
A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 119–126, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Support for Reusable Explorations of Linked Data in the
Semantic Web

Marcelo Cohen and Daniel Schwabe

Pontifical Catholic University of Rio de Janeiro
R. M. S. Vicente 225

Gávea, Rio de Janeiro, RJ, Brazil
mcohen21@gmail.com, dschwabe@inf.puc-rio.br

Abstract. The Linked Data cloud growth is changing current Web application
development. One of the first steps is to determine whether there is information
already available that can be immediately reused. We provide an environment
which allows non-technically savvy users, but who understand the problem do-
main, to accomplish these tasks. They employ a combination of search, query
and faceted navigation in a direct manipulation, query-by-example style inter-
face. In this process, users can reuse solutions previously found by other users,
which may accomplish sub-tasks of the problem at hand. It is also possible to
create an end-user friendly interface to allow them to access the information.
Once a solution has been found, it can be generalized, and optionally made
available for reuse by other users.

Keywords: RDF, exploratory search, exploration, ontology, semantic web,
reuse, interface, set-based navigation.

1 Introduction

The availability of Linked Open Data in the WWW has increased tremendously1.
Currently, when building a new application, it is becoming increasingly common to
first explore available data that can be leveraged to enhance and complete one’s own
data to provide the desired functionality. The BBC Music website2 is one visible ex-
ample of this approach, combining MusicBrainz and DBPedia with their own data.

Even though it is engineered to be processed by programs, it is still common that
human beings need to explore these datasets, especially when they are previously
unknown. In such cases, experts typically explore the repository to make sense out of
the available data, to eventually be able to formulate queries that will support their
tasks. Existing interfaces range from basic RDF browsers such as Tabulator3 , Zitgist

1 http://linkeddata.org
2 http://www.bbc.co.uk/music
3 http://www.tabulator.org/

120 M. Cohen and D. Schwabe

data viewer 4 , Marbles 5 , ObjectViewer 6 and Openlink RDF Browser 7 , to query
generators such as NITELIGHT [9] and iSPARQL8, to faceted browsers [8][3] and
set-based interfaces [4].

In previous work [2], we presented Explorator, a model for representing informa-
tion processing by users in exploratory tasks, and its associated tool, which provides a
browser interface supporting this model. Explorator is based on the metaphor of direct
manipulation of information in the interface, with immediate feedback of user actions.

Our experience with Explorator [1] has shown that to be effectively used, it is ne-
cessary for users to understand the RDF model. Even for these users, once a solution
was found, it was not possible to generalize it, and to save it for reuse later. These
two mechanisms are essential to enable a community of users around datasets of in-
terest, so that more experienced users can find and share solutions with less expe-
rienced ones. Furthermore, it is desirable to provide an end-user facing interface that
hides the underlying data and operations, and has the look-and-feel of a traditional
web application.

In this paper we present RExplorator9, a significant extension of Explorator that al-
lows

1. Parameterized interlinked operations, forming a graph of operations;
2. Saving these graphs for reuse;
3. The user to define new operators;
4. The user to define end-user friendly interfaces.

In the remainder of this paper, section 2 provides a running example, section 3 describes
RExplorator, section 4 discusses evaluation, and section 5 draws some conclusions.

2 Summary of Explorator and a Running Example

2.1 Summary of Explorator

Explorator is an environment that allows users to explore a set of RDF repositories by
direct manipulation of its contents, following a set-based metaphor. The user starts by
either executing a full-text search, or by executing pre-defined queries (e.g., “All RDF
Classes” or “All RDF Properties”). It is also possible to simply take a URI and
de-reference it. In all cases, the results are always sets of triples.

The user explores the repositories by executing operations that take as operands
sets of resources, and return new sets. The usual set operations, union, intersection
and difference are available. In addition, there is the SPO operator, which corresponds
to a match operation over <s, p, and o> triple patterns (e.g., <s, *, *>, <s, p, *>, for
given s and p values, which are URIs). This match is executed against all enabled
RDF triple repositories. Thus, <s, *, *> corresponds to the SPARQL query

SELECT ?s ?p ?o WHERE { ?s ?p ?o. Filter (?s = s)} .

4 http://dataviewer.zitgist.com/
5 http://beckr.org/marbles
6 http://objectviewer.semwebcentral.org/
7 http://demo.openlinksw.com/rdfbrowser/index.html
8 iSparql can be accessed at http://demo.openlinksw.com/isparql/
9 Available at http://www.tecweb.inf.puc-rio.br/rexplorator

 Support for Reusable Explorations of Linked Data in the Semantic Web 121

In reality, the SPO operator has been defined to operate on sets of resources instead of
individual ones, by taking the union of the triples resulting from individual match
operations as described above.

Since each new operation takes its parameter from existing sets, the end result is a
graph of inter-related operations, where the inputs of one are outputs of others. This is
analogous to an Excel spreadsheet, where each cell has formulas that reference the
value of other cells, forming a graph of interdependent formulas.

2.2 A Running Example

Consider the simple task of finding all publications of a given author. to be carried out
over the “Dogfood” data server10, containing collected publication information for
several conferences related to the Semantic Web. We assume the user has no prior
knowledge about the contents of this repository. The user has to

1. Find a class that represents persons
2. Find the desired person, “a”.
3. Find a property “p” that relates a person to publications,
4. Find all triples of the form <a p ?pub> and collect all objects from these

triples.

Fig. 1. All Persons, Details of a selected Person, and Publications of selected Person, in
RExplorator.

10 http://data.semanticweb.org

122 M. Cohen and D. Schwabe

In Explorator, this is achieved by first clicking on “Menu”-> All RDF Classes”,
noticing class Person, mousing over it to click on “All Instances”, which reveals a set
of all Persons. Double-clicking on a Person (e.g. “Steffen Staab”), a new box appears
with all details for this resource (i.e., all triples with this resource as subject). Looking
at the details, one notices the property “made”, which relates Person to Publications.

To get all publications by a Person, one may click on the “Selected Person Details”
box, then click on the “S” operand position at the top; click on the “made” box and
click on the “P” operand position at the top, and finally click on the “=” (“compute”)
operator at the top. Figure 1 shows the results after these steps.

3 RExplorator

RExplorator extends Explorator by
1. Allowing operations to be parameterized;
2. Allowing the results of a query to be fed as input of another query, thus

forming graphs of interconnected operations;
3. Allowing to keep such graphs as separate workbenches, while enabling in-

terconnection of graphs across workbenches;
4. Allowing the designer to import previously defined query graphs into the

current workbench;
5. Allowing the designer to define additional operators beyond the builtin set

and query operations provided;
6. Allowing the designer to define interfaces oriented towards end users, hiding

details and customizing the look-and-feel.

RExplorator’s metamodel is shown in Figure 2, which supports the implementation of
these features. Some of its aspects will be elaborated as we explain these added func-
tionalities in the coming sub-sections.

Fig. 2. RExplorator’s meta-model

 Support for Reusable Explorations of Linked Data in the Semantic Web 123

3.1 Parameterized Queries

The original Explorator metaphor lets users compose operations incrementally, seeing
the results at each composition step. Each new query takes its operands from existing
query results. In the end, one may regard this set of inter-related operations as a
graph, similar to an Excel spreadsheet. However, the operations are all grounded,
which would be akin to not having any variables in the formulas of the analogous
spreadsheet. Thus, the first generalization made was to allow operations to have their
operands parameterized, and to propagate values through the graph of operations
when the value of the parameter is changed. This is equivalent to introducing va-
riables in the expression that denotes the operation.

Consider step 4 in the example. In Explorator, this is achieved by selecting an in-
stance of Person (e.g., “Steffen Staab in box “All Persons”) in Figure 1, setting it as
the subject parameter, selecting the relation “make” as the property parameter, and
clicking on the “=” operator to find all triples of the form <<url for Steffen Staab>

made ?o>. Clicking on the icon in each box, as shown in Figure 3 reveals the
actual operations and their dependencies.

Fig. 3. Query structure and dependencies

The first box, Selected Person Details, represents the query that finds out all
triples with a given Person as subject. Notice that the first position, “S”, has been
parameterized, and the current parameter value is (the URI for) Stefen Staab. If we
drag any person from the rightmost box (All Persons) onto the “S” position in the
Selected Person Details box, the value is replaced and the query re-evaluated.

The Publication by Person query (middle box) is defined as taking its “subject”
parameter from the “subject” position of the Selected Person Details query. There-
fore, if a new value is plugged into the “S” position in the Selected Person Details
query, it is automatically propagated to this query, triggering its reevaluation.

124 M. Cohen and D. Schwabe

3.2 Workspace Organization

RExplorator organizes the workspace into workbenches. The idea is that each work-
bench represents a task, or a use case in traditional Software Engineering methods. A
user may save workbenches for later reuse, and share it with other users as well.

In RExplorator a workspace contains several workbenches, similar to the way an
Excel a workspace contains several worksheets, where there may be cross-references
between operations within separate workbenches. For example, workbench Co
Workers by Person contains the Co Workers query, which can be interconnected to
the “Publication by Person” query in the similarly named workbench.

3.3 End-user Interfaces

The development interface of RExplorator is best suited to allow users to explore
RDF repositories, and requires understanding the RDF model. For non-technical end
users, RExplorator allows expert users to provide end-user friendly interfaces – called
the Application Interface - to solutions found while exploring datasets. For reasons of
space, we refer the reader to http://www.tecweb.inf.puc-rio.br/rexplorator to visualize
the Application interface.

Views make full use of CSS, which is also defined in a separate view that can be
customized to change the look-and-feel of the generated interface.

3.4 User-Defined Operators

The original Explorator tool provides built-in set operators to manipulate the resource
(triple) sets, besides the SPO query operator. Besides this, RExplorator provides a
mechanism for the designer to define new operators.

Since operators work on sets of triples, a natural kind of function is the “list”, “ite-
rator” or “map” function commonly found in functional languages such as Lisp, Py-
thon, and Ruby, among others. In RExplorator, operators take two sets of triples as
input and produce a set of triples as output.

As an example, one may want to filter a result set that contains datatype properties
(e.g., rdf:label) according to a string value passed as a parameter. The Ruby code
snippet below shows the definition of an operator that takes a resource set and a string
as input parameters, and selects those triples whose object position matches the string.

param_a.select { |triple| triple[2].to_s.strip.downcase ==
param_b[0].to_s.strip.downcase }

4 Evaluation

We conducted a small qualitative study to have a preliminary evaluation of RExplora-
tor. We asked 5 persons with basic RDF knowledge to build simple applications using
a repository describing cellular phone models. The tasks consisted of

1. Exhibiting all available models
2. Showing models that support MP3
3. Showing models grouped by supported band

 Support for Reusable Explorations of Linked Data in the Semantic Web 125

First they were shown a short video with RExplorator’s basic functionalities. Then
they were allowed to experiment with RExplorator for a short time and have basic
questions about its functioning answered, after which they were given one hour to
accomplish the tasks.

Of the five people, three were able to successfully accomplish the tasks in less the
allotted time; one completed the tasks but with a slightly incorrect solution; and one
could not accomplish the task.

We consider these results to be positive, showing that the tool can be effective. The
test subjects were given minimal instructions, and yet most were able to accomplish
the tasks. It is clear that this interface is not for beginners, but once the developer has
become familiar with it, it is quite effective.

 Nevertheless, the experiments indicate that the authoring interface should be im-
proved, for example using graphics to better represent the dependencies between sets.

5 Conclusions

The environment that has the closest functionality to RExplorator is DERI Pipes [3],
which allows the definition of mash-ups by creating networks of interconnected oper-
ators, with strings, XML or RDF data flowing through them. The desired result is
obtained by the composition of the operators.

By analogy, RExplorator can be seen as a network of interconnected operators,
which can be queries, set operations or customized functions. The data that flows in
this network are sets of triples. Thus, the major difference is that it is oriented towards
mash-up development, and as such its operators work at a lower abstraction level. In
addition. DERI Pipes does not provide an interface layer, and is not meant to be used
together with an exploration environment.

One of the major focuses for future work is providing a graphical authoring inter-
face that makes it easier to visually identify the inter-dependence of the various opera-
tions. We are also investigating the reuse of solutions within communities that share
solutions over a specific set of repositories.

Acknowledgment. Daniel Schwabe was partially supported by a grant from CNPq.

References

1. Araújo, F.C.S., Schwabe, D., Barbosa, D.J.S.: Experimenting with Explorator: a Direct
Manipulation Generic RDF Browser and Querying Tool. In: Visual Interfaces to the Social
and the Semantic Web, VISSW 2009, Sanibel Island, Florida (February 2009),
http://www.smart-ui.org/events/vissw2009/index.html

2. Araújo F. C. S., Schwabe D.: Explorator A tool for exploring RDF data through direct ma-
nipulation. In: Proceedings of the Linked Data on the Web Workshop (LDOW 2009), Ma-
drid, Spain, April 20. CEUR Workshop Proceedings, pp. 1613–1673 (2009),
http://CEUR-WS.org/Vol-538/ldow2009_paper2.pdf ISSN 1613-0073

3. Hildebrand, M., Ossenbruggen, J.v., Hardman, L.: /facet: A Browser for Heterogeneous
Semantic Web Repositories. In: The 5th International Semantic Web Conference (ISWC),
Athens, GA, USA (2005)

126 M. Cohen and D. Schwabe

4. Huynh, D., Karger, D.: Parallax and companion: Set- based browsing for the data web,
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf

5. Le Phuoc, D., Polleres, A., Morbidoni, C., Manfred Hauswirth, M., Tummarello, G.: Rapid
semantic web mashup development through semantic web pipes. In: Proceedings of the
18th World Wide Web Conference (WWW 2009), Madrid, Spain (April 2009)

6. Luna, A.M., Schwabe, D.: Ontology Driven Dynamic Web Interface Generation. In: Pro-
ceedings of the 8th International Workshop on Web Oriented Technologies (IWWOST
2009), San Sebastian, Spain. CEUR, vol. 493, pp. 16–27 (2009), http://ceur-
ws.org/Vol-493/iwwost2009-luna.pdf ISSN 1613-0073

7. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in the
Semantic Web. In: Proc. of LA Web 2004, pp. 106–113. IEEE CS Pres, Ribeirão Preto
(2004) ISBN 0-7695-2237-8

8. Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)

9. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for
Semantic Query Construction. In: Semantic Web User Interaction Workshop (SWUI
2008), Florence, Italy (April 5, 2008)

	Support for Reusable Explorations of Linked Data in the
Semantic Web
	Introduction
	Summary of Explorator and a Running Example
	Summary of Explorator
	A Running Example

	RExplorator
	Parameterized Queries
	Workspace Organization
	End-user Interfaces
	User-Defined Operators

	Evaluation
	Conclusions
	References

