
Modernization of Legacy Web Applications into

Rich Internet Applications�

Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero, Pedro J. Clemente,
Juan C. Preciado, and Fernando Sánchez-Figueroa

University of Extremadura Spain,
Quercus Software Engineering Group

{rre,chemacm,pjclemente,jcpreciado,fernando}@unex.es
http://quercusseg.unex.es

Abstract. In the last years one of the main concerns of the software
industry has been to reengineer their legacy Web Applications (WAs) to
take advantage of the benefits introduced by Rich Internet Applications
(RIAs), such as enhanced user interaction and network bandwith opti-
mization. However, those reengineering processes have been traditionally
performed in an ad-hoc manner, resulting in very expensive and error-
prone projects. This situation is partly motivated by the fact that most
of the legacy WAs were developed before Model-Driven Development
(MDD) approaches became mainstream. Then maintenance activities of
those legacy WAs have not been yet incorporated to a MDA development
lifecycle. OMG Architecture Driven Modernization (ADM) advocates for
applying MDD principles to formalize and standardize those reengineer-
ing processes with modernization purposes. In this paper we outline an
ADM-based WA-to-RIA modernization process, highlighting the special
characteristics of this modernization scenario.

Keywords: Web Models Transformations, Software Modernization,
Software Reengineering, Rich Internet Applications.

1 Introduction

Rich Internet Applications (RIAs) have emerged as the most promising platform
for Web 2.0 development by the combination of the lightweight distribution ar-
chitecture of the Web with the interface interactivity and computation power
of desktop applications, with benefits on all the elements of a WA (data, busi-
ness logic, communication, and presentation). Among others, RIAs offer online
and offline capabilities, sophisticated user interfaces, the possibility to store and
process data directly on the client side; they offer high levels of user interac-
tion, usability and personalization. RIAs also minimize bandwidth usage, and
separate presentation and content at the client side [16].

� This work has been supported by MEC (TIN2008-02985), FEDER and Junta
Extremadura.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 236–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://quercusseg.unex.es


Modernization of Legacy Web Applications into Rich Internet Applications 237

To take advantage of these new capabilities, the industry is performing a
reengineering of their legacy WAs to produce RIA clients. Unfortunately, a
huge number of those legacy WAs were developed before most promising Model-
Driven Web Engineering (MDWE) [18] methodologies were mature enough for
mainstream. Then the industry posses a wide catalogue of complex WAs that
were developed without following any MDD principle or technique. And the
maintenance activities of those legacy WAs cannot be incorporated to the MDA
development lifecycle of a company. Among other negative consequences, a lot of
those legacy applications may lack a comprehensive up-to-date documentation
and they may have been poorly maintained integrating new technologies without
a defined strategy. In this complex scenario, the industry demands formalization
and standardization of reengineering processes to reduce the expensive costs
and high risks introduced by ad-hoc reengineering processes. In this setting,
OMG Architecture-Driven Modernization (ADM) advocates for the application
of Model-Driven Development (MDD) techniques and tools to formalize and
standardize software reengineering processes.

Precisely, the major objective of the work presented in this paper is to de-
fine a flexible framework for the systematic and semi-automatic modernization
of legacy non-model-based data-driven WAs into RIAs following OMG ADM
principles. This paper shows then part of our work performed inside a com-
plete modernization project we are currently developing in partnership with a
national software company. In concrete, in this paper we only present a brief
outline of our process, focusing specially on the RIA pattern identification ac-
tivity. We conceived WA-to-RIA modernization as the process of building a RIA
client from the legacy WA presentation and navigation layers and the required
service-oriented connection layer with the underlying business logic at server
side. Besides, we consider a RIA client is characterized for satisfying a set (or
subset) of RIA features (presented in Section 2).

According to the OMG Architecture-Driven Modernization (ADM), the main
objectives of our work may be summarized as follows:

– Legacy WA knowledge discovery. Our framework tries to define which infor-
mation from the legacy system should be of interest for the modernization.
And it tries to refine the knowledge extracted to alleviate the modernization
costs. The acquired knowledge could be very heterogeneous covering aspects
from technical (e.g. components, flow controls, etc.) to business domains (e.g.
tasks, business rules, etc.).

– Target architecture definition. Recently, many approaches have appeared
[6][14][22] in the Web Engineering community for the definition of RIA ar-
chitectures. We try to apply the results of those proposals in our intent to
derive a conceptual description of RIAs, which was independent of any par-
ticular technological platform and was useful on modernization processes.

– Transformation steps from the original system to the target one. Our frame-
work tries to define the necessary sequence of steps to transform a legacy
WA into a RIA, keeping the required flexibility to cope with different mod-
ernization scenarios.



238 R. Rodŕıguez-Echeverŕıa et al.

The rest of the paper is structured as follows. Section 2 presents the collection
of RIA features we consider to define the RIA client concept. Section 3 defines
the system we use to illustrate our approach. Section 4 introduces our approach.
The related work is commented in Section 5. Finally, main conclusions and future
work are presented in Section 6.

2 Main Features of RIAs

In order to give a definition to the RIA client concept and to identify the rel-
evant information to extract from the legacy WA for modernization, we have
performed a deep analysis of the RIA-extended MDWE approaches and col-
lected all the RIA features covered by them from a conceptual point of view.
We have performed the collection and annotation of RIA features in a high level
of abstraction, trying to avoid low level or technological concerns, and trying to
provide a unified vision of them.

We consider the work in [16] as the starting point in the evolution and ex-
tension of a set of MDWE approaches in order to fulfill the new expressivity
requirements introduced by the RIA development. According to that decision,
we have only considered works published since 2005. Among the different pro-
posals available in literature, we have studied both the most mature ones and
also the recent proposals under development that may have some impact in the
next future: WebML4RIA [6], OOHDM-RIA [19], OOH4RIA [11], UWE for RIA
[7], RUX-Method [9], UWE-R [10], OOWS 2.0 [22], ADRIA [5] and IAML [24].

Following we present the collecion of RIA features we have:

– RF01. Data storage on client side. This feature refers to the capability of
the client side to store data in a volatile or persistent way. The persistent
data storage on client side is becoming a clear trend for current RIAs (key
feature of HTML 5 standard).

– RF02. Multiple data sources or types. Actual RIAs can connect to different
data providers (databases, Web services, Web APIs, etc.) and use different
data formats (raw datasets, XML, JSON, etc.).

– RF03. Multimedia and Animation Support. Temporal Behavior. This feature
refers to the capability of the client side to manage complex animations and
multimedia content properly in order to enhance the user interaction.

– RF04. Logic execution on client side. It refers to the capability of the client
side to execute part of the business logic inside its own runtime. Together
with RF01 may reduce considerably server roundtrips and enhance user ex-
perience and productivity.

– RF05. Multithreading or concurrency. This feature refers to the capability
of the client side to launch simultaneously different functionality threads. Its
most widespread use is the ability of the client side of keeping a responsive
interface while requesting data from the server side.

– RF06. Multidevice User Interface. This feature refers to the capability of
a RIA to be accessed from a wide range of heterogeneous client terminals
(user agents or devices). In the last years, RIAs have spreaded to the mobile



Modernization of Legacy Web Applications into Rich Internet Applications 239

market and they have become one of the most preferred approaches to deploy
applications because of their independence of technology.

– RF07. Single-Page Paradigm or Partial Page Refresh. This feature refers to
the capability of a RIA client to present a desktop-like user interface avoiding
the Click-Wait-and-Refresh-Cycle, characteristic of Web clients. This feature
could be seen as a consequence of RF04 and RF12, at least.

– RF08. Rich UI Components (widgets). This feature refers to the capability of
a RIA client to use a whole constellation of interactive and complex controls
and components for UI composition. It supposes logic execution on client
side.

– RF09. Rich User Interaction. This feature refers to the capability of a RIA
client to define enhanced interactions and complex UI behaviours by explic-
iting orchestrations among widgets and server-side logic.

– RF10. Client runtime control. This feature refers to the capability of a RIA
client to use and control partially the functionality of its runtime and to
change its default behaviour, e.g. the back button of a Web browser.

– RF11. Communication started on server side (push model). This feature
refers to the capability of a RIA to overcome the request-response commu-
nication model of Web applications. In a RIA both tiers (client and server)
can innitiate a communication process with the other one.

– RF12. Asynchronous communication. This feature refers to the capability
of a RIA client to send a request to the server without blocking until a
response is sent back. A RIA can keep working normally and handle the
response when necessary.

– RF13. Bulk data client-to-server transfers. It refers to the capability of a
RIA client to send a collection of data to the server at once to reduce the
server roundtrips. A RIA client stores collections of related data produced
by the normal execution process and, at a given time, it sends the whole set
of data to the server at once.

– RF14. Synchronization between client and server tiers. This feature refers to
the capability of a RIA to keep data consistency among the different tiers of
the application. This is a high level feature and then it can be decomposed
in communication sequences between tiers. This feature could be seen as a
combination of RF01, RF04, RF13, and a concrete synchronization policy.

– RF15. Offline mode. This feature refers to the capability of a RIA client
to change seamlessly its operation mode between standalone, without live
connection to the server, and online modes, with connection to the server.
This is also a high level feature (referred as an architectural feature in some
works) and then it can be seen as a consequence of the application of RF01,
RF04, RF07 and RF14, at least.



240 R. Rodŕıguez-Echeverŕıa et al.

3 Illustrative Example

In order to illustrate the main steps of our approach, let us consider JAVA Pet
Store1 Demo (Petstore) as our legacy WA. Petstore 1.3.2 was built on 2003 by
JAVA BluePrints team to exemplify the development of a WA by means of the
J2EE SDK technologies. Following we present the main reasons to select this
sample legacy WA.

– The source code is publicly available. And it is a medium-size system.
– There exists a comprehensive documentation because it is conceived as a

training project.
– It could be considered a well-known sample application and the baseline code

of many WAs developed during those years.
– Its development is based on the BluePrints Web Application Framework

(WAF), which inspired next JAVAWeb application frameworks. So it presents
the main elements of current MVC-based Web Application Frameworks.

– We think it is representative enough to illustrate the main points of the
proposed approach.

– Additionally, Petstore has been evolving along with the JEE SDK to illus-
trate the features of the new versions. So, with the release of JEE 5 SDK,
Petstore was reengineered to illustrate how the Java EE 5 platform can be
used to develop an AJAX-enabled Web 2.0 application.

In this setting, Petstore WA is perfectly suitable to be used as our case study
since the original application is used as the input for our approach whilst the
new Petstore 2.0 WA represents the desired output of the approach.

Basically, Petstore WA provides customers with online shopping. Through a
Web browser, a customer can browse the catalog, place items to purchase into
a virtual shopping cart, create and sign in to a user account, and purchase the
shopping cart contents by placing an order with a credit card.

As one of our main goals consists on modernizing the presentation tier, we have
focused on the catalog functionality of the Storefront component. In concrete, we
are interested in product and item page shown in figure 1. These two web pages
are dinamycally generated from application data. The former displays a product
listing (all items of Chihuahua product in figure). The latter shows the details
of a concrete item (Adult Male Chihuahua in figure). Every product item of the
product page links with its corresponding item page. Clearly a Master/Detail
relationship is set between the main data displayed by both pages.

From a RIA viewpoint, contrary to the multipage solution presented by Pet-
store 1.3.2, this scenario of data relationship is realized in a single page by
applying the Master/Detail screen pattern [20]. This is an ideal pattern for cre-
ating an efficient user experience by allowing the user to stay in the same screen
while navigating between items. Moreover, as figure 2 illustrates, Master/Detail
screen pattern is the solution adopted by the Petstore 2.02 implementation for

1 Version 1.3.2: [Aug 04, 2003]
http://java.sun.com/blueprints/code/jps132/docs/index.html

2 http://java.sun.com/developer/technicalArticles/J2EE/petstore/



Modernization of Legacy Web Applications into Rich Internet Applications 241

Fig. 1. Master/Detail relationship between product and item pages

Fig. 2. Master/Detail Screen pattern merging legacy product and item pages

the scenario depicted above. This modernization scenario is precisely the case
study we have selected to illustrate our approach.

4 The Approach

As aforementioned, the approach presented in this work briefly introduces and
outlines our modernization process of a legacy WA. As figure 3 shows, the main
objective of our process is to generate a RIA client of the legacy WA and the
necessary service-oriented connection layer with the underlying business logic.
The RIA client could be composed of a rich UI (highly interactive), the data
stored at client side, the logic processed at client side, and the infrastructure
logic for server communication and synchronization. Most of the server-side code
would remain unmodified so the system could keep working as a WA. With that
purpose, a connection layer would be built between the new RIA client and the
original business logic. This layer aims to cope with the derived data and logic
distribution concerns and seamlessly integrate an asynchronous communication
model between client and server.

As depicted in figure 4, our modernization process consists on 5 main phases:
(1) static and dynamic information extraction from the source (data, logic and
presentation) and the configuration files of the original WA; (2) knowledge repre-
sentation and refinement on a technology independent language (we use KDM),



242 R. Rodŕıguez-Echeverŕıa et al.

Fig. 3. Target system architecture

the extracted information is incorporated in a model with a higher level of ab-
straction; (3) optional projection of the conceptual system to a specific RIA-
extended MDWE approach; (4) optional Web models refinement by applying
RIA patterns at more concrete level; and (5) final code generation.

According the ADM horseshoe model proposed by OMG [21], which defines 3
modernization domain levels (technology, application & data, and business), we
argue our approach would be located at the second domain level (application and
data architecture) because we think it involves major changes (beyond technical
domain) that clearly affect the application architecture. Fundamentally, these
changes are related to:

– The UI structure and organization (RF06-RF08). The multipage structure of
the legacy WA presentation layer should be frequently modified according to
the single-page paradigm (RF07) characteristic of RIA clients. A componen-
tization process should be performed to map plain HTML display elements
and controls into RIA widgets. And all the main elements of the legacy UI
layout should be rearranged according to the new paradigm.

– The UI control flow (RF05, RF09-RF10). The hyperlink-based interaction
model should be transformed to an event-based interaction model. In a RIA
client navigation is not conceived as a sequence of hyperlinked page. Nav-
igation is realized as a sequence of UI state transitions driven by events.
Some of those transitions could not imply a request to the server. An UI
state transition could be basically defined as an update (screen update) of
the current UI components or as a new components load (new screen load).

– The client to server communication (RF11-RF14). RIA clients frequently
interact with server logic following a service-oriented model, which may im-
ply major changes on server side logic interface. Additionally, single-page
RIA clients require an asynchronous communication model to maintain a
responsive UI.



Modernization of Legacy Web Applications into Rich Internet Applications 243

Fig. 4. Modernization process overview

– The offline work mode (RF15). Many RIA clients provide their users with
the capability of switching between online and offline modes. Obviously, this
is a highly device-dependant feature, because at client side: data should be
stored (RF01); and business logic should be executed (RF04).

Following, we try to provide a more detailed vision of the main stages of our
modernization process, using the Petstore sample WA to illustrate them. We
will take special attention to the RIA pattern recognition step in phase 2.

4.1 Information Extraction and Representation

As shown in figure 4, the first phase of our process tries to reduce the com-
plexity of the modernization process by switching from the heterogeneous world
of implementation technologies to the homogeneous world of models. For this
purpose, following ADM recommendations, we have used available solutions for
code to model transformation (static analysis), such as MoDisCo discoverers and
metamodels for Java, JSP and XML (Specific Abstract Syntax Tree Metamod-
els, SASTM3). Language-dependent models representing the whole legacy WA
are then obtained as final products of this phase. Then, the process provides us,
thus, with the ability of working directly with models since this moment. Fur-
ther we have considered the convenience of specifying additional metamodels to

3 http://www.omg.org/spec/ASTM/



244 R. Rodŕıguez-Echeverŕıa et al.

capture supplemental information from the legacy WA, e.g. WAF information.
But we decided to postpone that goal to the next iteration of our approach.

According to our goal of generating a RIA client, the most relevant informa-
tion to extract accurately is the one involved in the following concerns:

– UI Layout. Commonly, legacy WAs have been built to keep a uniform UI
structure and organization to increase usability and to present a recognizable
look&feel. To capture that UI Layout is then a preponderant requirement of
our modernization process. So the legacy WA look&feel could be regenerated
in the RIA client. That is a difficult task. Our approach consists on extract-
ing that kind of information from the template system used by the Web
application framework. In the concrete case of our example, we get some ba-
sic UI Layout information from the configuration file of the template system.
Figure 5 (left side) shows the UI Layout of the item page.

– Web page and data relationships. Dynamic Web pages are generated on the
fly to display different values of the application data. So every dynamic Web
page defines a concrete view of application data. The correct specification of
those views and the related data entities are key to infer the proper compo-
nentization of the legacy WA UI. Figure 5 (right side) shows the JSP code
excerpt that relates the item page to the item data.

– Navigational map. In order to generate a RIA client according to the single
page paradigm (RF07) is necessary to extract and process the whole navi-
gational map of the legacy WA. So grouping and clustering activities could
be performed to assist on the componentization process. In our example, the
navigation information could be extracted from different sources: JSP pages,
template system configuration file, request mapping file (concrete responses
to client request may be specified) and Java code, indeed. For this work, we
are only considering the navigational map extracted from the JSP pages.

– Operational map. This map is a subset of the navigational map concerning
only the requests dispatched by the controller component of the legacyWA as
action calls to the business layer. The operational map is useful to discover
the request flows between client and server tiers (communication model)
and to identify the operations performed over the data. In our example, the
operational map could be extracted from JSP pages and the request mapping
file.

Fig. 5. Legacy code



Modernization of Legacy Web Applications into Rich Internet Applications 245

Finally, we introduce an activity to analyze dynamically the legacy WA. We
argue that the analysis of the runtime traces could provide us with valuable
information about user interaction. That interactivity information could drive
modernization decisions to take in following phases of the process.

4.2 Knowledge Inference and Representation

This is the main phase of the modernization process. The goal of this phase
would be to derive an enriched conceptual specification of the legacy system in a
technology-independent model (knowledge model) from the information stored
inside the static and dynamic models generated on the previous phase. Moreover,
the knowledge model will be continuously refined according to the modernization
goals. From an overall viewpoint, this phase is composed of three fundamental
steps:

1. Transformation of the intermediate static models (SASTM) onto the
technology-independent knowledge model (KDM4), integrating all the ex-
tracted information. ADM suggests to use a M2M transformation to perform
this step, as [15][4][3] exemplified.

2. Enrichment of the KDM models from the dynamic information obtained.

3. Intermediate model refinement by finding expressions of characteristic RIA
patterns.

On one hand, figure 6 shows an excerpt of the KDM representation (simplified)
of the Petstore sample WA, as an example of the output of the first step of this
phase. As shown, we are only considering UI and Code KDM Packages. In the UI
Packages JSP pages are modeled as instances of the Screen metaclass, product
and item Screen instances in the figure. Both Screen instances are related by
a UIFlow instance that represents a navigation flow from the product Screen
instance to the item Screen instance. We are considering only the main area of
the JSP pages. So both Screen instances are only composed of UIField instances
representing the data to be displayed. Every UIField is related with a Member
Unit instance by a Display relationship. In this case, the Member Unit instances
represent members of the item instance of Class Unit. That way both screens
specify a different view of the item Class Unit. Additionally (not shown in the
figure), the product Screen instance actually displays a collection of instances of
item Class Unit.

On the other hand, the model refinement step is performed in two sequential
activities: (1) identification of pattern expressions in the knowledge model; and
(2) restructuring of the knowledge model according to the patterns identified.

First of all, we try to refine the model by locating automatically RIA pattern
expressions in the knowledge model. This activity is performed by a pattern
matching process. Selected RIA patterns stored in the repository are processed
sequentially. Marks are introduced in the model knowledge to signal pattern

4 http://www.omg.org/spec/KDM/1.1/



246 R. Rodŕıguez-Echeverŕıa et al.

Fig. 6. Mater/Detail Screen Pattern in KDM (simplification)

identifications. As mentioned in section 3, the illustrative scenario we are con-
sidering is the detection of the Master/Detail screen pattern. In this case, ba-
sically, we try to locate two instances of the kdm::ui::Screen metaclass related
in a sequential flow and displaying the same data entity but at different level of
detail. In concrete, the master page will display less data than the detail page.
This scenario is precisely the situation depicted in figure 6. To automatize this
activity we are trying to use the QVT5 language. Current results are promising,
but the precision of the pattern matching process is still low. One reason of this
low precision could be related with the high level of abstraction of the KDM
UI Package which may lack necessary elements to represent Web user interfaces
as [2] suggests. Probably we should also review the way we are using KDM.
Another reason could be the lack of contextual information that could lead to
detect false positives. To alleviate that situation we think it would be necessary
to get additional information to semantically define both Web pages (and the
data displayed) and their relationship within the whole system.

After pattern recognition and signalling, the knowledge model is ready to be
restructured according to the patterns identified. We considered this activity
requires human intervention. The modernization engineer should review all the
marks introduced in the knowledge model and select one of the available restruc-
turings for each one, keeping a valid model. Returning to our example, the engi-
neer could select between 2 restructuring choices: (1) applying the Master/Detail
Screen pattern as mentioned in section 3; or (2) applying the Quicklook pattern

5 http://www.omg.org/spec/QVT/



Modernization of Legacy Web Applications into Rich Internet Applications 247

Fig. 7. Quicklook pattern in the search results page

(hover text) as the search page of Petstore 2.0 does to present details of the
search results (figure 7).

4.3 Platform Projection

We have decided to introduce an optional step previous to the generation of
the final code of the RIA client. This step consists on projecting the refined
knowledge models of the legacy WA into RIA-extended MDWE models. Current
techniques and tools of M2M transformation could assist on this projection.
We consider this optional step could provide the engineer with the following
advantages:

– The target system would be specified in a language nearer to Web and RIA
domains. So it could be processed at a fine-grained level.

– Some tool or tool chain to support the development of the system, e.g. We-
bRatio for WebML [1], would assist the engineer in the modernization process
or future maintenance activities.

– A repository of patterns could be used to leverage the stored know-how on
system refinement [17], and to detect potential problems generated during
the modernization process.

– A code generation engine that appears as a fundamental requirement for the
forward engineering stage of the modernization process.

4.4 Code Generation

Following our idea of reusing MDD techniques and tools, final code generation
could be performed by means of available code generation engines. On one hand,
for instance, to generate the client side we could use the generation engines of the
toolkits of main MDWE-RIA approaches, such as WebRatio and RUX-Tool [8].
On another hand, for server side connection layer generation we should evaluate
the application of different model to code transformation tools, such as OMG
MOF Model to Text, JET, Xpand, etc.



248 R. Rodŕıguez-Echeverŕıa et al.

5 Related Work

Due to the wide scope and complexity of the process presented here, there is
a high number of related approaches and they are really heterogeneous. This
section points out some of these works as example of this heterogeneity.

During the last decade, as stated in [13], important works in the reverse engi-
neering domain have been developed. VAQUISTA [23] proposes the utilization
of different reverse engineering techniques to make the migration of the user
interface of a WA to different platforms easer. Similarly, the work in [12] applies
reverse engineering techniques to migrate a multipage interface of a WA to a
single page interface (Web 2.0). All these approaches are closely related to the
reverse engineering phase of the modernization process presented here.

[19]and [17] propose approaches to systematically incorporate RIA features
into legacy WAs. However, contrary to the work presented here, these approaches
are applied to legacy WAs that were developed by using MDD techniques and
methodologies.

On the other hand, in the last years there have appeared some approaches to
the application of MDD principles and techniques for the maintainability of soft-
ware systems, e.g. in activities of software migration or modernization. In that
sense, MoDisco [3] is a generic, extensible and open source approach for software
modernization that makes an intensive use of MDD principles and techniques.
Our work presents a specialization of the framework defined by MoDisco to be
applied in concrete modernization scenarios from legacy WAs into RIAs.

6 Conclusions and Future Work

This work present an outline of our approach for the definition of a systematic
process for WA-to-RIA modernization, by applying MDE principles, techniques
and tools. One main requirement of this process is to make an extensive use
of ADM related specifications. In concrete, the main goal of the moderniza-
tion process presented consists on generating a RIA client from the legacy WA
presentation and navigation layers and its corresponding service-oriented con-
nection layer with the underlying business logic at server side. We have specially
focused on the RIA pattern identification activity. Master/Detail Screen pattern
and Quicklook pattern has been proposed as possible solutions for multipage
master/detail relationships on the legacy WA.

Moreover, this work also depicts a collection of essential RIA features we have
collected to understand the concept of RIA client. On one hand, these features
provided us with the necessary information to define a conceptual modernization
architecture in KDM. On another hand, they helped us on the specification of
the kind of information we should extract from the legay WA in order to perform
its RIA modernization.

Regarding the tool support, we are currently involved in the definition of our
tool chain to systematize the modernization process by assisting the engineer
team in the many and complex tasks to accomplish. For the reverse engineering



Modernization of Legacy Web Applications into Rich Internet Applications 249

phase, we are evaluating the possibility of adopting MoDisco as tool framework.
Meanwhile, for the forward engineering phase, we may use mainstream MDWE
methods and tools, e.g. WebRatio and RUX-Tool.

Given the extension and complexity of every modernization process and the
initial stage of our approach, we have a great amount of related researching lines
to follow. Among them, we are principally interested in 3: (1) extracting more
accurate dynamic information (interaction models) from the legacy WA in or-
der to infere the necessary knowledge to drive the data and logic distribution
between client and server sides; (2) extending the application of ADM specifi-
cations to the whole process and considering business domain modernization;
and (3) integrating properly the modernization tool chain to reduce costs and
to leverage modernization knowledge reuse. Additionally, to confirm our RIA
features relevance we will try to validate them with practitioners.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Ap-
plications Design and Development with WebML and WebRatio 5.0. In: Bertrand
Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C., Paige, R.F.,
Meyer (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 392–411. Springer, Hei-
delberg (2008)

2. Barbier, F., Deltombe, G., Parisy, O., Youbi, K.: Model Driven Reverse Engineer-
ing: Increasing Legacy Technology Independence. In: Second India Workshop on
Reverse Engineering, Thiruvanantpuram (2011)

3. Bruneliere, H., Cabot, J., Jouault, F.: MoDisco: A Generic And Extensible Frame-
work For Model Driven Reverse Engineering. In: IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 1–2 (2010)

4. Izquierdo, J.L.C., Molina, J.G.: An Architecture-Driven Modernization Tool for
Calculating Metrics. IEEE Software 27(4), 37–43 (2010)

5. Dolog, P., Stage, J.: Designing Interaction Spaces for Rich Internet Applications
with UML. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 358–363. Springer, Heidelberg (2007)

6. Fraternali, P., Comai, S., Bozzon, A., Carughi, G.T.: Engineering rich internet
applications with a model-driven approach. ACM Transactions on the Web 4(2),
1–47 (2010)

7. Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-Based De-
velopment of RIAs. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 283–291. Springer, Heidelberg (2009)

8. Linaje, M., Preciado, J.C., Morales-Chaparro, R., Rodŕıguez-Echeverŕıa, R.,
Sánchez-Figueroa, F.: Automatic Generation of RIAs Using RUX-Tool and Webra-
tio. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648,
pp. 501–504. Springer, Heidelberg (2009)

9. Linaje, M., Preciado, J.C., Sanchez-Figueroa, F.: Engineering Rich Internet Appli-
cation User Interfaces over Legacy Web Models. IEEE Internet Computing 11(6),
53–59 (2007)

10. Machado, L., Filho, O., Ribeiro, J.: UWE-R: an extension to a web engineering
methodology for rich internet applications. WSEAS Transactions on Information
Science and Applications 6(4), 9 (2009)



250 R. Rodŕıguez-Echeverŕıa et al.

11. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. In: 2008 Eighth International
Conference on Web Engineering, pp. 13–23 (July 2008)

12. Mesbah, A., van Deursen, A.: Migrating Multi-page Web Applications to Single-
page AJAX Interfaces. In: 11th European Conference on Software Maintenance
and Reengineering (CSMR 2007), pp. 181–190 (March 2007)

13. Patel, R., Coenen, F., Martin, R., Archer, L.: Reverse Engineering of Web Appli-
cations: A Technical Review. Technical Report July 2007, University of Liverpool
Department of Computer Science, Liverpool (2007)

14. Pérez, S., Dı́az, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs: The Or-
chestration Model. In: 2008 Eighth International Conference on Web Engineering,
pp. 24–37 (July 2008)

15. Pérez-Castillo, R., De Guzmán, I.G.-R., Piattini, M.: Business Process Archeology
using MARBLE. In: Information and Software Technology (2011)

16. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of methodologies to
model Rich Internet Applications. In: Seventh IEEE International Symposium on
Web Site Evolution (2005)

17. Rodŕıguez-Echeverŕıa, R., Conejero, J.M., Linaje, M., Preciado, J.C., Sánchez-
Figueroa, F.: Re-engineering legacy Web applications into Rich Internet Applica-
tions. In: 10th International Conference on Web Engineering (2010)

18. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series (October
2007)

19. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich
Internet Applications. A Model-Driven Approach. In: 2008 Eighth International
Conference on Web Engineering, pp. 1–12 (July 2008)

20. Scott, B., Neil, T.: Designing Web Interfaces: Principles and Patterns for Rich
Interactions. O’Reilly Media (2009)

21. Ulrich, W.: Modernization Standards Roadmap, pp. 46–64 (2010)
22. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0: A RIA

Model-Driven Engineering Approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.)
WISE 2009. LNCS, vol. 5802, pp. 131–144. Springer, Heidelberg (2009)

23. Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible reverse engineering of web
pages with VAQUISTA. In: Proceedings Eighth Working Conference on Reverse
Engineering, pp. 241–248 (2001)

24. Wright, J.M.: A Modelling Language for Interactive Web Applications. In: 2009
IEEE/ACM International Conference on Automated Software Engineering, pp.
689–692 (November 2009)


	Modernization of Legacy Web Applications into 
Rich Internet Applications
	Introduction 
	Main Features of RIAs
	Illustrative Example
	The Approach 
	Information Extraction and Representation
	Knowledge Inference and Representation
	Platform Projection
	Code Generation 

	Related Work
	Conclusions and Future Work 
	References




