
A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 62–73, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Cross-Domain Embedding for Vaadin Applications

Janne Lautamäki and Tommi Mikkonen

Department of Software Systems, Tampere University of Technology,
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

{janne.lautamaki,tommi.mikkonen}@tut.fi

Abstract. Although the design goals of the browser were originally not at
running applications or at displaying a number of small widgets on a single web
page, today many web pages considerably benefit from being able to host small
embedded applications as components. While the web is full such applications,
they cannot be easily reused because of the same origin policy restrictions that
were introduced to protect web content from potentially malicious use. In this
paper, we describe a generic design for cross domain embedding of web
applications in a fashion that enables loading of applications from different
domains as well as communication between the client and server. As the proof-
of-concept implementation environment, we use web development framework
Vaadin, a Google Web Toolkit based system that uses Java for application
development.

Keywords: Vaadin, JSONP, cross-domain applications.

1 Introduction

Web applications – systems that resemble desktop applications in their behavior but
are run inside the browser – are becoming increasingly common. The current trend is
that web pages have dynamic components side by side with the traditional web
content, such as static text and images. These dynamic components can be small
widgets that for instance display current weather information or stock exchange data,
or even full-fledged web applications that offer a service related to the theme of the
web page where they are located [1].

Creating dynamic web pages is much more complex than building plain old web
pages. However, since numerous applications are readily available, it would be
attractive to simply reuse applications that already exist instead of building them from
scratch for a particular application. This would be a step towards ‘mashware’
envisioned in [2], where the idea of composing complex applications is out of
components readily available in different web sites. Furthermore, there are real-life
examples of this happening. For instance, it has been possible to embed Google Maps
(http://maps.google.com/) functionality as a part of any web site for some years by
now. Similarly, the popularity of embedded Google Maps components verifies our
assumption that application embedding is a valued feature.

 Cross-Domain Embedding for Vaadin Applications 63

Unfortunately, reusing web applications that already exist in some web site is not
straightforward, even if the applications could be downloaded in an uncomplicated
fashion. The same origin policy inside the browser, defined to protect web pages from
malicious code, prevents a document or script loaded from one web domain from
getting or setting the properties of a document from another domain [3]. Furthermore,
creating web pages that host such dynamic applications is much more complex than
building plain old web pages to begin with, because the page must offer hosting
services to the application. Consequently, implementing a service that readily
provides small applications in web pages requires considerably more attention than
simple reference to the service in the embedding web page.

At present, there are two obvious ways to perform application embedding. A web
application can be embedded inside a <div> or an <iframe> element. Both of the
approaches have been associated with consequences that deplete their potential, and
hence they are not too widely deployed solutions. These properties will be discussed
in more detail later on.

In this paper, we describe how to embed cross-domain web applications in a web
page. While the design itself is generic and technology-independent, we demonstrate
the approach with a server side web development framework called Vaadin [4]. The
implementation combines strengths of <div> and <iframe> based approaches, but is
not plagued by their main weaknesses. Furthermore, the implementation is kept as
simple as possible for the developer who wishes to embed an application in a web
page, to the extent that only a single line of HTML is needed for taking an application
to use.

The rest of the paper is structured as follows. In Section 2, we give an overview to
the Vaadin Framework and its particularities that are important for our
implementation. In Section 3, we explain the details of the embedding we have
enabled in detail, and in Section 4, we discuss some sample applications. In Section 5,
we provide some directions for future work, and in Section 6 we draw some final
conclusions.

2 The Vaadin Framework

The Vaadin Framework extensively relies on the facilities of Google Web Toolkit,
GWT (http://code.google.com/webtoolkit/) [5]. GWT is an open source development
system that allows the developer to write Ajax-based (Asynchronous JavaScript and
XML) web applications using Java that can then be compiled to highly optimized
JavaScript, which can be run in all browsers. In the Vaadin Framework, GWT is used
for compiling web browser client-side engine and for Ajax-based communication – in
essence asynchronous XMLHttpRequest calls – between a client and the server
(Figure 1).

Consequently, from the developer perspective individual Vaadin applications can
be implemented like Java Standard Edition desktop applications. The only difference
to common Java applications is that the developer has to use the specific set of Vaadin
UI components. For customized look and feel, the developer can use Cascading Style
Sheet (CSS) files or directly modify the properties of the components in Java.

64 J. Lautamäki and T. Mikkonen

Fig. 1. General architecture of Vaadin [4]

In the Book of Vaadin [4], the main introductory paper documentation regarding
the Vaadin Framework, two different approaches for embedding a Vaadin application
as a part of a static web page are described – the Vaadin application can be embedded
inside a <div> or <iframe> element. For the <div> approach, the downside is
associated with the same origin policy, which makes it difficult to embed applications
from other domains as a part of a website. Applications running on the same domain
can be embedded, but this means that a copy of the embedded application must be
available in the same domain. With the <iframe> approach, the same origin policy
related problems can be overlooked, and applications can be added from any domain
inside an <iframe>. However, upon enabling the download of applications, the
<iframe> also traps the application inside it. Consequently, if an application running
inside an <iframe> opens a dialog, the dialog stays inside original borders of the
<iframe>. In contrast, with a <div> the application would appear to be a part of the
web page as the new dialog could be opened anywhere on the web page.

As an example, Figure 2 shows the same Vaadin application embedded in an
<iframe> and in a <div>. In <iframe> based embedding the “My Window” dialog is
trapped inside the <iframe>, whereas with <div> approach the dialog can move freely
around the page. By examining the <iframe> solution, it is obvious that left side of
the “My Window” dialog has been cut away by the <iframe>.

Furthermore, another difficult with <iframe> approach is that communication
between the page and the application inside the <iframe> is limited to using URL
fragment IDs or hacks of different kind as with <div> approach the embedded
application can be manipulated using the document object model (DOM) tree.

When embedding a Vaadin application in a web page, the situation gets even more
complex, and being able to access an HTML file from another domain is just the
beginning. We must also support communication between the client running inside
the browser and the web site that runs the server part of the application. This is
commonly implemented using the XMLHttpRequest mechanism, an integral part of
Ajax, to enable data transmissions, which, even if we could download the client part
of the application, would be blocked due to the same origin policy based.

 Cross-Domain Embedding for Vaadin Applications 65

Fig. 2. Application in <iframe> (left) and in <div> (right)

However, there are some notable exceptions to the same origin policy. Images,
scripts and style sheets downloaded from another domain are not subjected to the
same origin policy. Consequently these formats can be used for circumventing the
restrictions related to the policy. Next, we explain how this can be implemented for
Vaadin applications.

3 Embedding Vaadin Applications

The traditional way to implement a web application that comprises a Vaadin component
from another web site would be to use a proxy to communicate with the component.
However, setting up the proxy is in some cases impossible and in any case the
introduction of the proxy is an unnecessary complicating step – the setup procedure of
such proxy is much more difficult than simply editing HTML source code. Therefore, we
aim at a more developer-friendly solution, described in the following.

In a nutshell, to make Vaadin application embedding work on an arbitrary web page,
two problems must be solved: (1) how to download the client-side part of the application,
and (2) how to enable communication between the client-side engine and the server. In
the following, we discuss two problems separately and explain our solutions.

3.1 Downloading the Client-Side Engine

Vaadin application consists of the server-side engine implemented with Java and
GWT based JavaScript client-side engine. The file structure of the Vaadin client-side
engine is presented in Figure 3. During the startup, the Vaadin client-side engine is

66 J. Lautamäki and T. Mikkonen

Fig. 3. Original (left) and modified (right) Structure of Vaadin WebContent

downloaded. Starting up the client-side engine is made in four phases listed in Table
1. Images and CSS files that are also needed for loading the client-side engine are not
subjected to the same origin restriction, and therefore they are omitted from the table.
At the first, browser requests an index.html file from the server and the file is
returned. In the second phase, the <script> tag inside file index.html causes the
download of file vaadinWidgetset.nocache.js. In the third phase, the nocache.js file
recognizes the browser version and requests for the right client-side engine version.
The server returns page hashNumber.cache.html, which contains the client-side
engine. In the fourth phase, the system is initiated and user interface description is
downloaded from the server.

Assuming that this approach is used for loading an embedded application to
foreign web pages, the same origin policy prohibits us from loading HTML pages
from other domains. Consequently phases 1 and 3 given in Table 1 will not succeed.

A brief analysis reveals that downloading index.html is not necessary when
embedding the application. Instead, we could start by requesting the
vaadinWidgetset.nocache.js script. However, index.html contains a lot of additional
information, including the locations of associated CSS files, and overlooking this part
would cause numerous problems for the developer. As a solution, we moved the
modified content of the index.html file to the index.js file, which can easily be
downloaded using <script> tag. The content of the hashNumber.cache.html files
consist almost completely of JavaScript and just a thin HTML wrapper around them is
needed. Consequently we moved JavaScript parts to JavaScript files and use
vaadinWidgetset.nocache.js to generate the necessary HTML code. The generated
HTML downloads scripts from JavaScript files using <script> tags. After this
modification, everything that the client-side engine needs can be downloaded, and the
engine can be initialized. The method for downloading the initial UIDL is described
in more detailed in the next subsection.

After modifications (Table 2), index.js is first downloaded inside the <script> tag
of the target page. In the second phase, vaadinWidgetset.nocache.js is downloaded. In
the third phase, the script in nocache.js recognizes the browser version and requests
for the right hashNumber.cache.js version to be downloaded. In the fourth phase,
HashNumber.cache.js is evaluated, the system starts up, and the user interface
description can be downloaded.

 Cross-Domain Embedding for Vaadin Applications 67

Table 1. Initialization of Client-Side Engine Table 2. Initialization of embedded
Client-Side Engine

Client-side engine Server
1 Requests root or

index.html
Returns
index.html

2 Requests nocache.js
startup script

Returns
startup script

3 Requests the client-side
engine HTML file

Returns the
HTML file

4 Requests the initial
UIDL

UIDL returned
as JSON

5 Renders user interface
and starts waiting for
user initiated events

Client-side engine Server
1 Requests index.js Returns a

JavaScript
file

2 Requests nocache.js
startup script

Returns
startup script

3 Requests the client-
side engine JavaScript
file

Returns the
JavaScript
file

4 Requests the initial
UIDL

UIDL
returned as
JSONP

5 Renders user interface
and starts waiting for
user initiated events

Since GWT is used to generate the file structure of the framework, we should not

modify files by hand, since then changes would be lost at the first time when the
framework is modified and recompiled. Fortunately, cross-domain scripting
capabilities are something that is commonly needed, and Google has included support
for such features in GWT. Therefore, we only added a single line to the GWT
configuration file:

<add-linker name="xs"/>

and recompile the system. The old file structure and the new cross-domain capable
web content are presented in Figure 3. Structures are the same apart from the filename
extensions – the content of html files is moved inside js files.

Index.js is not generated by GWT and the system can be used and embedded
without index.js script, but it would be much more complex for an embedding
developer. Without the index.js script, the embedding developer would have to use
paths to the actual WidgetSet.nocache.js script, which could be arbitrarily complex.
Furthermore, the developer would also have to define the location of the CSS file,
which again can be complex. Thus, in a nutshell the reason for using index.js is
redirecting the call to the actual files and linking the system to the right style sheets.

With the above modifications, embedding the Vaadin application as simple as
adding a single line of html to the body of the target document:

<script type="text/javascript" src="http://jlautamaki.
 virtuallypreinstalled.com/embedding/index.js">
</script>

3.2 Communication with the Server

As already discussed, after being able to download the client-side engine to the
browser, we must also enable the communication with the server that runs the actual

68 J. Lautamäki and T. Mikkonen

application. In Vaadin applications, the client-side engine uses the XMLHttpRequest
mechanism for all the interactions with the server side (Table 3). There are some
straightforward ways to make XMLHttpRequest familiar from Ajax work on cross-
domain environment. The most obvious alternative is to use <iframe> tags, as already
discussed above, but it is also possible to use on <iframe> as a proxy for
XMLHttpRequests [6]. In addition, W3C has proposed a method for Cross-Origin
Resource sharing [7], implemented already in Firefox 3.5, using an HTTP header:
Access-Control-Allow-Origin: * [8]. Finally, in some old Safari versions there was a
security leak that permitted cross-domain XMLHttpRequests to work, but this has now
been fixed [9].

Despite the possibilities provided by individual browser features and hacks, using
them as the basis for long-lasting, generic web services is not feasible. Therefore, we
decided to rely on another communication technology, JSONP (JSON with padding)
[10], which is commonly used for making cross-domain calls. Furthermore, JSONP
works in all modern browsers.

Our JSONP based design gains advantage of the open policy for the <script> tag
and uses scripts as a communication channel. A new script can be downloaded when
needed, and after the download, the scripts are evaluated and later removed. An
injected <script> tag has attribute src. This attribute points to the Vaadin application
and downloads the script from there. Messages from the client to the server can be
sent as an attribute of the URI:

<script type="text/javascript"
 src="http://URL/getjson?jsonp=parseResponse&
 secondAttribute=hello">
</script>

Vaadin application gets called the same way as with XMLHttpRequest based
communication. By default, Vaadin applications use JSON for communication, and
consequently the only thing we must add is the padding. With this approach, the
browser gets the following message:

parseResponse({“Name”: “Cheeso”, “Rank”: 7});

In this response, the padding is “parseResponse()” and JSON is {“Name”: “Cheeso”,
“Rank”: 7}. Return value will invoke the parseResponse function in the client side
engine. The actual message is handled similarly to previously discussed
XMLHttpRequest messages.

The communication process is summarized in Table 4. First, the user interacts with the
UI, for example pushes a button. As a consequence, (second phase) the client-side engine
adds a new <script> tag to the web page and sets the appropriate URI for the source of
the script. The message passed to the server side is added to the URI as an attribute. As a
result the URI for the new script could be for example: http://url/?okButton=pressed.
The server gets called and it uses request.getAttribute to get information that the button
has been pressed. Once the server has processed the actions associated with the button, it
returns the response to client-side engine, again using JSON with padding. The JSONP
message is loaded inside the <script> tag we previously created and is evaluated (the
third phase). The evaluation leads to calling the padding function with JSON as a
parameter and results are made visible for the user.

 Cross-Domain Embedding for Vaadin Applications 69

Table 3. Original communication Table 4. Modified communication

Client Server
1 User interaction

2 POSTS
XMLHTTPRequest
with requestData

Gets
message
and
returns
JSON

3 RequestCallback
function gets JSON
message

Client Server
1 User interaction

2 New script tag is added, src is
url+parameters:
“http://url/parameters”

Gets
message
and returns
JSONP

3 JSONP message is evaluated

In comparison to XMLHttpRequest, JSONP has a number of weaknesses. Perhaps

the biggest problem is that by allowing cross-domain accesses, the use of JSONP also
introduces vulnerabilities. When a JSONP call is made, there has to be absolute trust
to the other participant, since JavaScript programs are downloaded as data, and
consequently the loaded code can do anything. This has not been considered as a
problem in the usual case of Vaadin applications, where everything comes from the
same origin. However when embedding and mashupping applications, the problem is
that JavaScript loaded from the other domain inevitably gets full access to the content
loaded from another domain. In case of the malicious application developers,
anything can happen. In our case, we have decided that integrator of the html page
just trusts all the widget developers and their services and services have no critical
security aspects.

In addition, when using the XMLHttpRequest mechanism, there are certain
methods for handling errors that take place in communication. In contrast, with
JSONP there is no automatic error handling, and any actions to this end should be
included in the application. There are certain libraries to simplify this, but in general
error checking features are still missing.

Finally, there are a lot of minor implementation-level issues that have been
encountered. In particular, in Vaadin applications, messages were already padded
using for(;;); as a safety mechanism and for making cross site scripting more difficult.
This is of course something we had to remove in our implementation, and the obvious
consequence is less secure communication.

4 Examples

For demonstrating and explaining the value of our embedding facility, we have
created a web page to http://www.cs.tut.fi/ domain and used it for embedding two
different web applications running on the http://jlautamaki.virtuallypreinstalled.com/
domain. Our sample web page is based on Wikipedia’s Body Mass Index (BMI)
entry. BMI is a heuristic proxy for human body fat based on an individual’s weight
and height. BMI is defined as the individual's body weight divided by the square of
his or her height. If BMI index falls between 18.5 and 25 then the person is a normal

70 J. Lautamäki and T. Mikkonen

Fig. 4. Embedded Calculator (left) and Chat (right) applications

weighted. Most of the web page development systems can be used to create a simple
page like this. The page is just plain text and a couple of pictures and tables.
However, for our examples we have spiced up this simple page with two different
Vaadin applications.

Consider a user who visits the body mass index page. If the BMI is a new concept
for user, the first thing to do is obvious – the user wants to calculate his own BMI and
needs a calculator. Of course it would be possible to use a calculator from a mobile
phone or a separate desktop calculator application, but it would also be nice to have a
calculator embedded directly in the BMI page. The calculator is a web application and
is not easily implemented by every web developer. However, given a ready-made
calculator, it can be easily embedded in a web page by using our system. This is
visualized in Figure 4, and the actual web page is available at available for testing
purposes at the address: http://www.cs.tut.fi/~delga/vaadin/calc.html. Furthermore, it
is also possible to try out the embedding of the calculator application. Only things
needed are a web page that can be edited and some trust that we are not trying to do
anything hostile. To get the calculator embedded on the web page, only the following
script has to be added to the body of the html page:

<script type="text/javascript" src="http://jlautamaki.
 virtuallypreinstalled.com/embedding/calc.js">
</script>

Our second example, shown in Figure 4 and available at
http://www.cs.tut.fi/~delga/vaadin/chat.html, is providing a chat widget for the BMI
page. The goal of the widget is to enable the user to chat with other users of the page and
in this case for example send weight and height as a chat message and other users can
then comment on those values and give feedback. It would be possible to create a
channel for each page in which chat component has been embedded and then the visitors
of the page could communicate with each other. In our example, it is just one channel
chat. In the sense of the implementation, this application is considerably more complex
since it requires communication between users. Consequently it cannot be implemented
with plain client side JavaScript since the server must mediate messages between users.
The sequence diagram is presented in Figure 5. In the diagram, we have cheated a little
bit for sake clearness. In reality chat clients poll the server once in 2 seconds, but in
Figure 5 we have presented communication like messages could be pushed directly from

server to client. Similarly t
adding the following script t

<script type="text/
 virtuallypreinsta
</script>

5 Future Work

We still have some consid
aspects. At present, we are n
the embedded version, whic
However, we do acknowled
cannot be made as safe as wi

Fig. 5.

In order to consider the w
system in real world examp
http://vaadin.com/directory
system in real use cases wit

The long-term goal of th
could be used by anybo
technological details addr
associated with numerous b
how to set up an ecosystem
mode. On one hand, we sho
embedding web application
must provide support for de
we have not introduced an
embedded applications wo
future work.

Cross-Domain Embedding for Vaadin Applications

to the calculator, the chat application can be embedded
o the body of the html page:

/javascript" src="http://jlautamaki.
alled.com/embedding/chat.js">

erations and refinement to do with respect to the secu
not fully aware what kinds of new attacks are possible aga
ch would not be enabled for the original Vaadin applicatio
dge that the embedding might introduce some properties
ithout embedding, no matter how much we try.

Sequence diagram with two users chatting

wider use of embedding, an obvious target is to try out
ples. At present, the whole system is available for testing
y#addon/vaadin-xs and the next step would be to use
th real customers to gain feedback from actual users.
his work is to create a library of Vaadin applications t

ody. Assuming that we can figure out the remain
ressed above, there will also be research challen
business related issues. We are in the middle of consider
m of widgets, where they could be deployed in embed
ould be able to serve web developers who are interested
ns but do want to implement them, and at the same time
evelopers creating new widgets for others to embed. So
ny business logic that would define how parties host

ould get their income, so this is an obvious direction

71

d by

urity
ainst
ons.
that

our
g at
the

that
ning
nges
ring

dded
d in

e we
far,
ting
for

72 J. Lautamäki and T. Mikkonen

Finally, there are some possible advantages that can be gained with other web
technologies. In particular, instead of JSONP we could use CORS (Cross-Origin
Resource Sharing), a browser technology specification for scripts originating from
different domains [7]. Using CORS would introduce some potential benefits, mainly
because while JSONP only supports the GET request method, CORS also support the
other types of requests. Furthermore, CORS also has better error handling
mechanisms than JSONP. As a drawback, CORS is only supported by limited set of
modern browsers.

6 Conclusion

In this paper, we presented a way to compose embedded web applications in a fashion
that combines the best properties of commonly used approaches without their major
downsides. The implementation is composed using the Vaadin Framework, where any
completed application consists of the client-side engine. The client-side engine acts as
the front end for a Java application running on the server side. The approach was
demonstrated with two applications (or widgets) that can be tried out. Furthermore,
these applications embedded to any web site by just adding one <script> tag to the
body of the HTML document hosting the applications.

As a part of this work, we modified the Vaadin Framework. The modifications
have been contributed to the Vaadin community, and are available through Vaadin
directory (http://vaadin.com/directory#addon/vaadin-xs) for all Vaadin developers.

The most attractive direction for future work – apart from polishing the technology
itself – is the creation of an ecosystem where embeddable Vaadin applications could
be hosted as a service. In the long run, the vision is to establish a full library of
different kinds of web applications, available for embedding to different web pages
around the world. This in turn will introduce numerous technical and business
challenges for researches as well as for practitioners.

References

[1] O’Reilly, T.: What is Web 2.0: Design Patterns and Business models for the Next
Generation of Software. Communications & Strategies (1), 17 (2007)

[2] Mikkonen, T., Taivalsaari, A.: The Mashware Challenge: Bridging the Gap Between
Web Development and Software Engineering. In: Proceedings of the FSE/SDP
Workshop on the Future of Software Engineering Research (FoSER 2010), Santa Fe,
New Mexico, USA, November 7-8 (2010)

[3] Same origin policy, World Wide Web Consortium (W3C),
http://www.w3.org/Security/wiki/Same_Origin_Policy

[4] Grönroos, M.: Book of Vaadin (2009) (uniprint)
[5] Perry, B.W.: Google Web Toolkit for Ajax. O’Reilly Short Cuts, pp. 1–5. O’Reilly

(2007)
[6] How to make XMLHttpRequest calls to another server in your domain, Ajaxian,

http://ajaxian.com/archives/how-to-make-xmlhttprequest-
calls-to-another-server-in-your-domain

 Cross-Domain Embedding for Vaadin Applications 73

[7] Cross-Origin Resourced Sharing, World Wide Web Consortium (W3C),
http://www.w3.org/TR/cors/

[8] HTTP access control, Mozilla Foundation,
https://developer.mozilla.org/En/HTTP_Access_Control

[9] Safari same origin hole, The Spanner, JavaScript and general security blog,
http://www.thespanner.co.uk/2007/06/29/
safari-same-origin-hole/

[10] Remote JSON – JSONP (December 5, 2005),
http://bob.pythonmac.org/archives/2005/12/05/
remote-json-jsonp/

	Cross-Domain Embedding for Vaadin Applications
	Introduction
	The Vaadin Framework
	Embedding Vaadin Applications
	Downloading the Client-Side Engine
	Communication with the Server

	Examples
	Future Work
	Conclusion
	References

