
Applications of Mobile Application Interface

Description Language MAIDL

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{prach,korawit,tokuda}@tt.cs.titech.ac.jp

Abstract. Developments of mobile mashup applications have a rapid
growth in the recent years. We present a development of Mobile Applica-
tion Interface Description Language (MAIDL) and its applications. The
language enables the development of mobile mashup applications with
less programming efforts. Using our description language, composers are
able to reuse existent mobile applications, Web services, and Web ap-
plications as the components to create a mashup mobile application or
a Tethered Web service on a mobile device (TeWS). We demonstrate
the further application of a TeWS to deliver a cooperative mashup via a
functionality exchange between an Android and an iOS device.

Keywords: Mobile mashup application, description language, tethered
Web service, mobile Web server.

1 Introduction

A composition of Web information and mobile devices unique features has re-
cently become an important development trend. In this paper, we approach a
development of an XML-based description language to compose mobile mashup
applications and Tethered Web services on a mobile device (TeWS). Compo-
nents in the mashup execution are derived from a combination of existent mo-
bile applications, JavaScript-based Web automations and Restful Web service
consumptions. The composition method applied a workflow model which later
translated into a script in description language called Mobile Application Inter-
face Description Language (MAIDL). Finally, a mobile application or a TeWS is
generated from the MAIDL script as an output. Furthermore, a complex mashup
example is provided to demonstrate applications of the generated TeWS between
mobile devices.

To integrate various functionalities to a mashup component, developers are
having no alternative but to study a very specific programming language API.
Divided by its target platform, mobile applications are generally created as mo-
bile Web pages and native language applications. The major drawback when
creating a multiplatform mobile Web application is that it tends to employ
fewer amounts of mobile devices useful features. Moreover, mobile software de-
velopments using the devices native programming language require more explicit

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 332–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Applications of Mobile Application Interface Description Language MAIDL 333

knowledge. In the term of data flows and Web-enabled information reuses, cur-
rent approaches do not allow applications be developed as rapid as the Web-
based ones do.

Code, which is generated from MAIDL, is in a procedural paradigm rather
than declarative [1], since the control part mainly consists of procedures that
are passing parameters and synchronizing processes in the mashup runtime en-
vironment. For this reason, we proposed automatic code generation algorithms,
which assist composers in creating mobile mashup applications. In this research,
we applied partial information extraction [2] and the final output is not limited
to mobile application as traditional methods are [3]. A TeWS can be generated
and later consumed by other clients. Later in an example, we show how the
TeWS is applied to a platform-independent communication between devices.

2 Overview

2.1 Objective

Explore a mobile mashup model. The topics discussed in section 1 show that a
mashup model for the mobile mashup application is not concretely defined. We
aim to find an optimal mashup model which leads to a better solution in creating
mashup applications for mobile devices.

Deliver reusability. Our mashup components include existent mobile applica-
tions and Web information. Developing mashup applications with low-level API,
such as creating an image recognition component with a new algorithm, is be-
yond our research scope.

Enable fast prototyping. Mashup applications can be created from a Web-based
software generation tool. Composers are allowed to generate source code, com-
pile, and test it immediately after the composition model is correctly prepared.
Methods called Mashup Output Context Transformation and Mashup Process
Scheduling Algorithm would assist composers by automatically managing fore-
ground and background runtime behaviors of the mashup components.

Demonstrate a Tethered Web service on mobile devices. A mashup application
in our approach can be created as a mobile application to run on a device
or as a TeWS. Functionality exchanges and interactive collaborations between
devices can be derived from our approach, and these are unique features and
contributions which do not appear in other approaches. In order to run the most
flexible configuration on mobile devices (such as third party mobile applications
and embedded server modules), we use the Android open source platform [5] as
our mashup runtime environment.

2.2 Overview of MAIDL and Its Abstract Model Composition

The general concept of MAIDL (shown in Fig. 1) is to provide data flows between
mashup components for its execution and output. The components consist of:



334 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

Fig. 1. Overview of MAIDL and its abstract model composition

1. Web Application Component (WA). A part of a Web page or a query through
form in an HTML document can be reused through a WA component. Com-
posers are provided with a tool to annotate tags and specify execution com-
mands. JavaScript code will be generated according to the specification and
execute automatically in the runtime environment on the mobile device.

2. Web Service Component (WS). Connections to REST Web services are ap-
plicable to our mashup composition. Composers specify a URL, a query path
and a query expression (such as XPath or JSON dot notation) to access a
part of the whole data.

3. Mobile Application Component (MA). A part of mashup execution can be
derived from a mobile application. Our method allows an application which
implemented Intent and Service [4] messaging protocol to be integrated.

4. Arithmetic Component (AR). A mathematical operation between parame-
ters from one or more components can be performed through an Arithmatic
Component. The operation includes addition, subtraction, division, multipli-
cation, summation, comparison, array merge and GPS distance calculation
from 2 pairs of GPS coordinates.

3 Cooperative Mashup

To demonstrate functionality exchanges and a cooperative mashup application,
we created a mashup application using our approach. It requires interaction
between 2 or more mobile devices. In this way, the application created in a
TeWS output context can be deployed on an Android mobile phone. On the
other hand, the iOS device [6] is manually programmed to consume the TeWS
on the Android phone.

In this mashup application, geolocation of 2 devices are used as a data to find
a list of restaurants located near the middle point between each devices GPS



Applications of Mobile Application Interface Description Language MAIDL 335

Fig. 2. Mashup models and screenshots of Meeting Point

coordinates (via the GourNavi Web service [7]). Fig. 2 shows 2 mashup models
and mashup applications, Meeting Point Registration and Meeting Point Con-
firmation, which communicate between devices via TeWS in separated contexts.

For the internal runtime and the connection performance, the application on
the iOS side was presumably lightweight. Since this is a cooperative mashup
application for 2 devices with a handshaking-like protocol, multiple connections
are not considered as a performance factor. Overall performance of this mashup
application depends on the performance of GourNavi Web service. All other
components work in native code. In usability and interaction test, if we assumed
that 2 devices are connected using global IP addresses and are placed outdoors,
the interactions between 2 devices might be interrupted by signal loss. Both sides
must have a timeout configuration and a reconnection arrangement in the case
of failure execution.

4 Evaluation

To deliver smooth interactions between devices of a mashup application in the
context of TeWS, the behavior of running process, network latency and usage
scenario has to be observed. Since MAIDL files contain information about each
component and its runtime behavior, an alternative application of MAIDL for



336 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

performance measurement can be considered. MAIDL files also contain a con-
crete description of the output message sent via TeWS. Applications on the
client side might be generated or adapt themselves according to the description.
A good example for the combination of a TeWS and a desktop-based Web ap-
plication is to exchange multiple data from a mobile phone to automatically fill
in personal information in an HTML form. The desktop Web application first
observes the applicable TeWS on the device and connects to it. In addition, the
result from our usability evaluation of MAIDL can be interpret that MAIDL
might not perform well when mashup applications are composed by novice com-
posers because of its complexity. Expert users are able to use MAIDL without
confusion and may apply it to external libraries. However, both groups expecta-
tions are met. Composers in both groups rated that the approach delivered 75%
subjective rating for creating mashup applications.

5 Conclusion

In this research, we proposed a fast-paced mashup development using MAIDL.
The composition enables integration of annotated parts of Web pages, connec-
tions to Web services and the use of existent mobile applications. The output can
be designated for a single device, as a normal mobile application, or for multiple
devices, as a Tethered Web service. In the mashup example, we demonstrated
how a mashup application works in a Tethered Web service context to deliver
functionality exchange and cooperative application between devices. Our future
work is to enable mobile mashups in the context of a Web application on a mo-
bile device. To support a higher interactivity to run on desktop computers, the
process control and the composition method might be different from the contexts
we have observed.

References

1. Gruhn, V., Schäfer, C.: An Architecture Description Language for Mobile Dis-
tributed Systems. In: Oquendo, F., Warboys, B.C., Morrison, R. (eds.) EWSA 2004.
LNCS, vol. 3047, pp. 212–218. Springer, Heidelberg (2004)

2. Guo, J., Chaisatien, P., Han, H., Noro, T., Tokuda, T.: Partial Information Extrac-
tion Approach to Lightweight Integration on the Web. In: Daniel, F., Facca, F.M.
(eds.) ICWE 2010. LNCS, vol. 6385, pp. 372–383. Springer, Heidelberg (2010)

3. Kaltofen, S., Milrad, M., Kurti, A.: A Cross-Platform Software System to Create
and Deploy Mobile Mashups. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 518–521. Springer, Heidelberg (2010)

4. Android Intents, http://developer.android.com/guide/topics/intents/
5. Android Developers, http://developer.android.com/index.html
6. iOS Technology Overview, http://developer.apple.com/technologies/ios/
7. Gourmet Navigator API, http://api.gnavi.co.jp/api/manual.htm

http://developer.android.com/guide/topics/intents/
http://developer.android.com/index.html
http://developer.apple.com/technologies/ios/
http://api.gnavi.co.jp/api/manual.htm

	Applications of Mobile Application Interface 
Description Language MAIDL
	Introduction
	Overview
	Objective
	Overview of MAIDL and Its Abstract Model Composition

	Cooperative Mashup
	Evaluation
	Conclusion
	References




