A Domain-Specific Language for Do-It-Yourself
Analytical Mashups

Julian Eberius, Maik Thiele, and Wolfgang Lehner

Technische Universitdt Dresden
Faculty of Computer Science, Database Technology Group
01062 Dresden, Germany
{julian.eberius,maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. The increasing amount and variety of data available in the
web leads to new possibilities in end-user focused data analysis. While
the classic data base technologies for data integration and analysis (ETL
and BI) are too complex for the needs of end users, newer technologies
like web mashups are not optimal for data analysis. To make productive
use of the data available on the web, end users need easy ways to find,
join and visualize it.

We propose a domain specific language (DSL) for querying a reposi-
tory of heterogeneous web data. In contrast to query languages such as
SQL, this DSL describes the visualization of the queried data in addi-
tion to the selection, filtering and aggregation of the data. The resulting
data mashup can be made interactive by leaving parts of the query vari-
able. We also describe an abstraction layer above this DSL that uses
a recommendation-driven natural language interface to reduce the diffi-
culty of creating queries in this DSL.

Keywords: data analytics, data mashups, natural language queries.

1 Introduction

The increasing amount and variety of data available in the web leads to new
possibilities in end-user focused data analysis. In the course of the Open Data
trend, public agencies have started to make governmental data available using
web services. In addition, there is a large amount of “crowdsourced” data from
services such as Yelp (venue ratings) or Twitter (trending topics, sentiments).
To make productive use of this data, two elements are needed: first, a way to
integrate the heterogenous data into a common representation, second, a way to
analyze the integrated data to make it usable. cities The well-known solutions
to these two problems are data integration through ETL processes into data
warehouses, and the usage of BI (business intelligence) tools for analytics. These
tools could basically be applied to these new forms of data as well, but for
end-user data analysis they have two disadvantages: First, they are designed
for skilled users. Second, ETL processes are constructed for static sets of input
sources and are not suitable for on-demand joining of web data sources.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 337-341] 2011.
© Springer-Verlag Berlin Heidelberg 2011



338 J. Eberius, M. Thiele, and W. Lehner

To make web data accessible to end users, new integration and analysis meth-
ods are necessary. They should accommodate to the skill levels of end-users, but
also to their needs: compared with the business intelligence in enterprises, the
skill level as well as the query complexity are much lower.

With regard to the vast amount tools for end-user driven mashup develop-
ment that have been developed in recent years, we argue that there is room for
improvement. Specifically, we argue that their scope, general mashup application
development, and their user interface styles, for example data- and work flow
graphs, are not optimal for the problem of end user data analytics.

We will discuss our view of the requirements of end-user data analytics in
the next section (Section B]). We will then propose an approach to tackle the
presented problems in Section Bl and finally discuss related work in Section [4

2 Research Questions

Consider an exemplary use case for end-user business intelligence: a user plans
to open a cafe, and needs to decide on its location. He requires to join data from
multiple heterogenous sources. He needs statistical data about the districts of
the city, such as average income, rent or age structure, data which is available
from public agencies. In addition he needs data about the popularity of existing
cafes in the various districts, available from services such as Yelp. When he has
found the data, the user needs to to join, filter and aggregate it. For example,
he needs to merge the statistical information about the cities districts with the
average rating of existing venues in the district.

In a next step, a visualization the be preferable to a tabular display of the
result data. The type and the properties of the visualization should be config-
urable by the user. In a last step, it would be beneficial if the user could easily
vary the parameters of the mashup, e.g., aggregation or filter parameters, to
enable an exploratory style of data analysis.

From this scenario, a number of requirements and research questions can be
derived.

— How to deal with heterogenous data sources with varying degrees of structure
when creating data mashups?

— How well-suited are the interfaces currently used (e.g. drag and drop data
flow languages) for end-user mashup construction and are there alternatives?

— How to enable users to find the data sets that contain the information they
are interested in?

— How can techniques such as (automatic) tagging and matching be used to
recommend data sets that could fit into the user’s data mashup?

— How to facilitate the selection of visualizations and interaction patterns that
are appropriate for the data?

3 Approach

To support the outlined use cases we propose a declarative domain specific lan-
guage (DSL), as well as a higher level natural language interface that supports



A DSL for DIY Analytical Mashups 339

the user in creating data mashups using this DSL. The language allows the user
to query a repository of possibly heterogenous information that can have various
degrees of structure, ranging from free text over CSV files and graph-structured
data to relational databases.

It supports a set of operations such as joining of different data sets, filtering
according to a given predicate or grouping. In contrast to the result of a query in
a relational database system, executing a query in the proposed DSL results in a
data mashup, which is a visualization of the selected data. The form of the visu-
alization, e.g. a chart or map, can be specified in the query, or be automatically
inferred from the data used in the mashup. In addition, it includes interaction
features that can be specified in the query. Specifically, for each value in the
query that is given as a variable, an interaction feature (slider, drop-down menu
etc.) that allows to set this value will be present in the mashup.

To accommodate the language to the needs of end users while keeping it
expressive enough for developers, the language can be used on two abstraction
levels.

1. End-User Level: This level is suitable for end-user mashup creation. In con-
trast to previous mashup systems that mostly either use WYSIWYG ap-
plication editing or a pipeline-style graphical connection of operators, we
propose a iterative, recommendation-supported natural language interface,
which will be described below.

2. DSL-Level: On this level, the actual domain specific language, i.e. the query
language described above, resides. On this level, the language is similar to
typical data flow languages, with the addition of the visualization operators,
and variables which result in interaction features in the mashup. Input from
the high-level interface are mapped to executable operators on this level to
create executable mashups.

With the higher level interface, users can enter a query in natural language, which
is then incrementally refined until a fitting data mashup can be created from
the query. The first step would be very similar to systems like WolframAlph
in which users enter entities and attributes which they want to compare, e.g.,
“unemployment usa germany”. In the proposed system, more complex cases
including visualization directions or filter conditions are also possible, in the
style of “plot the unemployment rates in the usa and germany between 1990 and
2010

However, instead of presenting an answer on a best-effort basis, the platform
would go through an incremental process of assisting the user in refining the
query, as shown in Figure[l In this process, the system will interpret the query
using techniques from natural language processing to find the elements needed for
the construction of the mashup: data sets, joins/filters/aggregates, visualization
and interaction forms. These elements will be mapped to concrete operators on
the DSL-level. For every missing element the user will be prompted to refine the
query, giving recommendations based on the elements that have been recognized.

! http://www.wolframalpha.com/



340 J. Eberius, M. Thiele, and W. Lehner

Natural
Language
Query

update query Loé?:tl;psfei}ttt;ng
check relation- and
attribute names

(use synonyms/
wordnet)

Infer interaction
options

check filter and
aggregate conditions
for variable values

Infer visualization
options

check data types and
relations

Fig. 1. Incremental Refinement of the Original Query Input
4 Related Work

An overview of available general end-user mashup development systems is given
by Grammel et al [2]. Beyond these general systems, a number of data mash-up,
analysis and visualization platforms have been proposed. Google Fusion Tables
[1] provides tools for users to upload tabular data files, join, filter and aggregate
the data and visualize the results. The interface is a standard, menu-based point
and click interface, no steps of the process are assisted or automated. Similar
tools are, for example, GeoCommons? and to some extend ManyEyesﬁ, which
focus on the visualization and do not offer analytical functions.

One of the more successful platforms focusing on end-user data mashups is
Yahoo Pipes@. It uses a visual data flow language to merge and filter feeds
and to model user input. Executing a pipe (a data flow) results in a new feed,
which can include parameters that the user specifies on execution. Resulting
feed data can be displayed as a list, or on a map if the items contain spatial
data. The system offers many operators and thus a high degree of flexibility, but
lacks visualization or data other data exploration features, instead focusing on
merging and processing of data. Furthermore, to use the system, the user has
to understand the concept of data flow graphs, as well as many specific mashup
problems, for example how web services are called with URL parameters, or that
a geo-coding component has to be inserted into the pipe to display addresses on
a map.

2 geocommons.com

3 .
manyeyes.alphaworks.ibm.com

4 pipes.yahoo.com



A DSL for DIY Analytical Mashups 341

There are many current systems that explore the application of natural lan-
guage querying to semantic data bases. Kaufmann et al. propose a classification
for these system that ranges from completely free form query entry to more
structured or guided approaches with almost formal query languages [4]. They
evaluate several systems and conclude that neither end of this spectrum is opti-
mal for end-users. They argue that a guided free entry approach is preferable.

Recommending components to mashup creators has been explored for example
by Greenshpan et al [3]. They developed a system that offers autocompletions
based on previous mashups created by other users. Picozzi et al. on the other
hand propose a system that recommends components to be added to a mashup
using quality metrics that take both the new components as well as the already
chosen components into account [5].

5 Conclusion and Planned Contributions

The increasing amount of publicly available data on the web raises the question

how this data can be made usable for end-users. There is a need for simple tools

for data joining, analyzing and visualizing web data from different sources.
The following specific contributions are planned:

— A DSL for data mashup construction, with query, visualization and interac-
tion operators for working on heterogenous web data.

— A high-level natural language query interface and an iterative process for
refining queries and mapping them to the concrete DSL.

— A recommendation engine for finding data sets, visualization and interaction
forms fitting the given query.

The project is in the initial research phase. The next steps in the research plan
include concretizing the operators of the DSL, exploring the capabilities of cur-
rent NL-querying systems and experimenting with different ways of mapping
natural language input to operators of the DSL and data sets in the repository.

References

1. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management
and collaboration. In: SIGMOD 2010 (2010)

2. Grammel, L., Storey, M.-A.: A Survey of Mashup Development Environments.
In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS,
vol. 6400, pp. 137-151. Springer, Heidelberg (2010)

3. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: VLDB
2009 (2009)

4. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query lan-
guages and interfaces to semantic web knowledge bases. In: Web Semantics: Science,
Services and Agents on the World Wide Web (2010)

5. Picozzi, M., Rodolfi, M., Cappiello, C., Matera, M.: Quality-Based Recommenda-
tions for Mashup Composition. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS,
vol. 6385, pp. 360-371. Springer, Heidelberg (2010)



	A Domain-Specific Language for Do-It-Yourself 
Analytical Mashups
	Introduction
	Research Questions
	Approach
	Related Work
	Conclusion and Planned Contributions
	References




