rotatem/2(pad(M)),

s-pad4(M) = pad(M)
∥∥∥

l⊕
j=1

Mj ,

where the function rotatem/2 rotates the bit string by m/2 places (a half message
block). We define by IHk for k = 2, 3, 4 the standard iterated hash function of
(1) accommodated with the advanced padding function s-padk. Notice that for
IH4, any change of Mi can be corrected by Mi+1 to keep the final checksum
invariant. Now, the attacks are described in a similar manner. For IH2, the
complexity is the same as for IH1. The complexities for IH3, IH4 are half as
large. For each of the functions IHk the optimum is achieved for κ = n/3.
By tweaking the proof of Thm. 1, asymptotic tightness of this bound can be
proven. We notice that Gauravaram et al. [10] describe a generalized herding
attack against a class of MD based hash functions using checksums at the end
(such as IH4). The attack described in this section carries over to many of these
designs, therewith providing an elegant alternative. These attacks are of the same
complexity, although our attack renders shorter messages in case n/3 < m. The
cause of this difference is the fact that the attack of Gauravaram et al. sets the
value of the final checksum at the end while in our attack it is essentially fixed
by the adversary in advance.

We leave the existence of narrow-pipe hash functions that achieve optimal
security against the CTFM attack as an open problem.

7 Conclusions

We introduced and formalized the notion of a chosen-target-forced-midfix
(CTFM) attack as a generalization of the classical herding attack of Kelsey
and Kohno [13]. The new notion allows the adversary to include the challenge
P at any place in the forged preimage. Hence, it enables arguing the security
of hash functions which for example process the message in reverse order and
which were otherwise trivially secure against the herding attack. Additionally,

52 E. Andreeva and B. Mennink

we investigated the CTFM security of salted hash functions showing that adding
a salt value without weakening the compression function does not improve the
CTFM security of the hash function.

As a main technical contribution of the paper we provided a formal security
proof of the MD design against the CTFM attack, and showed that the attack of
Kelsey and Kohno [13] is (asymptotically) the best possible. This proof directly
applies to a wide class of MD based domain extenders, and implies optimality
of other herding attacks, such as those of Andreeva et al. [1] and Gauravaram
et al. [10].

In the quest for optimally CTFM secure narrow-pipe MD designs, we analyzed
the possibility of message modification as a tool to increase CTFM security. Our
result shows however, that such techniques applied to a wide class of narrow-pipe
iterated hash function designs do not block CTFM attacks. An open research
question that emerges from these observations is to construct a narrow-pipe
iterated hash functions that achieves optimal security against the CTFM attacks.

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by the
European Commission through the ICT program under contract ICT-2007-
216676 ECRYPT II, and in part by the Research Council K.U.Leuven: GOA
TENSE. The first author is supported by a Ph.D. Fellowship from the Flemish
Research Foundation (FWO-Vlaanderen). The second author is supported by a
Ph.D. Fellowship from the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, Second Preim-
age and Trojan Message Attacks Beyond Merkle-Damg̊ard. In: Jacobson Jr., M.J.,
Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414.
Springer, Heidelberg (2009)

2. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

3. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving It-
erated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

4. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

5. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007)

6. Blackburn, S., Stinson, D., Upadhyay, J.: On the complexity of the herding
attack and some related attacks on hash functions. Des. Codes Cryptography
(to appear, 2011)

Provable Chosen-Target-Forced-Midfix Preimage Resistance 53

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

8. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect
Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

10. Gauravaram, P., Kelsey, J., Knudsen, L., Thomsen, S.: On hash functions using
checksums. International Journal of Information Security 9(2), 137–151 (2010)

11. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

12. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

13. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

14. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

15. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
358–375. Springer, Heidelberg (2007)

16. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

17. Neven, G., Smart, N., Warinschi, B.: Hash function requirements for Schnorr sig-
natures. Journal of Mathematical Cryptology 3(1), 69–87 (2009)

18. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
Collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

A Appendum to Proof of Thm. 1

We show that the graph (V ,A) defined in Thm. 1 does not contain a node
with two paths of different lengths to y. Recall that (V ,A) is constructed in
the following manner. k∗ is the minimal value for which there are the maximum
number of nodes, α1 with distance k∗ to y. For each of the α1 nodes h1, . . . , hα1 ,
we take any path of length k∗ to y, and add it to (V ,A). By definition, for each
i = 1, . . . , α1, there does not exist a path hi → y of length shorter than k∗ arcs.
We show that for any node h ∈ V , all paths to y are of the same length. The proof
is done by contradiction: we will show that the existence of an h contradicting
aforementioned property implies the existence of a path hi → y (for some i) of
length strictly shorter than k∗ arcs. Notice that this result in particular implies
that the hi’s (i = 1, . . . , α1) have no ingoing edge, and that y has no outgoing
edge.

Suppose there exists h ∈ V such that for some M1,M2 ∈ ({0, 1}m)∗ with

|M1| < |M2| the paths h
M1−→ y and h

M2−→ y are included in (V ,A). If the path

54 E. Andreeva and B. Mennink

h
M2−→ y is a subpath of any hi → y for some i, one can replace this subpath

by h
M1−→ y to obtain a path hi → y of length strictly shorter than k∗ arcs,

rendering contradiction. Thus, we assume that h
M2−→ y is not integrally included

as a subpath of any hi → y. We split up the path h
M2−→ y intro three parts.

Let i ∈ {1, . . . , α1} be such that the first edge of h
M2−→ y is included in the

path hi → y. Let M
(1)
2 be the maximal prefix of M2 such that h

M
(1)
2−→ h(1) (for

some h(1)) is a subpath of hi → y. Secondly, identify the edge leaving3 h(1)

in the path h
M2−→ y, and let i′ be such that this edge is included in the path

hi′ → y. Let M
(2)
2 be of maximal length such that M

(1)
2 ‖M (2)

2 is a prefix of M2

and h(1) M
(2)
2−→ h(2) (for some h(2)) is a subpath of hi′ → y. Thus, we splitted

h
M2−→ y into

h
M

(1)
2−→ h(1) M

(2)
2−→ h(2) M

(3)
2−→ y, (5)

where |M (1)
2 |, |M (2)

2 | > 0 and |M (3)
2 | ≥ 0 and

hi
M3−→ h

M
(1)
2−→ h(1) M4−→ y, hi′

M5−→ h(1) M
(2)
2−→ h(2) M6−→ y, (6)

for some M3,M4,M5,M6 ∈ ({0, 1}m)
∗
. Here, M

(1)
2 and M

(2)
2 are of maximal

possible length, i.e. the first arcs of h(1) M4−→ y and h(1) M
(2)
2−→ h(2) are different

and the first arcs of h(2) M6−→ y and h(2) M
(3)
2−→ y are different.

If h(1) = h, the path hi
M3−→ h

M4−→ y is in (V (q2), A(q2)) and of length shorter
than k∗ blocks, rendering contradiction. Similarly, if h(2) = h(1), a shorter path
hi′ → y can be found. Hence, we consider the case h �= h(1) �= h(2), and make
the following case distinction:

1. |M4| �= |M (2)
2 M6|. One can combine the two paths described in (6) to obtain

either a path hi → y or hi′ → y of length strictly shorter than k∗ arcs;

2. |M4| = |M (2)
2 M6|. We make the following case distinction:

a. |M6| ≥ |M (3)
2 |. This means that |M4| ≥ |M (2)

2 M
(3)
2 | and hence |M (1)

2 M4| ≥
|M2| > |M1|. The path hi

M3−→ h
M1−→ y is thus strictly shorter than k∗ arcs;

b. |M6| < |M (3)
2 |. One can do the same analysis with paths h(2) M6−→ y and

h(2) M
(3)
2−→ y. But by construction |M (3)

2 | < |M2|− 2m so one will eventually

end up with the same problem with |M (3)
2 | = 0, in which case one will not

arrive in case 2b.

Concluding, there does not exist any node in (V ,A) which has two paths of
different lengths to y.

3 This edge exists, as h
M2−→ y is not an integral subpath of any path hi → y.

	Provable Chosen-Target-Forced-Midfix Preimage Resistance

	Introduction
	Preliminaries
	Chosen-Target-Forced-Midfix Preimage Resistance
	Salted-Chosen-Target-Forced-Midfix Preimage Resistance
	CTFM Resistance of Merkle-Damgård Design
	Proof of Thm. 1

	On Optimally CTFM Resistant Iterated Hash Functions
	Conclusions
	References

