Skip to main content

In Vitro Method to Visualize UV-Induced Reactive Oxygen Species in a Skin Equivalent Model

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Textbook of Aging Skin
  • 378 Accesses

Abstract

The skin is the only organ directly exposed to ultraviolet (UV) light from the sun. Oxidative cellular stress and DNA damage caused by UV exposure have been recognized to participate in various photogenesis of the skin. Among several oxidative stressors, reactive oxygen species (ROS) is well known to play important roles in the process of UV-induced skin damage including photoaging, immunomodulation, melanogenesis, and ultimately photo-carcinogenesis. To examine the impact of UV-induced ROS in the skin, it is critical to observe the ROS changes quantitatively in real time, while it has been challenging because ROS are extremely short-lived and essentially non-emissive. For this purpose, in the past two decades, several evaluation methods such as chemiluminescence, photoemission, fluorescence, or ESR spectroscopy using spin probes have been developed. With the advance of technologies, more and more methods became available not only to detect and quantify but also to visualize free radicals and ROS under much closer conditions to the actual human skin by utilizing the human skin equivalent models. These advanced in vitro visualization methods especially using human skin equivalent models enable us to more precisely characterize the ROS-related responses in human skin as a substitute for animal model and identify protective compounds against oxidative stress and its antiaging effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yasui H, Sakurai H. Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Commun. 2000;269:131–6.

    Article  CAS  PubMed  Google Scholar 

  2. Yasui H, Sakurai H. Age-dependent generation of reactive oxygen species in the skin of live hairless rats exposed to UVA light. Exp Dermatol. 2003;12:655–61.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Q, et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A. 1995;92:4337–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hattori Y, et al. 8-Hydroxy-2’-deoxyguanosine is increased in epidermal cells of hairless mice after chronic UVB exposure. J Invest Dermatol. 1996;107:733–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kligman LH. The ultraviolet-irradiated hairless mouse: a model for photoaging. J Am Acad Dermatol. 1989;21:623–31.

    Article  CAS  PubMed  Google Scholar 

  6. Ichihashi M, et al. UV-induced skin damage. Toxicology. 2003;189:21–39.

    Article  CAS  PubMed  Google Scholar 

  7. Bech-Thomsen N, Wulf HC. Carcinogenic and melanogenic effects of a filtered metal halide UVA source and a tubular fluorescent UVA tanning source with or without additional solar-simulated UV radiation in hairless mice. Photochem Photobiol. 1995;62:773–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kripke ML, et al. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci U S A. 1992;89:7516–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sasaki H, Akamatsu H, Horio T. Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. J Invest Dermatol. 2000;114:502–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hellemans L, et al. Antioxidant enzyme activity in human stratum corneum shows seasonal variation with an age-dependent recovery. J Invest Dermatol. 2003;120:434–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ou-Yang H. A chemiluminescence study of UVA-induced oxidative stress in human skin in-vivo. J Invest Dermatol. 2004;122:1020–9.

    Article  PubMed  Google Scholar 

  12. Khabiri F, et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: mechanisms of UPE of biological materials. Skin Res Technol. 2008;14:103–11.

    PubMed  Google Scholar 

  13. Hagens R, et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin. Skin Res Technol. 2008;14:112–20.

    PubMed  Google Scholar 

  14. Niggli HJ, et al. Laser-ultraviolet-A induced ultra weak photon emission in human skin cells: a biophotonic comparison between keratinocytes and fibroblasts. Indian J Exp Biol. 2008;46:358–63.

    PubMed  Google Scholar 

  15. Van Wijk R, et al. Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol. 2008;46:273–309.

    PubMed  Google Scholar 

  16. Hanson KM, Clegg RM. Observation and quantification of ultraviolet-induced reactive oxygen species in ex vivo human skin. Photochem Photobiol. 2002;76:7–63.

    Article  Google Scholar 

  17. Hanson KM, Clegg RM. Two-photon fluorescence imaging and reactive oxygen species detection within the epidermis. Methods Mol Biol. 2005;289:413–22.

    PubMed  Google Scholar 

  18. Togashi H, et al. Analysis of hepatic oxidative stress status by electron spin resonance spectroscopy and imaging. Free Radic Biol Med. 2000;28:846–53.

    Article  CAS  PubMed  Google Scholar 

  19. Herrling T, et al. UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic Biol Med. 2003;35:59–67.

    Article  CAS  PubMed  Google Scholar 

  20. Herrling T, Jung K, Fuchs J. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim Acta A Mol Biomol Spectrosc. 2006;63:840–5.

    Article  PubMed  Google Scholar 

  21. Date A. et al. Detection and identification of reactive oxygen species and followed free radicals generated in the UVB-exposed three dimensional human epidermal cells- EpidermTM as measured by ESR spin-trapping method. In: 126th annual meeting of pharmaceutical society of Japan, Sendai, vol 174; 2006. pp. 28.

    Google Scholar 

  22. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387:147–63.

    Article  CAS  PubMed  Google Scholar 

  23. Toyokuni S, et al. Novel screening method for ultraviolet protection: combination of a human skin-equivalent model and 8-hydroxy-2’-deoxyguanosine. Pathol Int. 2006;56:760–2.

    Article  PubMed  Google Scholar 

  24. Toyokuni S, et al. Quantitative immunohistochemical determination of 8-hydroxy-2’-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest. 1997;76:365–74.

    CAS  PubMed  Google Scholar 

  25. Bernerd F, Asselineau D. An organotypic model of skin to study photodamage and photoprotection in-vitro. J Am Acad Dermatol. 2008;58:155–9.

    Article  Google Scholar 

  26. Fourtanier A, Moyal D, Seité S. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl® SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study results. Photodermatol Photoimmunol Photomed. 2008;24:164–74.

    Article  CAS  PubMed  Google Scholar 

  27. Espina V, et al. Laser capture microdissection technology. Expert Rev Mol Diagn. 2007;7:647–57.

    Article  CAS  PubMed  Google Scholar 

  28. Golubeva Y, et al. Laser capture microdissection for protein and NanoString RNA analysis. Methods Mol Biol. 2013;931:213–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rastogi A, Pospísil P. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt. 2011;16:096005. doi:10.1117/1.3616135.

    Article  PubMed  Google Scholar 

  30. Nishimura H, Yasui H, Sakurai H. Generation and distribution of reactive oxygen species in the skin of hairless mice under UVA: studies on in-vivo chemiluminescent detection and tape stripping methods. Exp Dermatol. 2006;15:891–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yasui H, et al. Real-time chemiluminescent imaging and detection of reactive oxygen species in the UVB-exposed human skin equivalent model. Biochem Biophys Res Commun. 2006;347:83–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hakozaki T, et al. Visualization and characterization of UVB-induced reactive oxygen species in a human skin equivalent model. Arch Dermatol Res. 2008;300:S51–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Hakozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hakozaki, T. (2015). In Vitro Method to Visualize UV-Induced Reactive Oxygen Species in a Skin Equivalent Model. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_49-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_49-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    In Vitro Method to Visualize UV-Induced Reactive Oxygen Species in a Skin Equivalent Model
    Published:
    11 November 2015

    DOI: https://doi.org/10.1007/978-3-642-27814-3_49-3

  2. Original

    In Vitro Method to Visualize UV-Induced Reactive Oxygen Species in a Skin Equivalent Model
    Published:
    28 July 2015

    DOI: https://doi.org/10.1007/978-3-642-27814-3_49-2