Developing Enterprise Web Applications
Using the Story Driven Modeling Approach

Christoph Eickhoff, Nina Geiger, Marcel Hahn, and Albert Ziindorf

University of Kassel, Software Engineering,
Department of Computer Science and Electrical Engineering,
Wilhelmshoher Allee 73,

34121 Kassel, Germany
{cei,nina.geiger,hahn,zuendorf }@cs.uni-kassel.de
http://se.eecs.uni-kassel.de

Abstract. Today’s browsers, tools and Internet connections enable the
growth of Enterprise Web Applications. These applications are no longer
page-based and designed using HTML code. Enterprise Web Applications
bring the capabilities and concepts of traditional desktop applications to
the browser. We are used to the development of desktop applications for
years and have defined our own process to enable the full model-driven
development of applications without source code. Using this process and
its tools, we are able to define not only data models for traditional ap-
plications and generate code out of it. Combined with the story-driven
modeling approach, we are able to design the logic of applications us-
ing models and generate fully functional code. To use our knowledge
and tools as well as our usual process for the development of Enterprise
Web Applications, we investigated our process and adapted it to the new
needs. As result we propose a new development process that combines
the needs of complex software development with the implementation of
web user interfaces and control flows between these user interfaces. The
process is a guideline to use models and tools for the development of
complex Enterprise Web Applications including data model, behaviour
and user interface.

1 Introduction

We have developed traditional Java applications for years. Our main research
area has been the model- and story-driven development of such applications. We
have investigated ways to do the complete development of applications with our
own development process and own tools: The Fujaba Process [2], [3] and Fu-
jaba Toolsuite [9]. However, over the last years the type of applications changed.
We more and more faced the challenge of developing so called Enterprise Web
Applications. What we exactly mean by this term is further defined in section
Bl Since we have gained expertise in the modeling of applications over years,
the question we asked ourselves was: “Is it possible to develop web applications
without the need to write any sourcecode, too?”. We started by investigating our
development of traditonal Java applications and apparently faced the differences

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 196 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://se.eecs.uni-kassel.de

Developing Enterprise Web Applications 197

between traditional software and web applications. First of all, web applications
will mostly be divided into a client part and a server part. These two parts com-
municate using Remote Procedure Calls or other request technologies known in
the web domain. These topics were not clearly addressed in the development
process we used until now. Additionally, there is no full modeling and code
generation support for these techniques inside the Fujaba Tool Suite, yet. An-
other point missing in the traditional Fujaba Process is the design of Graphical
User Interfaces (GUIs) and the binding of application data to these interfaces
(databinding). The last point had resided on our todo list even before web appli-
cations turned out to be the new research point. We thus decided to enhance our
processes and tool integration to be able to do full development of Enterprise
Web Applications, including distributed application parts and user interfaces.
We therefore started to adopt and enrich the traditional Fujaba Process to be
able to support all these new requirements. Also we tried to support the process
with tool integration of the new requirements. We propose the use of the Google
Web Toolkit (GWT as user interface and client side logic library. GWT auto-
matically generates browser specific JavaScript code from Java Code. The Java
code can easily be generated using the Fujaba Toolsuite code generation mecha-
nisms. A first step towards modeling of databinding and support for server calls
with GWT was already introduced with the Fujaba Action Charts, [5], in 2010.
The design of user interfaces as well in source code as in story-driven model-
ing is a painstaking task. We therefore propose the use of the GWTDesigneIH
which is a visual GUI builder generating Java code. To enable the completely
model driven development of web applications, we have to close the gap be-
tween Java code for the visual components and the diagrams modeling the rest
of the application. We propose to use UML Lab [and its reverse engineering
technologies to derive a structural representation of the GUI. This is sufficient
to enable the modeling of client side behaviour, databinding, GUI listeners and
server calls using story-diagrams and Action Charts. While the main points of
the Web Fujaba Process have already been defined and will be presented in this
paper, there are still some weak points. We currently do not explicitly state how
the databinding will be incorporated into the process. Also, we have automatic
test generation for the server parts, but not for the logical parts residing in the
client and the user interface. These points will be handled in future revisions
of the process. The remainder of this paper is structured as follows: Section
defines the class of targeted applications. After having defined the application
class, we introduce the story-driven modeling approach, our adaptations needen
for web applications, as well as a running example in section[8l As a result of our
research, section [answers the question raised in the Introduction and defines
the Web Fujaba Process and the associated toolchain. Section [shows similar-
ities and differences to other modeling approaches. Section [@l finally concludes
and gives information about work which still has to be carried out in the future.

! http://code.google.com/intl/de-DE/webtoolkit/
2 http://code.google.com/intl/de-DE/webtoolkit /tools/gwtdesigner/
3 http://www.uml-lab.com/

198

coverage
reports

a
8
8g
sz
EX
i

C. Eickhoff et al.

/test Class diagrams
generatmg\
/ tests

1 —
test
ind > story stoy |
b '
e storyboarding oards diagrams

scenarios

N y code
A — generation
wsocasE Tagrams >
diagrams

story
driven
modeling

N

test
reports

class diagrams

Y

gl gl |

executable
java bytecode java sources

Fig. 1. The traditional Fujaba Process used for story-driven development of traditional
applications

2

As

Targeted Applications - What We Call Enterprise Web
Applications

stated in section [Il our web application development process ist tailored to a

special class of applications. We call these applications Enterprise Web Applica-
tion and define them as follows:

Ajax based applications with excessive Document Object Model
restructuring. We explicitly do not target page based applications with
traditional link infrastructure such as HTML links. Enterprse Web Applica-
tions will change the “page content” by resturucturing the Document Object
Model of the web page. This way we do not have page reloads. This behaviour
is also known from Rich Internet Applications.

Client side data model and logic. We try to shift as much of the business
logic of our applications to the client. The web browsers Ajax Engine takes
care of computations and data model changes. This way, most of the appli-
cation logic can be shifted to the client. The applications will only contact
the server in special cases.

Desktop-like user interfaces. Enterprise Web Applications have inter-
faces composed of so called widgets. We have controls similar to the ones
known from desktop applications. Lists, buttons, dropdown-boxes and menus
are used to provide access to the data model and logic.

Developing Enterprise Web Applications 199

— Minimized server side code. As stated above, we try to limit the server
computations wherever possible. Only security critical issues are still com-
puted by the server and persistent storage is carried out using the WebCoo-
bra persistency and data replication framework.

— Workflow driven. This last item is no must. However, we state that most
applications are developed to provide tool support for some kind of workflow.
This is why we have introduced the workflow driven requirement into our
application class as well as in our process. Workflow hereby does not mean
to be forced to describe the work to be carried out using a Business Process
Model. Nevertheless, recurring tasks may also form a workflow in some ways.

As example for what we call Enterprise Web Applications, the GoogleDocsH may
be reviewed. While this application is also able to have multiple simultaneous
users on one document, the technology used for this differs from our approach.
However, the requirements to be of class Enterprise Web Application are fulfilled
by GoogleDocs. Being similar in many cases, in contrast to traditional software
the Enterprise Web Applications are accessible from everywhere in the world
without the need to be installed. Being more flexible, this way, they still contain
similar features than desktop software and are even more complex to develop
due to the distributed nature. The story-driven development of this kind of
applications is target to our research and development process.

3 Story-Driven Modeling of Enterprise Web Applications

The story-driven modeling approach is taught and researched by the Fujaba
community for years now. There also exists a process, defining the steps needed
to develop applications this way, the FUjaba Process (FUP). Figure [1 shows
the complete process. The research of story-driven modeling of Enterprise Web
Applications was based on this existing work, as described above. However, our
targeted web applications still differ from the kinds of applications the FUP was
targeted to. Nevertheless, FUP can still be used for the server parts and for parts
of the data model of Enterprise Web Applications. A description of application
development accourding to the FUP can be found in [3]. In the following, we
will only give a short introduction on the main story-driven modeling features.

The development process starts by the definition of textual scenarios. One
example scenario could be the following: “Alice and Bob are playing Ludo. It is
Alice’s turn. She has rolled the dice which shows 2. Alice takes her red piece and
moves it forward two fields.” The textual scenarios will then be translated to
so called storyboards. Figure 2lshows the storyboard resulting from the example
scenario shown above. These storyboards are used for automatic test generation.
One Test is generated from every storyboard, testing the described scenario. Ad-
ditionally, storyboards serve as starting point for the application development.
As can be seen from Figure 2] the method move (2) is called on the piece ob-
ject. This method can be implemented graphically using storydiagrams inside

* http://docs.google.com

200 C. Eickhoff et al.

Scenario

!

// start situation:

. > turn
Bob :Player pla ludo _:Ludo Alice :Player
e Alice :tlayer

> die

die_:Die

value := 2 = > at

piece :Piece
field :Field
—> 1:move(2) | color = red =

v

// result situation:

>
> play turn

Bob

longsTc

die

value == 2 - .

piece
fg

Fig. 2. Storyboard describing the example textual scenario of Alice and Bob playing
ludo

13 :Field

color==red =

the Fujaba Toolsuite. This way, the logic and data model changes are handled.
The move () method will change the data model of the application by placing
the piece object on a different Field. The diagram showing an example imple-
mentation of the move () method is shown in Figure Bl The Fujaba story-driven
modeling techniques and capabilities are described in detail in [I4]. Using the
Fujaba Toolsuite and process, we are able to create classdiagrams for the data
model as well as application logic using storydiagrams. All of these diagrams
are used as input for the code generation process. This code generation results
in Java source code implementing data model and application logic. The source
code can be compiled using standard Java compilers and afterwards be executed
within the Java Virtual Machine. The development of highly complex systems
is possible this way. As an example: The code generation engine of Fujaba is
bootstrapped and was developed using story-driven modeling approaches, itself.

The Fujaba development process described above in context of Enterprise Web
Applications sufficient only for the server part and data model. There are some
major issues missing in FUP concerning these kind of applications. The modeling
of distributed systems is not clearly defined. These systems contain client and
server part as well as communication between these parts. Additionally, the data
model, which is created using the FUP techniques has to be bound to the client

Developing Enterprise Web Applications 201

Piece::move (amount: Integer): Void

[$ucces: J
{ amount>0 }
this

«destroprat at :Field

(eate» T
1: amount-- Lat v|next
next :Field
gilure 1

Fig. 3. Activity Diagram modeling the logic of the move () method

i

side user interface in some way. First steps towards the modeling of server calls
and data bindings were introduced with the Fujaba Action Charts [5]. However,
we have to provide modeling capabilities for the issues missing in this approach.
The process for Enterprise Web Applications had to provide information on how
to model server calls, do the databinding and create controller logic for the user
interface. The implementation of graphical user interfaces is a painstaking task.
This holds for hand coding as well as for modeling Uls with storydiagrams. How-
ever, we need support for visual user interface design in our process. Fortunately,
the publication of Googles GWT—DeSignerﬁ in 2010 opened a way for visual user
interface definition. While the definition of Uls using the GWT-Designer makes
life easier, the output of the graphical editor is Java source code. Since we in-
tend to have a completely model-driven development process of Enterprise Web
Applications we do not want to switch back to source code. We thus had to in-
corporate some kind of automatic mapping at this point. Following our process
and using the associated toolchain we are able to generate source code, cross-
compile it with the Google Web Toolkit and run a completely modeled web
application. As a result of our research on the development of Enterprise Web
Applications this paper presents our story-driven modeling approach defined in
the Web Fujaba Process (WFUP).

3.1 Running Example

While the whole approach presented in this paper is still conceptual in some
points, we needed an example application to test the whole process. This ap-
plication had to be complex, support multiple users and have different user
interfaces (views) for different kinds of tasks. Since Enterprise Web Applications
will mostly be used to support some kind of workflow, as stated in [there also
had to be a workflow with sufficient complexity to be solved by the example
application. We choose a management workflow for the creation of animated
computer films. The Enterprise Web Application modeled to support the whole

® http://code.google.com/intl/de-DE/webtoolkit /tools/gwtdesigner /index.html

202 C. Eickhoff et al.

Choose Production .
f Scene design
project calendar
\[Write story]—)[storyboard
Character
design

Setup scenes
and
animation

Fig. 4. Workflow of the example application to manage the creation of animated films

management of film productions like this will need to support the whole workflow
shown in figure [l

The application will need to manage different film projects from which the user
can choose when starting the application. After this, information for the choosen
project will be shown. Every step of the workflow shown will have its own user
interface (view). The views will consist of similar items as user interfaces known
from desktop applications, e.g. a calender with information about the project
status, giving the project manager some kind of timely overview. Another view,
the write story view (shown in Figure [l), will consist of a web editor, which will
enable the user to define scenes, dialogues and the action taking place within
the scene. This is done textually. Not every task of the workflow will be done
within the webbrowser, 3D modeling, design and animation will as well be done
with specified desktop applications as rendering and compositing processes. The
web application will only show the current status of these action points. The
example application serves as basis for the development of tool support for the
proposed process. Therefore, we will develop the application according to this
process. However, some parts of the application or process may be changed
during development and further research. The process introduced in section €l
is the first version and will need further refinement. Even the workflow of the
application might be changed, rearranged or further enriched. Maybe it might
be necessary to define subworkflows for more complex action points.

4 The Web Fujaba Process (WFUP)

As a result to the question raised in section [I}I “Is it possible to develop web
applications without the need to write any sourcecode, too?” we propose the
Web Fujaba Process. Combining the experience from traditional story-driven
modeling and the research work introduced in section [3 we propose this process
as guidance for the completely story-driven modeling of Enterprose Web Ap-
plications. The Web Fujaba Process hereby is based on the traditional Fujaba

Developing Enterprise Web Applications 203

Adkd e

ENCNRRERE ‘u—-t—n—-

Fig. 5. Write story view from example application within GWT-Designer view in
Eclipse

Process shown in figure [[I The Fujaba Process was further enriched with the
description of user interface design and the possibilities to model UI controllers
as well as server calls for distributed applications. However, the original process
is still part of the development. The server parts of applications will be devel-
oped according to the original process. Figure [6]l shows an overwiew of the Web
Fujaba Process (WFUP).

The process starts by describing the intened application textually, as it was
done in the old process. Taking the description as input, usecase scenarios are
created and documented as well textually as in usecase diagrams. This step
should be carried out together with the potential users or the customer. Since
Enterprise Web Applications will be divided into a client- and a server part
the process is divided at this point, too. The server part takes its textual and
usecase scenarios and is further developed according to the FUP. This also is
done for the application data model. This model can be designed the traditional
way, resulting in class diagrams which can in turn be used inside the WFUP
to do the data binding and controller parts. Since the applications we intend
to create with the WFUP will deploy the data model both on server side and
on client side, it is extremely necessary here, to integrate the model into both
development steps. For the server part, the application data model can be used
as in the development of traditional applications with the FUP. However, the
controller structure will be able to do changes on the data model directly in the
client, without the need to make server calls. This results in the need of having
the class diagrams of the data model in the WFUP process, too. Having special
annotations and interfaces in the application data model will enable the use of
the WebCoobra Framework [I] for the data model. This gives us support for
automatic replication of data between the server and multiple clients, enabling
the system to keep consistency. These annotations and interfacing can easily be

204 C. Eickhoff et al.

usecase snt:ee)r(\ta(:'ia;s
scenarios

Y Y
C o~

usecase diagrams Vee define
views from

FUP for
<erver part and workflow items

application data model ¢

; i : % desgr‘/@
/ user interface class diagrams

retrieve
— / structural informatior,
UI Design

{l cross {l code ;i :% model
gel controllers

JavaScript code compile neration
to run inside the Java sources & server calls
webbrowser
story
diagrams

Fig. 6. The Web Fujaba Process, a proposal for story-driven development of Enterprse
Web Applications with the Google Web Toolkit and Fujaba

web app with story boards

— — El : — wt;)rkﬂdow
model oards
workflow ¢

done during the FUP for the server part and data model and do not have to be
taken into account while developing the client side with the WFUP. The clients
side code can handle every object of the data model directly, this way, which
eases the modeling of controllers for the user interface. The client part of the
application will be developed using the additional steps introduced in this paper.
Enterprise Web Applications mostly will follow some kind of workflow. This is
due to the case that applications will mostly be designed to carry out some kind
of work. In our running example introduced in section [3.] the application to be
developed is designed to enable the management of animated film productions.
Thus, there is a workflow driving the application - the steps to be carried out to
manage an animated film production in our case. This is true to the major part of
applications. Hence, we try to extract a workflow from the textual scenarios. This
workflow is modeled using Fujaba and will result in so called workflow boards.
For every workflow step there will be one graphical user interface instance - one
view. The view for the workflow step should be designed to support the user in
performing the task associated with the workflow step. To enable this, we define
one view component for every workflow step. The view components are simply UI

Developing Enterprise Web Applications 205

ScriptingView
ScriptingView () : ScriptingView

1 1 ScriptTabs

1 scriptTabs sidebarTabs: TablayoutPanel
P Referencé addMoteTab: VerticalPanel
addMoteBtn: Button
i filesTab: VerticalPanel
1 i charactersTab: VerticalPanel

¥ Reference

scriptEditor SeriptTabs() : ScriptTabs

ScriptEditor 1
toolbarPanel: HorizontalPanel
richTextArea: RichTextArea
comboBox: ListBox ¥ Referenc
tglbtnBold: ToggleButton
tglbtnltalic: ToggleButton

noteView

tglbtnUnderline: ToggleButton

tglbtnCut: ToggleButton sl
tglbtnCopy: ToggleButton i note: VerticalPanel
tglbtnPaste: ToggleButton deleteNote: Button
tglbtnUndo: ToggleButton noteText: TextArea
tglbtnRedo: ToggleButton date: Label
ScriptEditor () : ScriptEditor 5 MoteView () : NoteView

Fig.7. Reverse engineered classdiagram of script view user interface. This reverse
engineering step is carried out by UML Lab, using the Java source code generated
from the Google GWT-Designer.

classes inside a class diagramm. To link between the view class and the associated
workflow step, we use a new kind of diagram, the UI board. The next step would
be to further design the user interface. This will be done using the Google GWT-
Designer. In a graphical way the user interface will be created and saved. As
stated in Bl the GWT-Designer creates Java source code as output. We therefore
retrieve back the structural information of the created classes to be able to use
it within the remainder of the process. Figure [0 shows the classdiagram of the
example view from Figure [l after retrieving back the structural information from
the GWT-Designer. The resulting class diagram has referenced classes to all the
used user interface components as well as all the attributes set. Additionally, the
structure of the view is represented by links between the different user interface
classes in the diagram. After this step is finished, the structure of the view can
be combined with the data model for the application, enabling the controller
and application logic to perform model changes. The simplified version of the
data model for the example application is shown in Figure B The logic of the
controllers as well as the databinding can be modeled with Fujaba storydiagrams
using the information of both of the classdiagrams shown above. The controllers
in turn will result in a third classdiagram containing the controller structure.
Every controller class will have methods which are automatically called by the
associated user interface components when actions occur. The methods of these
controller classes can be modeled with story driven techniques in Fujaba. After

206 C. Eickhoff et al.

> storyBoards
Proi - . . StoryBoard
MultiMediaManager > projects roject 0.1 > script associatedScript 0" A
- cosocdldRalR o
A @ name : String o 0.1

0.1 & > scene
“ o “
¥ richTextBody
0.1

RichTextBody
composed

0.1

¥ character

¥ start

< takesPartin

> scene

Character | 0.*

0.*

< date

«eference» | 0.1 o Note ‘ 0.1
Date @ text : String ‘
—

Fig. 8. Simplified data model for the example application in Fujaba notation

the modeling process is done, the runnable application will be created using code
generation mechanisms.

The process described above enables the complete modeling of web applica-
tions including user interface components and client as well as server side logic.
To support the user in carrying out this process, we started to implement tool
support for this process. The suggested toolchain is further described in the
following section.

4.1 WFUP Toolchain - Adding Tool Support to Our Process

The Fujaba Toolsuite already supports class and storydiagrams. However, the
user interface designing process using Google GWT-Designer produces source
code. We therefore need some kind of mapping from this source code to Fujaba’s
model here. We choose to retrieve back the structural informations of the de-
signed user interfaces into Fujaba, here. This way, it would be possible to run
further process steps with this structures. We found the tool support for this
step in UMLLab. This tool is able to reverse engineer source code into struc-
tural model information and provide real-time synchronisation between model
and code. The structural information gained from UML Labs reverse features
enables us to close the gap between source code and model at this point. Still,
the structural model gained through UML Lab does not help in the Fujaba
development process because of incompatible meta models of both tools. Addi-
tionally, it is not possible to model the logical parts of web applications with
story-driven modeling using UML Lab, yet. To overcome this problem, a real-
time adapter between UML Lab and Fujaba has been created [6]. Using this
adapter the structural information can be duplicated into Fujaba class diagrams
and afterwards be used for the story-driven modeling of client side logic, con-
trollers and databinding. The adapter also takes care of consistency between
class diagrams residing within Fujaba and those within UMLLab. This means,
we are able to apply changes to any of those diagrams later. To enable more
comfortable access to the controllers, we have started to add right-click menus
to the GWT-Designer. This way, we can add controllers to our user interface in a

Developing Enterprise Web Applications 207

graphical way and only need to implement the logic of the controller afterwards.
Having defined the whole application, the process takes the resulting diagrams;
class diagrams of the view, story diagrams for the controllers and for server calls
and generates code for all of these diagrams. Different code generation strategies
will be used here, depending on the type and semantics of the diagram to be
generated. This code generation step will result in Java source code that can be
tested and debugged with the Google Plugins and which can be cross-compiled
with the GWT cross compiler to gain the JavaScript code that is run inside
the webbrowser and which can be deployed onto an application server. The tool
support for the Web Fujaba Process is not yet completely implemented. How-
ever, the design of user interfaces, retrieval of structural information and design
of user interface controllers and server calls can already be done using current
versions of GWT-Designer, UML Lab and Fujaba.

5 Related Work

The approach and process proposed in this paper is not the only research work
in the domain of model-driven development of web applications. However, we
face on the development of a special class of applications: Enterprise Web Appli-
cations. Additionally, we want to be able to do this with the tool support we are
used for the implementation of traditional applications. Thus, we try to broaden
our modeling and graph transformation expertise to the domain of web applica-
tion development. However, we will try to sum up some of the similarities and
differences to other research work in this sector in the remainder of this section:

[7] shows the use of patterns for the development of Rich Internet Applica-
tions. The authors insist to use patterns on a higher abstraction layer, meaning in
the modeling stage. The approach uses models of these patterns that are modeled
once and then reused by model-to-model transformations or manually. Similar
to our approach of Action charts [5] the authors introduce UML state diagrams
for the modeling of user interface actions. The reuse of some patterns modeled
to execute common user interface operations will be further invesitigated and
might be included into our process in the future.

The Orchestration Model which is introduced in [I0] in combination with
the “Model-Driven Development Process for RIAs” follows similar steps than
the process introduced here. However, there is a lot of model transformation
between platform independent and platform specific models needed, following
this approach. These meta layers often get confused as well from developers
as customers. We have tried to hide these meta-information from the customer
using our story-driven approaches in the past. Tests with students showed that
application development following the story approach often is simpler for the cus-
tomers and developers to understand and in additon there is always a document
which can easily be understood by both. The simple notation of storyboards
and usecase diagrams in some points enabled the customer to design parts of
the development process on his own.

[12] contains activity diagrams for the generation of user interfaces as well as
WYSIWYG user interface design. These diagrams are similar to our workflow

208 C. Eickhoff et al.

boards. However, we will use the information flow of workflow boards to generate
the exchange of one view or parts of it by another. The user interface design
will, like in [I2] be carried out with graphical design. However, the approach
introduced in [12] is designed for Enterprise Applications using Eclipse and SWT
rather than web applications.

The UWE4JSF method [8] again uses similar approaches than the WFUP
introduced above. However, it faces on J ST applications rather than real Ajax
applications. The navigation structure shown in this paper can be seen similar to
our workflow boards, again. Nevertheless, transitions within our workflow boards
will not trigger page changes. It will rather result in the Document Object Model
Tree to be changed, meaning that part of the views or even complete views will
be exchanged without the page to be reloaded.

[4] shows ways for multi-level testing of model driven web applications. This
point will be start for future research of WFUP. While the traditional FUP
enables testing and even automatic generation of test code, the WFUP cur-
rentls lacks this for the client side of applications. We will have to find ways to
(semi)automatically incorporate tests into the WFUP in the future.

Another interesting idea is the model-driven way of importing user interface
mockups into the real development process described in [I1]. The implementation
of this idea into our intended toolchain would really be nice to have. However,
since the GWT-Designer is not yet open-source there is currently no plan to
implement this into our process.

WebML is widely used in the domain of model driven web engineering. The
approach and process presented on [13] are used to define applications which
do not fit into our targeted application class as defined in section 2l While we
target on Enterprise Web Applications without page reload and with client side
application state, WebML is mainly targeted on traditional page based web ap-
plications. Thus, the process defined by WebML is not useful for the story-driven
development of applications we want to create. We therefore defined our own
process, which is exactly tailored to the needs of Enterprise Web Applications.

As far as we know, the completely story-driven modeling of web applications
was not yet done in the community of web engineering. We tried to introduce
the process we are used to and adopt it to the special needs of our targeted
application class. Getting input from additional research in the are of web engi-
neering will hopefully further enrich this process in the future and make it less
experimental.

6 Conclusion and Future Work

This paper showed the research steps and methods carried out to design a com-
pletely story-driven approach for the development of Enterprise Web Applica-
tions. The Web Fujaba Process (WFUP) was introduced as our proposal for the
development of these applications. The predecessor, the Fujaba Process, used for
the development of traditional desktop applications was introduced. The changes

6 Java Server Faces - http://java.sun.com/javace/javaserverfaces

Developing Enterprise Web Applications 209

and enhancements made to extend this process for the development of Enter-
prise Web Applications including user interface design were shown. The work to
be carried out to completely implement tool support and user friendly usage of
the proposed tool chain is still going on. Since we intend to have a development
process that resides completely within the model, without switching to source
code writing, we still have some minor problems to face. At the moment there is
still the need to combine different tools to develop applications. GWT-Designer
for the user interface specification, UML Lab for the sturctural information re-
trieval, Fujaba for the main development of the rest of the application. While
all of these applications can be combined at this point, there is still the need
for better tool integration. The diagrams for databinding and controllers of user
interfaces, as well as the ones for server calls will need some rework. Some new
diagrams might be introduced for these purposes, in case we figure out that the
traditional story diagrams will not suffice for our proposal. Additionally, there
will have to be some wizards for the generation of complete web applications as
well as for the creation of different kinds of diagrams. Having new diagrams will
also mean to have to update code generation to fulfill the needs of web applica-
tions. There will be different semantics of storydiagrams, so we will have some
kind of context-sensitive code generation here, depending on the purpose of the
diagram. While there has to be done a lot of work with the distributed parts of
the web application, the server parts can be designed and generated following
the current standard FUP process. This means, there is automatic generation
of test for the server part of the application. Hence, we will try to enable test
generation for client parts as well. Since this is current research work, we do
not yet know which ways of testing will be used within the web application pro-
cess of Fujaba. There is still a lot of work to be carried out to enable complete
story-driven development of web applications and have all the different tools and
parts integrated well into each other. Nevertheless, we still want to stay with the
model-centric and story-driven approach. This way, we hope to bring the com-
mon advantages of model-driven development to the web domain. The diagrams
we propose to use might, in addition, often be better to read and understand by
customers than this is the case with source code.

References

1. Aschenbrenner, N., Dreyer, J., Hahn, M., Jubeh, R., Schneider, C., Ziindorf, A.:
Building Distributed Web Applications based on Model Versioning with CoObRA:
an Experience Report. In: Proc. 2009 Intl. Workshop on Comparison and Version-
ing of Software Models, pp. 19-24. ACM (May 2009)

2. Diethelm, I., Geiger, L., Ziindorf, A.: Systematic Story Driven Modeling. Technical
Report (February 2004)

3. Diethelm, I., Geiger, L., Ziindorf, A.: Systematic Story Driven Modeling, a case
study. Edinburgh, Scottland (May 2004)

4. Fraternali, P., Tisi, M.: Multi-Level Tests for Model Driven Web Applications.
In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS,
vol. 6189, pp. 158-172. Springer, Heidelberg (2010)

210

5.

6.

10.

11.

12.

13.
14.

C. Eickhoff et al.

Geiger, N., George, T., Hahn, M., Jubeh, R., Ziindorf, A.: Using actions charts for
reactive web application modelling (2010)

Koch, A.: Echtzeit synchronisierung von uml-modellen unterschiedlicher technis-
cher basis am beispiel von uml lab und fujaba. Master’s thesis, Kassel University,
Fachbereich 16, Fachgebiet Software Engineering, Wilhelmshéher Allee 73, 34121
Kassel (September 2010)

. Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-Based De-

velopment of RIAs. In: Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 283-291. Springer, Heidelberg (2009)

. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: A Model-Driven Generation Approach

for Web Applications. In: Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 493-496. Springer, Heidelberg (2009)

. Nickel, U., Niere, J., Ztindorf, A.: The Fujaba Environment, Limmerick, Ireland,

pp. 742-745. ACM press (June 2000)

Pérez, S., Diaz, O., Melid, S., Gémez, J.: Facing interaction-rich rias: The orches-
tration model. In: Schwabe, D., Curbera, F., Dantzig, P. (eds.) ICWE, pp. 24-37.
IEEE (2008)

Rivero, J.M., Rossi, G., Grigera, J., Burella, J., Luna, E.R., Gordillo, S.E.: From
Mockups to User Interface Models: An Extensible Model Driven Approach. In:
Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 13-24. Springer,
Heidelberg (2010)

Schramm, A., Preufiner, A., Heinrich, M., Vogel, L.: Rapid UI Development for En-
terprise Applications: Combining Manual and Model-Driven Techniques. In: Petriu,
D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 271-285. Springer, Heidelberg (2010)

The Web Modeling Language (2011), http://www.webml.org

Ziindorf, A.: Rigorous object oriented software development. Habilitation Thesis,
University of Paderborn (2001)

http://www.webml.org

	Developing Enterprise Web Applications
Using the Story Driven Modeling Approach
	Introduction
	Targeted Applications - What We Call Enterprise Web Applications
	Story-Driven Modeling of Enterprise Web Applications
	Running Example

	The Web Fujaba Process (WFUP)
	WFUP Toolchain - Adding Tool Support to Our Process

	Related Work
	Conclusion and Future Work
	References

