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Methods for Testing Immunological Factors

In Vitro Methods

Inhibition of Histamine Release from Mast Cells

Purpose and Rationale Hypersensitivity reactions can be elicited by various factors: either immuno-
logically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or
non-immunologically induced, i.e., activation of mediator release from cells through direct contact,
without the induction of, or the mediation through immune responses. Mediators responsible for
hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic
reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce
release of histamine from mast cells. The histamine concentration can be determined with the
o-phthalaldehyde reaction.

Procedure

Preparation of Mast Cell Suspension Wistar rats are decapitated and exsanguinated. Fifty ml of Hank’s
balanced salt solution (HBSS) is injected into the peritoneal cavity, and following massage of the body,
the abdominal wall is opened. The fluid containing peritoneal cells is collected in a centrifuge tube and
centrifuged at 2,000 rpm. The cells are resuspended in HBSS. Then the cell suspension is brought to a
final concentration of 105 mast cells/100 ml.

Test Compound Administration and Induction of Histamine Release 1 ml test drug (concentration range
between 10�4 and 10�8 Mol) is added to the mast cell suspension (105 cells/100 ml) and the mixture is
incubated at 37 �C for 15 min. The cells are made up to a volume of 3 ml with HBSS, an equal volume of
calcium ionophore (10�6 g/ml), compound 48/80, or specific allergen is added. The suspension is
incubated at 37 �C for 30 min followed by centrifugation at 2,500 rpm.

The Following Control Solutions Are Needed
• Spontaneous histamine release: contains only mast cells and solutions used to determine the baseline
• Histamine release: contains mast cells and solutions and calcium ionophore (10�6 g/ml)
• Test compound control: contains solutions and test compound to test the compound for native

fluorescence
• Solution control: contains only solutions used in the test to determine the baseline

Extraction of Histamine One ml of the top layer is transferred to a tube containing 300 mg NaCl and
1.25 ml butanol. The sample is alkalized to extract the histamine into butanol by adding 1 ml 3 N
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NaOH. Following mechanical shaking, the sample is centrifuged for 5 min. One ml of the top layer
(butanol) is pipetted into a 5-ml tube containing 2 ml of n-heptane and 0.4 ml of 0.12 N HCl. The tube is
mixed by inverting it several times. Following separation into aqueous and organic phases, 0.5 ml of the
aqueous phase is transferred to another tube.

Induction of o-Phthalaldehyde Complexing Reaction To each sample, 100 ml 1 N NaOH is added under
constant stirring immediately followed by administration of 100 ml 0.2 % o-phthalaldehyde solution.
After 2 min, the o-phthalaldehyde complexing reaction is stopped by addition of 50 ml 3 N HCl.

Determination of Histamine Release The total sample is transferred to an autosampler vial, and the
histamine concentration is determined by a fluorescence detector (using excitation and emission wave
lengths of 350 and 450 nm, respectively).

Evaluation Percent histamine release (hist. rel.) can be expressed by the following formula:

Sample hist: rel:� Spontaneous hist: rel:

100% hist: rel: � Spontaneous hist: rel:
� 100

The statistical evaluation is carried out using the Student’s t-test (comparison of 100 % control to
experimental group).

Critical Assessment of the Method Disodium cromoglycate has been reported to inhibit the release of
histamine and the degranulation of rat mast cells (Orr and Cox 1969; Orr et al. 1971; Johnson and Bach
1975; Church and Young 1983). However, this effect of disodium cromoglycate and its analogues does
not parallel the clinical efficacy (Kay et al. 1987).

Modifications of the Method Johnston et al. (1978) studied the increased superoxide anion production
by immunologically activated and chemically elicited macrophages.

Flint et al. (1985) found a significant inhibition of histamine release by disodium cromoglycate in
human mast cells recovered by bronchoalveolar lavage.

Ali et al. (1985) investigated the histamine release from rat peritoneal mast cells, human basophil and
neutrophil leukocytes, and mast cells from mesentery of the lung and heart of rats and guinea pigs by the
skin irritating constituents thapsigargin and thapsigargicin from the resin of the umbelliferous plant
Thapsia garganica.

Eady (1986) studied the reactivity of mast cells in bronchoalveolar lavage fluid of macaques repeatedly
infected with Ascaris suum.

Wells et al. (1986) compared release of histamine, LTC4, and PGD2 from primate bronchoalveolar mast
cells with that of rat peritoneal mast cells.

The release of b-hexosaminidase from mouse or rat bone marrow-derived mast cells and from rat
peritoneal mast cells was studied by Broide et al. (1986).

Peretti et al. (1990) recommended flow cytometry to investigate mast cell degranulation. Peptides,
including substance P and bradykinin analogues, release histamine from human skin mast cells (Lawrence
et al. 1989).

Williams et al. (1991) studied the vancomycin-induced release of histamine from rat peritoneal mast
cells and a rat basophil cell line (RBL-1).

Kase et al. (2009) studied the inhibitory action of roxithromycin on histamine release in mast cells and
Yazid et al. (2013) provided further support for antiallergic activity of chromones.
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A sensitive colorimetric assay for the release of tryptase from human lung mast cells in vitro has been
described by Lavens et al. (1993).
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Mitogen-Induced Lymphocyte Proliferation

Purpose and Rationale Cultured lymphocytes can be stimulated to a proliferative response and to DNA
synthesis by various mitogens. Measurement of DNA synthesis can be accomplished by pulse-labeling
the culture with tritiated thymidine (3H-thymidine), a nucleoside which is incorporated into the newly
synthesized DNA. Immunomodulating properties can be detected either by pretreatment of the animals
in vivo or by adding the test drug to the cultured lymphocytes.

Procedure Mice of NMRI strain weighing 18–20 g or rats of Lewis strain weighing 180–200 g are used.

Materials Sheep red blood cell (SRBC)-specific antigen and/or the following mitogens:

• Lipopolysaccharide 10–0.1 mg/ml.
• Dextran sulfate 30–7.5 mg/ml.
• Phytohaemagglutinin 0.5–0.12 % stock solution.
• Concanavalin A 0.5–0.12 mg/ml.
• As standards, levamisole, cyclosporine A, prednisolone, or leflunomide are used.

Ex Vivo Animals receive the test compound once a day for 5 days. Thereafter, they are sacrificed, spleens
are removed, and a single cell suspension of 5 � 106 cells/ml is prepared. Mitogens are titrated (four
replicates/group) in 0.1 ml/well and 0.1 ml of the cell suspension is added. Plates are incubated at 37 �C in
5 % CO2 in air for 48–60 h and for another 8 h after addition of 0.25 mC

3H-thymidine per well. Cells are
harvested on glass fiber filters, and after drying the degree of radioactivity is determined using a b-counter.

In Vitro Animals are sacrificed and their spleens removed. A single cell suspension of 107 cells/ml is
prepared and 0.05 ml placed in each microtiter well (four replicates/group). Then the test compound
(four times concentrated) is added in 0.05 ml. At last 0.1 ml of the double concentrated mitogen is added.
Plates are incubated and processed as described above.

Evaluation Stimulation index = proliferation ratio according to positive control, either with or without
mean spleen weight. Statistical evaluation is carried out using the Student’s t-test (comparison of positive
and/or negative control to experimental group).
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Inhibition of T Cell Proliferation

Purpose and Rationale Activation and/or proliferation of clonal populations of Tcells are critical for the
initiation of an antigen-specific immune response. Thus, inhibition of T cell activation provides a potent
means for suppressing specific immune response. A number of immunosuppressive agents exhibit the
ability to suppress T cell activation.

Procedure

Purification of Peripheral Blood Leukocytes and T Cells Peripheral blood leukocytes from normal
donors are separated on Ficoll-Hypaque (Pharmacia, Piscataway, NJ). Leukocyte suspensions are washed
in HBSS and are resuspended in RPMI 1664 medium (Gibco, Grand Island, NY) containing 10 % heat-
inactivated fetal bovine serum and 100 U/ml penicillin/streptomycin. Leukocyte suspensions are
resuspended in RPMI 1664 containing 10 % heat-inactivated pooled human serum. Highly enriched
T cells are obtained by passing leukocytes through a nylon wool column to remove macrophages and
B cells and then depleted of NK and monocytes with anti-Leu 11 b (Becton Dickinson, Mountain View,
CA) plus complement (Pel-Freez, Brown Deer, WI). These highly enriched T cells are approximately
95 % CD3+ cells, the remaining cells being B lymphocytes.

Mixed Lymphocyte Reaction Peripheral blood leukocytes are incubated at 2 � 105/well with equal
numbers of gamma-irradiated (3,000 rads) allogenic peripheral blood leukocytes and various concentra-
tions of test compounds. Assays are performed in triplicate in 96-well, U-bottom plates. After 6 days of

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 5 of 131



coculture, the cells are pulsed for 6 h with 1 mC of [3H]thymidine per well. [3H]Thymidine incorporation
is then measured by scintillation counting. Data are presented as

% inhibition ¼ CPMexpt � CPMbckgrd

CPMctrl � CPMbckgrd
� 100

where CPMexpt is mean counts per min of experimental cultures; CPMbckgrd is mean counts per min of
background well, unstimulated cultures; and CPMctrl is mean counts per min of uninhibited, stimulated
cultures.

Lymphocyte Stimulation and Proliferation Peripheral blood leukocytes and isolated T cells are cultured
with anti-CD3 (5 ng/ml) plus PMA (5 ng/ml), anti-CD28 (1:5,000 dilution) plus PMA (5 ng/ml), or
100 U/ml rhuIL-2 in RPMI 1644 containing 10 % fetal bovine serum. Peripheral blood leukocytes or
T cells are cultured at 2 � 105 cell per well in a total volume of 200 ml/well. Assays are performed in
quadruplicate in 96-well, U-bottom plates. [3H]Thymidine (1 mC) is added to each well after 48 h of
coculture, and after a 20 h pulse of [3H] thymidine, the cells are harvested, and the amount of [3H]
thymidine uptake is quantitated on a scintillation counter.

ELISA Assays Supernatants/well (100 ml) are harvested 24 h after initiation of cultures of peripheral
blood leukocytes or T cells stimulated with anti-CD3 or anti-CD28 plus PMA. IL-2 in the coculture
supernatant is quantitated using a commercially available IL-2 ELISA kit. All experiments are performed
in duplicate.

IL-2R Assays The expression of IL-2R on T cells stimulated for 48 h with anti-CD3 or anti-CD28 plus
PMA is determined using FITC-conjugated anti-CD25 mABs (Becton Dickinson, Mountain View, CA).
T cells are washed in HBSS and then stained with phycoerythrin-conjugated anti-CD3 mAB and
fluorescein-conjugated antiCD25 mAB. The percent of cells coexpressing CD3+ and CD25+ is deter-
mined from 2,000 cells using an EPICS C flow cytometer (Coulter, Hialeah, FL).

Evaluation Dose–response curves of inhibition of one-way mixed lymphocyte reaction and of IL-2 in
the supernatant after stimulation with antiCD3 or anti-CD28 are established.

Modifications of the Method Zielinski et al. (1993, 1994) studied the influence of leflunomide on
expression of lymphocyte activation expression markers (IL-2 and transferrin receptors) as well as on cell
cycle and on IL-2 receptor gene expression.

Calcineurin was found to be a key signaling enzyme in T lymphocyte activation and the target of
immunosuppressive drugs (Clipstone and Crabtree 1993).

The viability and function of T lymphocytes has been explored using different cellular isolation
techniques (Klein et al. 2006). A number of different vehicles have been shown to inhibit T cell
proliferation which include the natural product silymarin (Morishima et al. 2010), heavy metals and
polychlorinated biphenyls (Frouin et al. 2010), alternatively activated macrophages (Huber et al. 2010),
type I interferon (Marshall et al. 2011), mesenchymal stem cells (Zinocker and Vaage 2012), and the
programmed cell death-1 receptor (Patsoukis et al. 2015).
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Chemiluminescence in Macrophages

Purpose and Rationale The stimulation of macrophages by antigen, complement, phorbolesters, etc.,
leads to elaboration of O2

� and other oxygen metabolites. Superoxide ion (O2
�) and other highly reactive

oxygen metabolites (radicals) form the basis for an efficient microbicidal system in vivo. Yet, when
these radicals are released in response to self-antigens, tissue damage is often the result. Inhibition of
this process can be regarded as a measure for immunomodulating effects of compounds. The oxygen
metabolites can produce light-emitting reactions (chemiluminescence), which is measurable if amplified
with suitable agents, such as the cyclic hydrazide luminol.
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Procedure NMRI mice weighing 30 g or Sprague–Dawley rats weighing 250–300 g of either sex
are used.

Positive Control
1. Sensitized mice, receiving vehicle
2. Mice, developing an autoimmune disease, receiving vehicle
3. Rats, developing adjuvant arthritis, receiving vehicle

Negative Control
1. Mice not sensitized, receiving vehicle
2. Mice, not developing an autoimmune disease, receiving vehicle
3. Rats without adjuvant arthritis

Materials
• 5 � 108 SRBC (sheep red blood cells)/0.5 ml 0.9 % NaCl solution (for sensitization)
• Phorbolester: Stock solution of 1 mg/ml phorbolmyristenacetate. This stock solution is diluted with

Hank’s balanced salt solution to a final concentration of 3.5 mM (working solution). For the induction
of chemiluminescence, the working solution is diluted in the test tube 1:4, resulting in a final
phorbolester concentration of 0.875 mM.

• Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, Sigma) final concentration 25 mg/ml

Ex Vivo Experiment Groups of six animals are treated for 6 days orally or subcutaneously with test
compound or the standard (prednisolone acetate or leflunomide). They are decapitated and exsanguinated.
Macrophages are obtained by flushing the peritoneal cavity with 10 ml saline, containing 250 IU heparin.
The cells are pooled, washed several times, and suspended again at a final concentration of 2 � 106/
200 ml.

For measurement in the luminometer, the following mixture is prepared:

200 ml macrophages (2 � 106)
100 ml luminol solution (100 mg/ml)
100 ml phorbolmyristenacetate solution (3.5 mM)

Each sample is mixed thoroughly without the phorbolmyristenacetate solution, put into the
luminometer, and counted at 2 min intervals for 10 s. The addition of the phorbolester induces the
reaction.

In Vitro Experiment To 100 ml of macrophage suspension (2 � 106 cells) is added 100 ml of the solution
of the test compound and incubated for 15 min at 37 �C.

Then, 100 ml of luminol solution (100 mg/ml) and 100 ml of the 3.5 mM phorbolester solution are added
and the luminescence measured in the luminometer.

Evaluation The time of maximal counts for the positive control is recorded. For all groups, the ratio of
counts per 10 s is determined at that time, compared to the positive control counts per 10 s, and the percent
change is calculated. For statistical evaluation, the experimental group is compared with the positive
control group using Student’s t-test.
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Modifications of the Method Bird and Giroud (1985) described a technique of polymorphonuclear
leukocyte chemiluminescence as a means to detect compounds with anti-inflammatory activity. Inflam-
matory polymorphonuclear leukocytes were obtained by injecting rats intrapleurally with 1 ml of a 1 %
solution of calcium pyrophosphate and collection of the pleural exudate 4 h later. Chemiluminescence
responses were measured using a Packard Picolite chemiluminometer and opsonized zymosan as the
stimulus.

Seeds et al. (1985) found an independent stimulation of membrane potential changes and the oxidative
metabolic burst in polymorphonuclear leukocytes.

A microtechnique for studying chemiluminescence response of phagocytes using whole blood was
described by Selvaraj et al. (1982).

Traykov et al. (1997) investigated the effects of phenothiazine compounds on activated macrophage-
induced luminal-dependent chemiluminescence, and Szliszka et al. (2013) studied the anti-inflammatory
activity of artepillin C, a constituent of the resinous green propolis. Van Dyke et al. (2003) explored the
use of lucigenin-based chemiluminescence assay to interrogate various inflammatory stages.
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PFC (Plaque-Forming Colony) Test In Vitro

Purpose and Rationale Identification of antibody-producing cells is based on the ability of the secreted
IgM antibody to fix complement and thereby lyse the indicator erythrocytes. Spleen cells or peripheral
blood lymphocytes, previously incubated with antigen, are mixed with sheep red blood cells (SRBC).
After addition of complement and incubation, plaques (clear areas) caused by the lysis of SRBC appear
in the otherwise cloudy layer. Antibody-forming cells can be detected by the appearance of plaques.
The number of plaques obtained is proportional to the number of antibody-producing lymphocytes in the
cell population.

Procedure NMRI mice weighing 16–18 g or Lewis rats weighing 180–200 g of either sex are used.

Materials
• Absorbed guinea pig complement
• SRBC stored in Alsever’s solution

Positive Control Spleen cells incubated with antigen and medium

Negative Control Spleen cells incubated with medium alone. The animals are decapitated and the spleens
are removed from the peritoneal cavity. A single cell suspension of 15 � 106 cells/ml is prepared. For the
induction of PFC, a 0.5 ml splenocyte suspension is added to 0.5 ml of a suspension of SRBC, previously
washed in medium and diluted to 8 � 106 cells/ml. Thereafter, 1 ml of the solution of the test compound is
added, and the limbrowells are incubated at 37 �C in a CO2 incubator for 5 days. Per group 3 limbrowells
are set up. On day 5, the three wells of each group are pooled and washed in medium, and the number of
cells is determined. For each cell pellet, 875 ml of washed SRBC and 125 ml absorbed guinea pig
complement are added. The suspension is mixed thoroughly and filled in chambers constructed of
microslides. The chambers are placed in the incubator at 37 �C for 90–120 min. The plaque-forming
colonies are counted immediately after incubation.

Evaluation The activity of test compounds can be determined using the following formula:
1. PFC/3 wells:

x ¼ plaques� 100

ml

2. % change in the number of plaques:

x ¼ plaques� 100

plaquespos: control

d% ¼ x� 100

3. % change in number of cells:
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x ¼ number of cells � 100

number of cells pos: control

d% ¼ x� 100
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Inhibition of Dihydroorotate Dehydrogenase

Purpose and Rationale Dihydroorotate dehydrogenase catalyzes the fourth committed step in the de novo
biosynthesis of pyrimidines. As rapidly proliferating human T cells have an exceptional requirement for de
novo pyrimidine biosynthesis, small-molecule dihydroorotate dehydrogenase inhibitors constitute an attrac-
tive therapeutic approach to autoimmune diseases, immunosuppression, and cancer. Themainmode of action
of the immunosuppressive compound leflunomide and its active metabolites is considered to be the inhibition
of the enzyme dihydroorotate dehydrogenase (Bruneau et al. 1998; Graul and Castañer 1998; Knecht and
Löffler 1998; R€uckemann et al. 1998; Schorlemmer et al. 1998; Herrmann et al. 2000; Liu et al. 2000).

Procedure A fragment of human dihydroorotate dehydrogenase is expressed by means of the baculovirus
expression vector system and purified to a specific activity greater than 50 U/mg (Knecht et al. 1996, 1997).
Enzyme assays are performed with purified recombinant dihydroorotate dehydrogenase at 30 �C. The
oxidation of the substrate dihydroorotate and the reduction of the co-substrate quinone is coupled to the
reduction of the chromogen 2,6-dichlorophenolindophenol (DCIP). The reaction mixture contains 0.1 mM
QD or 0.1 M Q10, 1 mM L-dihydroorotate, 0.06 mM DCIP, 0.1 % Triton X-100 in 50 mM Tris–HCl buffer,
150 mM KCl, and pH 8.0. The reaction is started by addition of the enzyme. The loss of absorbance of the
blue DCIP is monitored at 600 nm: � = 18.800 l mol�1 cm�1. The enzyme activity in control assays
without QD or Q10 which is approximately 1 % of maximum enzyme activity is subtracted from the activity
values measured. Stock solutions of the test compounds are prepared in dimethyl sulfoxide with further
dilutions in the buffer taken for the assays.

Evaluation To determine the inhibitory potency of the agents, the initial velocity of dihydroorotate
dehydrogenase reaction is measured at saturating substrate concentrations, 1 mM dihydroorotate and
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100 mMQD, and varying concentrations of the drugs (1 nM through 100 mM). The equation is fitted to the
initial velocities:

v ¼ V= 1þ I½ �=IC50f g

([I] is the inhibitor concentration) in order to find the concentration causing 50 % inhibition of the enzyme
activity (IC50). Both virtual (Diao et al. 2012) and high-throughput screening (Baldwin et al. 2005) and
have been used to identify micromolar and sub-micromolar, respectively, inhibitors of DHODH activity.
Recently, DHODH has emerged as a therapeutic target in bovine babesiosis (2014).
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Sphingosine 1-Phosphate

General Considerations Sphingolipids have emerged as molecules whose metabolism is regulated to
generation of bioactive products including ceramide, sphingosine, and sphingosine-1-phosphate. The balance
between cellular levels of these bioactive products is recognized to be critical to cell regulation and may be a
promising approach to tumor therapy and multiple sclerosis (Huwiler and Pfeilschifter 2006; Rosen
et al. 2013; Blaho and Hla 2014), whereby ceramide and sphingosine cause apoptosis and growth arrest
phenotypes and sphingosine-1-phosphate mediates proliferative and angiogenic responses. Sphingosine
kinase is a key enzyme in modulating the levels of these lipids (Hannun and Obeid 1995; Hofmann and
Dixit 1998;Mathias et al. 1998; Prieschl et al. 1999; Pyne and Pyne 2000; Cummings et al. 2002;MacKinnon
et al. 2002; Rosen and Liao 2003; Chen et al. 2004; Deguchi et al. 2004; Lee et al. 2004; Peng et al. 2004;
Cyster 2005; Kee et al. 2005;Watterson et al. 2005; Gardell et al. 2006; Taha et al. 2006). Ceramide formation
and degradation are influenced by nitric oxide (NO) (Huwiler et al. 1999a, b; Franzen et al. 2002a, b).
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Binding to Sphingosine 1-Phosphate Receptors

Purpose and Rationale At least five subtypes of the sphingosine 1-phosphate receptor with tissue
specificity are known (Meyer zu Heringdorf et al. 1998; Kon et al. 1999; Im et al. 2000, 2001; Forrest
et al. 2004; Hale et al. 2004a; Sanna et al. 2004; Zhou and Murthy 2004; Xin et al. 2004; Lepley
et al. 2005; Kimura et al. 2006; Kitano et al. 2006).

The immunomodulator FTY720 is an agonist to sphingosine 1-phosphate receptors (Brinkmann
et al. 2002, 2010; Brunkhorst et al. 2014; Chiba 2005; Chiba et al. 2011, 2014; Gr€aler and Goetzl
2004; Kunzendorf et al. 2004; Xin et al. 2004; Albert et al. 2005; Bandhuvula et al. 2005; Sawicka
et al. 2003, 2005; Habicht et al. 2005; Takasugi et al. 2013; Xin et al. 2006; Zhang et al. 2013; Zhou
et al. 2006). FTY720 is derived from ISP-1 (myriocin), a fungal metabolite that is an eternal youth
nostrum in traditional Chinese herbal medicine (Fujita et al. 1994). The compound {2-amino-2-
[2-(4-octophenyl) ethyl]propane-1,3-diol} is a highly potent immune modulating agent.

Further derivates such as sphingosine 1-phosphate receptor agonists (Hale et al. 2004b, c; Clemens
et al. 2005; Foss et al. 2005; Galicia-Rosas et al. 2012; Guerrero et al. 2013; Kiuchi et al. 2005; Komiya
et al. 2012; Jin et al. 2014; Jo et al. 2005; Li et al. 2005; Colandrea et al. 2006; Sanada et al. 2011; Satsu
et al. 2013; Sobel et al. 2013; Ren et al. 2012; Yamamoto et al. 2014) and antagonists (Davis et al. 2005;
Kennedy et al. 2011; Angst et al. 2012) have been described, and a patent review of sphingosine 1-
phosphate receptors has been conducted (Roberts et al. 2013). Brinkmann et al. (2002) used the [g-35S]
GTPS-binding assay to study the binding of the immune modulator FTY720 to sphingosine 1-phosphate
receptors.

Forrest et al. (2004) studied the binding of sphingosine 1-phosphate agonists on distinct receptor
subtypes.
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Procedure

Receptors and Cell Lines CHO cells stably expressing human S1P1,2,3,4,5 were used (Mandala
et al. 2002). cDNA sequences encoding rodent S1P receptors were cloned from genomic DNA by
polymerase chain reaction using the following primers for each respective receptor:

50-GAACCCGGGTGTCCACTAGCATCCCGG and 50CCCGAATTCTTAGGAAGAAGAATT
GACGTTTCC (mouse S1P1), 50-GAACCCGGGCGGCTTATACTCAGAGTACC and 50-GGCGAATT
CTCAGACCACTGTGTTACCCTC (mouse S1P2), 50-GAACCCGGGCAACCACGCATGCGCAGG
and 50-GTCGAATTCTCACTTGCAGAGGACCCCG (mouse S1P3), 50-GAACCCGGGAACAT
CAGTACCTGGTCCACGC and GCGGAATTCTAGGTGCTGCGGACGCTGG (mouse S1P4),
50-GAACCCGGGCTGCTGCGGCCGG and 50-CGCGAATTCAGTCTGTAGCAGTAGGCACC
(mouse S1P5), 50-GTAGGATCCGTGTCCTCCACCAGCATC and 50GGCCGAATTCTTAAGAAGAA
GAATTGACGTTTC (rat S1P1), 50-GAACCCGGGCATCCACGCATGCGCAG and 50-GCCGAA
TTCTCACTTGCAGAGGACCCCATTCTG (rat S1P3).

The polymerase chain reaction products were inserted in-frame after a FLAG tag using vector pCMV-
Tag2 (Stratagene, La Jolla, Calif., USA). Stable lines were established by transfecting plasmids into CHO
cells using Lipofectamine reagent, selecting for neomycin resistance, and screening single cell cultures for
increased [33P] S1P-specific binding. Membranes were prepared from positive clones and confirmed in
[33P]S1P and [35S]GTPgS binding assays.

S1P Receptor Assays Binding assays were conducted as described by Mandala et al. (2002). [33P]S1P
was sonicated with fatty-acid-free bovine serum albumin, added to test compounds diluted in dimethyl
sulfoxide (DMSO), and mixed with membranes in 200 ml in 96-well plates with assay concentrations of
0.1 nM[33P]S1P (22,000 dpm), 0.5 % bovine serum albumin, 50 mMHEPES-Na (pH 7.5), 5 mMMgCl2,
1 mM CaCl2, and 0.3–0.7 mg of membrane protein. Binding was performed for 60 min at room
temperature and terminated by collecting the membranes onto GF/B filter plates with a Packard Filtermate
Universal harvester. Filter-bound radionuclide was measured on a Perkin Elmer 1450MicroBeta. Specific
binding was calculated by subtracting radioactivity that remained in the presence of 1,000-fold excess of
unlabeled S1P.

Tomeasure functional activation of the S1P receptors, [35S]GTPg S binding was measured. Membranes
(1–4 mg of protein) were incubated in 96-well plates with test compounds diluted in DMSO in 100 ml of
buffer containing 20 mMHEPES (pH 7.4), 100 mMNaCl, 10 mMMgCl2, and 2–10 mMGDP, depending
on the expressed receptor. The assay was initiated with the addition of 100 ml of [35S]GTPg
S (1,200 Ci/mmol or 44,400 BGq/mmol; Perkin Elmer Life and Analytical Sciences, Boston, Mass.,
USA) for an assay concentration of 125 pM. After 60 min of incubation at room temperature, membranes
were harvested onto GF/B filter plates, and bound radionuclides were measured.

Modifications of the Method Murata et al. (2000) described a radioreceptor-binding assay for quantitative
measurement of sphingosine 1-phosphate.
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Sphingosine Kinase Activation Assay

Purpose and Rationale Sphingosine 1-phosphate produced by two sphingosine kinase isoenzymes,
denoted SphK1 and SphK2, is the ligand for a family of specific G-protein-coupled receptors that regulate
cytoskeletal rearrangements and cell motility. Unlike the proliferative action of SphK1, the isoenzyme
SphK2 has been shown to possess antiproliferative and proapoptotic action. Both kinases have been
cloned and functionally characterized (Kohama et al. 1998; Liu et al. 2000, 2003; Nava et al. 2000;
Olivera et al. 2000; Igarashi et al. 2003; Paugh et al. 2003; Sanchez et al. 2003; Billich et al. 2005; Döll
et al. 2005; Hait et al. 2005; Kharel et al. 2005; Okada et al. 2005; De Palma et al. 2006; Zemann
et al. 2006; Gao and Smith 2011; Neubauer and Pitson 2013; Tonellli et al. 2013; Zhang et al. 2013;
Ceccom et al. 2014; Plano et al. 2014; Shen et al. 2014; Tamashiro et al. 2014; Tous et al. 2014). A recent
summary of drugs in clinical trials targeting the sphingosine 1-phosphate pathway illustrates the potential
roles of this axis in cancer and autoimmune inflammatory disease (Kunkel et al. 2013).

Sphingosine kinase activity assays were performed in a similar way by Paugh et al. (2003) and by
Huwiler et al. (2006).

Procedure

Sphingosine Kinase Activity Assay In vitro kinase reactions were performed according to Olivera
et al. (2000). In brief, 30 mg of protein lysates was incubated with 50 mmol/l of sphingosine (dissolved
as 1 mmol/l stock solution in 4 mg/ml of BSA in PBS) and 10 mCi (370 kBq) of [g-32P]ATP for 15 min
at 37 �C. For SK-2 activity assay, the same buffer including 1 M KCl was used to inhibit SK-1 activity
(Liu et al. 2000). Reactions were terminated by addition of 20 ml of 1 N HCl followed by 800 ml of
chloroform/methanol/HCl (100:200:1, v/v), 240 ml of chloroform, and 240 ml of 2 mol/l KCl. After
vigorous vortexing and phase separation, 50 ml of the lower organic phase was loaded onto TLC plates
and run in 1-butanol/ethanol/acetic acid/water (80:20:10:20, v/v).
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Evaluation Spots corresponding to S1P were analyzed and quantified using an imaging system (Fuji).
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Lymphocyte Trafficking After Sphingosine 1-Phosphate Receptor Agonists

Purpose and Rationale Adaptive immunity depends on T cell exit from the thymus and T and B cells
traveling between secondary lymphoid organs to survey for antigen. After activation in lymphoid organs,
T cells must again return to circulation to reach sites of infection. The immunomodulatory drug FTY720
induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing via the
S1P receptor 1 (Chiba et al. 1998; Yanagawa et al. 1998a, b; Henning et al. 2001; Forrest et al. 2004;
Matloubian et al. 2004; Hait et al. 2005; Kharel et al. 2005; Huwiler et al. 2006). Mandala et al. (2000)
described alteration of lymphocyte trafficking by sphingosine 1-phosphate receptor agonists.

Procedure

Induction of Lymphopenia and Reduction of Thoracic Duct (TD) Lymphocytes by S1P and Analogues in
Rats Blood or thoracic duct lymph lymphocyte counts were determined by autoanalyzer (H2000,
CARESIDE, Culver City, Calif., USA) and normalized to counts in vehicle controls after administration
of FTY720 (2.5 mg/kg p.o.) or test compound. S1P was administered by continuous infusion beginning at
8 mg/kg/h for 20 min followed by 2 mg/kg/h for a further 220 min. The measured physiological S1P
concentration in rat plasma by LC-MS was 0.5 mg/ml. This rose to a Cmax of 2.5 mg/ml at 30 min and was
maintained at 1.5 mg/ml for the remainder of the experiment. Studies on the effect on lymphocyte numbers
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in thoracic duct-cannulated rats were performed after the administration of FTY720 or test compound.
Lymph flow remained constant for the duration of the experiment, and numbers are shown as the average
cell concentration maintained over the preceding 30 min.

FACSMeasurement of Peripheral Blood Lymphocyte Depletion in Cannulated Rats Percentage depletion
by FTY720 compared to vehicle control was measured. Similar nadir lymphopenia was produced by
FTY720 or non-metabolizable phosphonates. Peripheral blood samples were diluted 1:1 with phosphate-
buffered saline (PBS), layered on the same volume of Lymphocyte Separation Medium (ICN Biomed-
icals, Aurora, Ohio, USA), and centrifuged at 400 g for 30 min. Peripheral blood mononuclear cells
(PBMC) were resuspended in PBS and counted using a hemocytometer. PBMC were then stained with
FITC-labeled anti-CD8, PE-labeled anti-CD45RA, and Cy-chrome-labeled anti-CD4 antibodies. Num-
bers of CD4-, CD8-, and CD45RA-positive cells were calculated by multiplying total PBMC count with
the percentages of CD4+, CD8+, and CD45RA+ generated from flow cytometry.

Quantitation of Lymph Node Cells Single cell suspensions were prepared by passage of tissues through a
40-mm sieve. Peripheral blood lymphocytes were further isolated from spleens by ammonium chloride
lysis of red blood cells. Cells were subsequently washed in UltraCULTURE medium (Biowhittaker,
Walkersville, Md., USA), and all samples were adjusted to the same volume with PBS. An equal volume
of 4 % paraformaldehyde was added while gently vortexing the samples. The total number of viable,
unstained lymphocytes per sample was determined by flow cytometry (FACScan; Becton Dickinson)
using CellQuest software (Becton Dickinson), based upon forward- and side-scatter characteristics. Beads
(Sigma; P7458) were used as an internal standard.

Evaluation Data were calculated as cell number per node by dividing the total number of lymphocytes
quantitated by the number of nodes harvested per site (i.e., the number of Peyer’s patches and mesenteric
or peripheral lymph nodes collected).

Modifications of the Method Kawa et al. (1997) reported inhibition of chemotactic motility and trans-
endothelial migration of human neutrophils by sphingosine 1-phosphate.

Fueller et al. (2003) described activation of human monocytic cells by lysophosphatidic acid and
sphingosine-1-phosphate.

Roviezzo et al. (2004) studied human eosinophil chemotaxis and selective in vivo recruitment by
sphingosine 1-phosphate. Kunisawa et al. (2007) showed that sphingosine 1-phosphate may regulate
peritoneal B cell trafficking and Thangada et al. (2010) using adoptive transfer experiments in wild-type
mice, andmice mutated for the sphingosine 1-phosphate receptor showed that cell surface residency of the
receptor determines the kinetics of lymphocyte egress. Yang et al. (2014) showed that fingolimod
(FTY720) may prevent inflammation-sensitized hypoxic ischemia brain injury in newborn rats.
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In Vivo Methods for Testing Immunological Factors

Spontaneous Autoimmune Diseases in Animals
Several spontaneous autoimmune diseases have been reported in several inbred animal strains:

New Zealand black mouse (NZB mouse) (Bielschowski et al. 1959; Howie and Helyer 1968;
Barthold et al. 1974; Blanchard and Bach 1980). The NZB mouse develops a spontaneous autoimmune
disease with autoimmune hemolytic anemia, splenomegaly, glomerulonephritis, lymphoproliferative
disorders, and peptic ulcerations.

New Zealand black/white F1 (B/W) mouse (Helyer and Howie 1963; Kessler 1968). These animals
develop nephritis similar to that in human systemic lupus erythematosus and show mononuclear cell
infiltration in salivary and lachrymal glands such as in human Sjögren’s syndrome.

A substrain of the autoimmune-prone mouse, NZB/kl, was found to show spontaneous elevation of
the auditory brainstem response threshold with age (Sone et al. 1995).

Immunodeficient alymphoplasia mice were recommended as a spontaneous model for Sjögren’s
syndrome (Tsubata et al. 1996). Mice homozygous for an autosomal-recessive mutation aly
(alymphoplasia) lack both lymph nodes and Peyer’s patches and show defects in both humoral and
cellular immunity. Histopathological analyses revealed chronic inflammatory changes in exocrine organs
such as the salivary gland, the lacrimal gland, and the pancreas.

The Palmerston North autoimmune mouse strain which exhibits both spontaneous systemic auto-
immune disease and otic capsule bone formation has been proposed as a model for otic capsule
osteogenesis and otosclerosis (Hertler and Trune 1990; Traynor et al. 1992).

In aging BDF1 mice, Hayashi et al. (1988) described spontaneous development of autoimmune
sialadenitis.

Robison et al. (1994) examined the relationship between orchitis and aspermatogenesis in various
strains of H2 congenic mice and defined a genetic predisposition to spontaneous aspermatogenesis.

Motheaten mice. Mice homozygous for the autosomal-recessive motheaten (me) or the allelic viable
motheaten (mev) mutations develop severe and early-age onset of systemic autoimmune and inflamma-
tory disease (Green and Shultz 1975; Shultz et al. 1984; Shultz 1988; Su et al. 1998).

The genetic, hormonal, and behavioral influence on spontaneously developing arthritis in normal mice
has been reviewed by Holmdahl et al. (1992).

Nonobese diabetic mouse (NODmouse) (Makino et al. 1980;Miyazaki et al. 1985; Leiter et al. 1987).
The inbred NOD mouse is considered a good model for type I diabetes mellitus. Mononuclear cells
infiltrate the pancreatic islets of Langerhans from 6 to 8 weeks of age, followed by a progressive and
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selective destruction of insulin-producing b-cells and the onset of IDDM from the 12th week of age
onwards.

Itoh et al. (1997) studied the requirement of Fas for the development of autoimmune diabetes in
nonobese diabetic mice.

Quartey-Papafio et al. (1995) showed that aspartate at position 57 of nonobese diabetic I-A (g7) b-chain
diminishes the spontaneous incidence of insulin-dependent diabetes mellitus in the NOD mouse.

The NOD mouse was also recommended to study the pathogenesis of autoimmune thyroiditis
(Many et al. 1996; Giarratana et al. 2007).

Inherited inflamed joints. Adipue et al. (2011) established a new spontaneous murine model of
inflammatory arthritis of inherited inflamed joints (IIJ) established from AR mice that appeared in a 5B6
transgenic mouse-breeding colony.

Qi et al. (2013) developed a murine model of spontaneous liver disease resembling autoimmune
hepatitis, and Yang et al. (2014) developed a murine model of spontaneous peripheral polyneuropathy.

Bio-breeding rat (BB rat) (Like et al. 1982; Field 1983; Yale and Marliss 1984). On the basis of
clinical and histopathological parameters, the BB rat is considered a useful model for human IDDM. The
disease in the BB rat is characterized by infiltration of lymphocytes and macrophages into the islets of
Langerhans.

Allen and Thupari (1995) described spontaneous autoimmune lymphocytic thyroiditis in BB/Wor rats.
Obese strain chicken (OS chicken) (van Tienhoven and Cole 1962; Cole 1966; Cole et al. 1968, 1970;

Wick et al. 1974). The OS chicken is perhaps the best studied model for an organ-specific, spontaneously
occurring autoimmune disease, viz., spontaneous autoimmune thyroiditis, which closely resembles
human Hashimoto thyroiditis. The spontaneous autoimmune thyroiditis in obese chicken was further
studied by Neu et al. (1986), Kroemer et al. (1989), Cihak et al. (1995), Hala et al. (1996), and Dietrich
et al. (1997).

Chickens of the University of California line 200 (UCD-200 chickens) develop an inherited inflam-
matory fibrotic disease that closely resembles human progressive systemic sclerosis (scleroderma)
(Gershwin et al. 1981; Van de Water et al. 1984; Brezinscheck et al. 1993).

Schumm-Draeger and Fortmeyer (1996) described autoimmune thyroiditis in the cat as a spontane-
ous disease model.

Spontaneous autoimmune thyroiditis was found in Mastomys (Praeomys coucha) by Solleveld
et al. (1985) and recommended as an animal model of human disease.
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Acute Systemic Anaphylaxis in Rats

Purpose and Rationale Rats are immunized with ovalbumin and Bordetella pertussis suspension as
adjuvant. After 11 days, the animals are challenged by intravenous injection of ovalbumin. The shock
symptoms can by inhibited by corticosteroids and intravenous disodium cromoglycate.

Procedure Female Sprague–Dawley rats weighing 120 g are immunized by i.m. injection of 10 mg/kg
highly purified ovalbumin. Simultaneously 1 ml of Bordetella pertussis suspension (2 � 1010 organisms)
is injected intraperitoneally. IgE antibodies are induced and attached to the surface of mast cells and
basophilic granulocytes. Eleven days later, the animals are challenged by intravenous injection of
25 mg/kg highly purified ovalbumin. This results in the formation of antigen–antibody complexes on
the surface of mast cells and basophilic granulocytes in blood and in all organs with immediate release of
various mediators of anaphylaxis, such as histamine, serotonin, SRS-A, and prostaglandins; in shock
symptoms; and 80 % lethality. Corticosteroids, e.g., dexamethasone 1–10 mg/kg s.c., are given 18 h prior
to challenge or 30 mg/kg disodium cromoglycate i.v. before injection of ovalbumin. Ten to 20 animals are
used for each group.

Evaluation The shock symptoms are scored and mortality counted. Results after treatment are compared
with untreated controls. Pretreatment with corticosteroids or disodium cromoglycate can inhibit death and
ameliorate shock symptoms. Statistical calculation is performed using the w2-test.

Modifications of the Method Desensitization by repeated “microshocks” of constant strength in guinea
pigs has been reported by Herxheimer (1952).

Acute systemic anaphylaxis experiments have also been performed in guinea pigs and in mice.
In guinea pigs, anaphylactic bronchospasm can be measured with the Konzett and Rössler method
(Davies and Evans 1973).

Moreover, anaphylactic bronchospasm can be measured in isolated guinea pig lungs according to the
method of Bhattacharya and Delaunois (1955).

Anaphylaxis can be measured in the chopped guinea pig lung by assay of the supernatant in the isolated
guinea pig ileum in the presence of 2 � 10�7 M atropine (Austen and Brocklehurst 1961).

Ufkes and Ottenhof (1984) sensitized Brown Norway rats with a suspension of trinitrophenyl-
haptenized ovalbumin together with AlPO4 as adjuvant. Bronchial and cardiovascular functions were
studied after treatment with antiallergic agents and antigen challenge.

Elwood et al. (1992) studied the effect of dexamethasone and cyclosporine A on allergen-induced
airway hyperresponsiveness and inflammatory cell responses in sensitized Brown Norway rats.
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Anti-anaphylactic Activity (Schultz–Dale Reaction)

Purpose and Rationale Guinea pigs are sensitized against egg albumin. Challenge after 3 weeks causes
in isolated organs’ release of mediators, e.g., histamine, which induce contraction in isolated ileum.

Procedure Guinea pigs of either sex weighing 300–350 g are sensitized with alum-precipitated egg
albumin. Alum egg albumin is prepared by dissolving egg albumin (1 mg/ml) in 6 % aluminum hydroxide
gel, suspended in saline. The mixture is stirred and kept at room temperature. Each animal receives at the
same time injections of 0.125 ml of this mixture in each foot pad and 0.5 ml subcutaneously. After
4 weeks, the animals are killed and the ileum is dissected out. Cleaned pieces, about 2–3 cm long, are
mounted in an organ bath containing Tyrode solution at 37 �C. The strips are allowed to equilibrate for
15 min. The contractility of the ileum strips is tested by adding 10�4 g/ml BaCl2 solution. To one organ
bath the standard (2 � 10�6 g/ml final concentration of tribenoside = 1-O-ethyl-3,5,6-tri-O-benzyl-
D-glucofuranoside = Glyvenol CIBA) and to other vials the test compounds (final concentration up to
10�5 g/ml) are added. One organ bath serves as control. After 3 min, ovalbumin in a final concentration of
2 � 10�6 g/ml is added. The contractions are recorded with strain gauges by a polygraph.

Evaluation The results are expressed as presence or absence of blocking activity (percentage inhibition).
If anti-anaphylactic activity is observed, ED50 values using different doses are calculated.

Critical Assessment of the Method Positive results can also be achieved with spasmolytics, local
anesthetics, antihistaminics, and sympathicomimetics.

Modifications of the Method The method has been modified by testing histamine release in the lung
after challenging with egg albumin. Either lung strips from sensitized guinea pigs are suspended in an
organ bath and their contractions are measured after addition of egg albumin or the entire lung tissue is
dissected out and washed free from blood by perfusing with warm oxygenated Tyrode solution via the
pulmonary artery. The lung tissue is chopped and washed with Tyrode solution in order to remove the
remaining blood. The chopped lung tissue is divided into 24 samples, each of approximately 100 mg wet
weight. These are incubated at 37 �C in Tyrode solution for 15 min with continuous agitation by rocking,
after which 1mg/ml of egg albumin is added to the reaction mixture. After shaking for 10min at 37 �C, the
supernatant is collected and assayed for histamine with guinea pig ileum. Atropine sulfate 2 mg/ml is
added in Tyrode solution. The residual histamine is obtained by boiling the tissue in 5 ml Tyrode solution
for 10 min. The tubes are then placed on ice for 1 h to allow complete diffusion. Released histamine is
expressed as a percentage of total histamine content.

Koppel et al. (1981) developed a method to induce contraction of immunologically sensitized mouse
trachea by antigen (Schultz–Dale reaction).

The trachea of sensitized guinea pigs was used by Omote et al. (1994). Choi et al. (2008) measured the
effects of dehydroepiandrosterone on the Schultz–Dale reaction and the Th2 immune response in
sensitized BALB/c mice. Guhathakurta et al. (2013) determined the effects of UNIM-352 and Naik
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et al. (2013) the effects of extract of Zizyphus jujuba fruits, both natural products, in a rodent model of
systemic anaphylaxis.
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Passive Cutaneous Anaphylaxis

Purpose and Rationale Passive cutaneous anaphylaxis is an immune reaction of the immediate type.
By passive immunization of rats in the skin with rat anti-ovalbumin serum and a challenge 2 days later
with ovalbumin at the same skin area, antigen–antibody complexes are formed in the mast cells inducing
release of mediators. This results in vasodilatation, increase in permeability of the vessel walls, and
leakage of plasma. To make the allergic reaction visible, Evan’s blue dye is administered along with the
antigen. Evan’s blue dye is attached to the albumin fraction of plasma, producing a blue spot. This blue
spot indicates that an anaphylactic reaction has taken place in the skin.

Procedure For preparation of antiserum, male rats weighing 200–250 g are adrenalectomized and are
allowed to recover for 3 days. Thereafter, animals are sensitized with egg albumin (1 mg/animal) using
aluminum hydroxide gel (200 mg) as adjuvant. Alum egg albumin is prepared by dissolving 1 mg/ml of
egg albumin in 20 % aluminum hydroxide gel, suspended in saline. Each animal simultaneously receives
0.125 ml of the above solution in each foot pad and 0.5 ml subcutaneously. After 8 days, the animals are
bled and antiserum is collected.
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For the test, the antiserum is diluted in such a manner as to give a wheal of 15–20 mm diameter in a
preliminary titration. Aliquots of 100 ml of appropriate dilution of antiserum are injected intradermally
into the shaved dorsal skin of normal male rats weighing about 100 g. After 24 h of latent period, each
animal is challenged with the intravenous administration of 0.1 ml of 2.5 % Evans blue dye containing
25 mg/ml of egg albumin. In the case of intravenous administration, the test compound is administered
simultaneously with the antigen and the dye. In case of oral testing, the compound is given orally 1 h prior
to challenge. The animals are sacrificed 30 min after the challenge. The amount of Evans blue dye leaked
at the site of passive cutaneous anaphylactic reaction is extracted and determined colorimetrically at
620 mm wavelength.

Evaluation The amount of Evans blue extracted from passive cutaneous anaphylactic reaction is taken as
100 %. Percent inhibition of passive cutaneous anaphylactic reaction in the rats treated with the test
compound is calculated. The standard disodium cromoglycate at a dose of 3 mg/kg i.v. or 30 mg/kg orally
results in 80–100 % inhibition. Using different doses, ED50 values can be calculated.

Modifications of theMethod Goose and Blair (1969) used Bordetella pertussis and extracts of the worm
Nippostrongylus brasiliensis as antigens in passive cutaneous anaphylaxis experiments in the rat.

Patterson et al. (1971) tested passive cutaneous reactivity to antihuman IgE in rhesus monkeys.
Without immunization, plasma extravasation after bradykinin injection can be tested in anesthetized

Sprague–Dawley rats (Lembeck et al. 1991). Evans blue dye is injected to stain plasma proteins. After
injection of bradykinin antagonists followed by bradykinin injection, the rats are perfused with physio-
logical saline. The trachea, the urinary bladder, and the duodenum are resected, weighed, and incubated
for 48 h in formamide at 50 �C (Saria et al. 1983). The amount of Evans blue extracted is measured
photometrically at 620 nm.

Vascular reactions to histamine, histamine liberator, and leukotaxine in the skin of guinea pigs using
pontamine sky blue 6� as indicator were studied by Miles and Miles (1952). Babakin et al. (2008)
investigated the effects of fullerene-60 in both systemic and both rat and murine passive cutaneous models
of anaphylaxis, and Zhu et al. (2009) showed that the proteinase-activated receptor 2 is involved in
passive cutaneous murine model of anaphylaxis and that it can be inhibited by tacrolimus.

Hitomi et al. (2010) discovered that mice deficient in the immunoglobulin-like receptor Allergin-1
developed enhanced passive systemic and cutaneous anaphylaxis, and Han et al. (2013) showed that the
phytoalexin resveratrol inhibited both IgE-mediated basophilic mast cell degranulation and passive
cutaneous anaphylaxis in a murine model.
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Arthus-Type Immediate Hypersensitivity

Purpose and Rationale The immune complex-induced Arthus reaction comprises inflammatory factors
that have been implicated in the acute responses in joints of rheumatic patients. Complement and
polymorphonuclear neutrophils are activated via precipitating antigen–antibody complexes leading to
an inflammatory focus characterized by edema, hemorrhage, and vasculitis. Arthus reaction of the
immediate type becomes maximal 2–8 h after the challenge.

Procedure

Ovalbumin Suspension 1,700 mg ovalbumin is suspended in 100 ml paraffin oil. 4.38 ml pertussis
vaccine is suspended in 70 ml 0.9 % NaCl solution. Both suspensions are mixed to form an emulsion.

Wistar or Sprague–Dawley rats of either sex weighing 220–280 g can be used. Seven days prior to the
start of the experiment, rats are sensitized by i.m. administration of 0.5 ml of the ovalbumin suspension.
They are housed in groups of eight with standard food and water ad libitum.

Twenty-four hours and 1 h prior to induction of the Arthus reaction, test compounds are administered to
groups of eight animals. The rats are challenged by injection of 0.1 ml of 0.04 % solution of highly
purified ovalbumin in the left hind paw. Swelling of the paw occurs which reaches a maximum after a few
hours. The footpad thickness can be measured by calipers. One group of sensitized animals treated with
solvent alone serves as positive control; one group of non-sensitized animals treated with solvent alone
serves as negative control. Standard doses are 30 mg/kg cortisone or 10 mg/kg prednisolone p.o.

Evaluation The change in footpad thickness is expressed as the percent change from the vehicle control
group. Comparison of experimental group to positive control is evaluated statistically using Student’s
t-test.
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Modifications of the Method Instead of ovalbumin, sheep red blood cell suspensions can be used for
immunization and for challenge in mice (Omote et al. 1994).

Nagakawa et al. (1990) sensitized mice by s.c. injection of bovine serum albumin in complete Freund’s
adjuvant and boosted on day 21 by an intradermal injection of BSA. On day 28, the Arthus reaction was
elicited by intradermal injection of BSA. Four hours later, an erythematous skin reaction over an area of
more than 8 mm2 was regarded as positive.

Kamei et al. (1991) immunized guinea pigs by injection of a mixture of egg albumin and Freund’s
complete adjuvant subcutaneously into the food pad or i.m. into the hind leg. The injection was repeated
four times at 7-day interval. Ten days after the last immunization, 0.2 ml of 2.5 % egg albumin was
injected sc. into the dorsal skin of the animals. The intensity of the Arthus reaction was evaluated by
measuring the inflamed area according to scores.
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Delayed-Type Hypersensitivity (DTH)

Purpose and Rationale Delayed-type hypersensitivity is a reaction of cell-mediated immunity and
becomes visible only after 16–24 h. The same methods as for testing immediate-type hypersensitivity
can be used.

Procedure Rats are sensitized in the same way by i.m. administration of 0.5 ml ovalbumin suspension
7 days prior to the start of the experiment as described for testing immediate-type hypersensitivity. They
are challenged by injection of 0.1 ml of 0.04 % solution of highly purified ovalbumin in the left hind paw.
Footpad thickness is measured immediately and 24 h after ovalbumin administration.

Modifications of the Method Mizukoshi et al. (1994) injected female CDF1 mice intradermally with a
suspension of 2 � 108 sheep red blood cells/50 ml into the left foot pad. A second booster of the same dose
was given to the right foot pad on day 4. The thickness of the foot pads was measured on the following day,
and the difference in the thickness between the right and the left food pads was taken as the degree of swelling.

Kamei et al. (1991) immunized mice by applying 0.15 ml of 7 % picryl chloride/ethanol solution to the
skin of the shaved abdomen. The second immunization was performed 6 days later. One week after the
second immunization, 1 drop of 1 % picryl chloride olive oil solution was applied to the ear, and the
thickness of the ear was measured by a thickness gauge 24 h later.
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Heriazon et al. (2009) investigated the induction of DTH and interferon gamma to Candida albicans
and anti-hen egg white lysozyme antibody as phenotypic markers of enhance bovine immune response,
and their studies suggest that this combination of test antigens could be used as phenotypic markers of
immune responsiveness in cattle. Escandell et al. (2010) investigated the inhibition of DTH by the plant
product cucurbitacin R which was shown to reduce human T lymphocyte proliferation.

Yang et al. (2011) used the DTH model to a three-protein cocktail with that of a purified protein
derivative, and Atkinson et al. (2012) extended the model to study the similarities with collagen-induced
arthritis and human rheumatoid arthritis.
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Reversed Passive Arthus Reaction

Purpose and Rationale In the reversed passive Arthus reaction, the antigen is injected intravenously
followed by a local injection – either intradermally or into the pleural space – of the respective antibody.
Generation of an immune-mediated reverse passive Arthus reaction in the rat pleural cavity results in a
classic acute inflammatory response. The methods are used to evaluate new anti-inflammatory agents.

Procedure Male Lewis rats weighing 200–250 g are fasted overnight prior to use with free access to
water. The animals receive 5 mg bovine serum albumin in 0.2 ml sterile saline intravenously, followed
30 min later by injection of 1 mg rabbit anti-BSA in 0.2 ml sterile saline into the right pleural cavity under
light halothane anesthesia. Drugs or vehicle controls are administered by gastric gavage in 1 ml/100 g
body weight at different times prior to the anti-BSA. The animals are sacrificed at various intervals after
anti-BSA injections by CO2 inhalation (after 5 min for thromboxane B2 determination, after 10 min for
leukotriene B4 determination, and after 4 h at the peak time of neutrophil infiltration). The fluid exudate is
removed from the pleural cavity by gentle vacuum aspiration and the volume is recorded. Eicosanoids in
the pleural exudate are quantitated by commercial RIA kits.

Evaluation The values after treatment with various doses of test compounds are compared with those of
vehicle controls.

Modifications of the Method The antibody can be injected intradermally into the shaved skin of rats after
intravenous injection of the antigen (e. g., human albumin) together with Evans blue dye solution.
Extravasated dye is determined in skin punches (Camussi et al. 1990; Burch et al. 1992; Okamoto
et al. 1992).

Bailey and Sturm (1983) induced the reverse passive Arthus reaction in rats using bovine serum
albumin as antigen into the tail vein and rabbit anti-bovine serum albumin into the skin site. One hour after
oral dosing with vehicle or drug, animals were lightly anesthetized and their hair was shaved from the
middorsal region with electric clippers. Each animal was injected intradermally with 40 ml on the left side
of the middorsal line and with 40 ml of rabbit anti-bovine serum albumin (5.0 mg/ml antibody protein),
diluted 1:4 with phosphate-buffered saline on the right side of the dorsal midline. Immediately following
the intradermal challenge, each rat received 0.5 ml phosphate-buffered saline containing 1.0 mg bovine
serum albumin injected in the tail vein. Four hours after intradermal challenge, the animals were
sacrificed. The full-thickness skin was removed from the back, and disks 8 mm in diameter were punched
out with a metal punch. Wet weight of the samples from the phosphate-buffered saline- and antibody-
injected site was determined, and the edema induced by the reverse passive Arthus reaction calculated as
the difference between both weights.
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Adjuvant Arthritis in Rats

Purpose and Rationale Adjuvant arthritis in rats has been described by Pearson and Wood (1959)
exhibiting many similarities to human rheumatoid arthritis. Injections of complete Freund’s adjuvant into
the rat paw induce inflammation as primary lesion with a maximum after 3–5 days. Secondary lesions
occur after a delay of approximately 11–12 days which are characterized by inflammation of non-injected
sites (hindleg, forepaws, ears, nose, and tail) and a decrease of weight and immune responses. The
procedure has been modified by several authors in order to differentiate between anti-inflammatory and
immunosuppressive activity (e.g., Perper et al. 1971). Anti-inflammatory compounds do not inhibit
secondary lesions, which are prevented or diminished by immunosuppressive agents. Two protocols,
termed “preventative” (or “prophylactic”) and “therapeutic” (or “established”) adjuvant arthritis, have
gained wide usage for assessing a drug’s potential anti-arthritic activity (Schorlemmer et al. 1999).

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 36 of 131



Procedure The choice of the animal strain has been found to be very important for the performance of
this test. Wistar–Lewis rats have been proven to be very suitable in contrast to other substrains. Male rats
with an initial body weight of 130–200 g are used. On day 1, they are injected into the suplantar region of
the left hind paw with 0.1 ml of complete Freund’s adjuvant. This consists of 6 mg mycobacterium
butyricum (Difco) being suspended in heavy paraffin oil (Merck) by thoroughly grinding with mortar and
pestle to give a concentration of 6 mg/ml. Dosing with the test compounds or the standard is started on the
same day and continued for 12 days. Paw volumes of both sides and body weight are recorded on the day
of injection, whereby paw volume is measured plethysmographically with equipment as described in the
paw edema tests. On day 5, the volume of the injected paw is measured again, indicating the primary
lesion and the influence of therapeutic agents on this phase. The severity of the induced adjuvant disease is
followed by measurement of the non-injected paw (secondary lesions) with a plethysmometer. Purposely,
from day 13–21, the animals are not dosed with the test compound or the standard. On day 21, the body
weight is determined again, and the severity of the secondary lesions is evaluated visually and graded
according the following scheme:

Score

Ears Absence of nodules and redness 0

Presence of nodules and redness 1

Nose No swelling of connective tissue 0

Intensive swelling of connective tissue 1

Tail Absence of nodules 0

Presence of nodules 1

Forepaws Absence of inflammation 0

Inflammation of at least one joint 1

Hind paws Absence of inflammation 0

Slight inflammation 1

Moderate inflammation 2

Marked inflammation 3

Evaluation
(a) For primary lesions: The percent inhibition of paw volume of the injected left paw over vehicle control

is measured at day 5.
(b) For secondary lesions: The percentage inhibition of paw volume of the non-injected right paw over

controls is measured at day 21.
(c) An arthritic index is calculated as the sum of the scores as indicated above for each animal. The

average of the treated animals is compared with the control group.
(d) The total percentage change is calculated as follows by addition of:

Percent inhibition of the injected paw on day 5 + percent inhibition of the non-injected paw on day
21 + percent change of the arthritic index.

Doses of 0.3 mg/kg indomethacin p.o. and 20–50 mg/kg phenylbutazone p.o. are effective on the
primary lesions when dosage is started at the day of injection of the irritant. They are not effective on the
secondary lesions.

In contrast, immunosuppressants like cyclophosphamide at a dose of 7 mg/kg inhibited the secondary
lesions even when started at day 9 or later.
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Critical Assessment of the Method Evidence was given that adjuvant arthritis in the rat is associated
with chronic pain (Colpaert 1987). The measure of pain in this model still presents some technical
problems since the evaluation is based on the somewhat biased observation of the behavioral responses.

Modifications of the Method A review was given by Gardner (1960) on the experimental production of
arthritis.

Moran et al. (1999) compared adjuvant arthritis and selected animal models of arthritis to rheumatoid
arthritis with special emphasis on the mechanism of joint destruction.

Kazuna and Kawai (1975) and Rooks et al. (1982) used rats with established lesions to test analgesics in
the arthritic flexion pain test. The method is claimed to be specific by detecting only central analgesics and
nonsteroidal anti-inflammatory drugs but not other classes such as CNS-depressant or antihistaminic drugs.

Brackertz et al. (1977) established antigen-induced arthritis in the mouse by immunization with
methylated bovine serum albumin in complete Freund’s adjuvant with B pertussis vaccine.

A streptococcal cell wall-induced arthritis in rats has been described by Wilder et al. (1982, 1987) and
Yocum et al. (1986).

Lewis et al. (1997) studied degradation of articular cartilage in a rat monoarthritis model induced by an
intra-articular injection of Propionibacterium acnes.

Crossley et al. (1989) reported on a monoarticular antigen-induced arthritis in rabbits and mice.
a-2-Glycoprotein levels have been recommended as parameter for severity and inhibition of experi-

mental immunoarthritis in the rat by Sandow et al. (1971).
Pircio et al. (1975) recommended a method for the evaluation of analgesic activity using adjuvant-

induced arthritis in rats. The degree of vocalization was recorded from five rats placed together in a
counting chamber.

Cruwys et al. (1994) sensitized rats on day 0 and 7 with multiple intradermal injections of methylated
bovine serum albumin emulsified in Freund’s complete adjuvant. On day 21, the animals were challenged
by the intra-articular injection of 100 ml 0.5 % solution of methylated bovine serum albumin into the right
knee. The progress of the monoarticular arthritis was monitored by daily measurement of joint diameter.

Butler et al. (1991) described a limited arthritic pain model for chronic pain and inflammation studies
using injections of 0.05 ml of complete Freund adjuvant into the left tibiotarsal joint of
Sprague–Dawley rats.

Issekutz et al. (1994) studied the role of tumor necrosis factor-alpha and IL-1 in polymorphonuclear
leukocyte and T lymphocyte recruitment to joint inflammation in adjuvant arthritis.

Esser et al. (1995) measured radiographic changes in adjuvant-induced arthritis in rats by quantitative
image analysis. Digitized radiographs of the calcaneus were examined for changes in the mean and in the
distribution of gray values. Periostal new bone formation was measured as an increase in image area of the
calcaneus.

Mercuric chloride (HgCl2) induces a syndrome of autoimmunity in Brown Norway rats characterized
by a variety of IgG antibodies; very high concentrations of serum IgE, proteinuria, leukocytoclastic
vasculitis which predominantly affects the cecum; and an inflammatory polyarthropathy (Kiely
et al. 1995, 1996).

Kawahito et al. (2000) reported that 15-deoxy-D12,14-PGJ2 which activates PPAR-a induces
synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. Cuzzocrea et al. (2002) found
that prostaglandin 15-deoxy-D12,14-prostaglandin J2 attenuates the development of acute and chronic
inflammation.

Bolon et al. (2004) described a method for rapid quantification of intralesional osteoclasts in the hind
paws of Lewis rats with adjuvant-induced arthritis. A 4-mm-thick section of the decalcified hind paw was
stained to demonstrate osteoclasts using an indirect immunoperoxidase method and a rabbit antihuman
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monoclonal antibody directed against the osteoclast marker cathepsin K, which is an osteoclast protease
primarily responsible for the resorption of bone. The sections were evaluated using tiered, semiquanti-
tative criteria to grade bone erosions and intralesional osteoclasts.

Kong et al. (1999), Campagnuolo et al. (2002), and Bolon et al. (2002a, b) used Lewis rats with
adjuvant arthritis to describe the effects of osteoprotegerin, an endogenous antiosteoclast factor for
protecting bone in rheumatoid arthritis.

Francischi et al. (2000) described anti-inflammatory and analgesic effects of the phosphodiesterase
4 inhibitor rolipram in the rat model of adjuvant-induced arthritis.

Boyle et al. (2001) reported anti-inflammatory effects of a non-nucleoside adenosine kinase inhibitor in
rat adjuvant arthritis.

Fujisawa et al. (2002) demonstrated the effects of highly water-soluble matrix metalloproteinase
inhibitors in a rat adjuvant-induced arthritis model.

Wei et al. (2004) described the effects and mechanisms of a dual inhibitor of interleukin-1 and tumor
necrosis factor on adjuvant arthritis in rats.

Boe et al. (1999) reported that interleukin 6 knockout mice are resistant to antigen-induced experi-
mental arthritis.

Gauldie et al. (2004) described a robust model of adjuvant-induced chronic unilateral arthritis in two
mouse strains. DBA/1 and C57BL/6 male mice were injected intra-articularly into a stifle joint with FCA
(5 mg in 5 ml) once per week for 4 weeks. Measurements of joint diameter and joint histopathology were
used to monitor the course of arthritis. Inflammatory hyperalgesia was assessed as the pressure causing a
limb withdrawal. Standard drugs, such as indomethacin or prednisolone, caused a decrease in joint
inflammation and associated hyperalgesia.

Kim and Moudgil (2009) reviewed the genetic and other determinants of both susceptibility and
resistance to adjuvant-induced arthritis in the rat, and Snekhalatha et al. (2013) conduced a detailed
characterization of adjuvant-induced arthritis in the rat model comparing thermography, radiological
imaging, and histopathology, a work extended by Vollmer et al. (2014) who used near-infrared fluores-
cence imaging to monitor the progress of experimental-induced arthritis in several rat models.

The adjuvant-induced arthritis model has been used to profile the activity of a number of candidate
drugs which include DHOH, p38 and JAK inhibitors (Balague et al. 2012), bee venom (Darwish
et al. 2013), peptides from heat shock protein 65 (Shi et al. 2014), and the saponin astragaloside IV
(Wang 2014).

Consden et al. (1971), Cooke and Jasin (1972), Cooke et al. (1972), and Jasin and Cooke (1977)
produced a chronic experimental monoarthritis by intra-articular injection of antigens into previously
immunized rabbits.

Henderson et al. (1990) induced monoarticular arthritis in ovalbumin-sensitized rabbits by intra-
articular injection of ovalbumin (antigen-induced arthritis) or in naive rabbits by injecting hyaluronic
acid mixed with the polycation poly-D-lysine (polycation-induced arthritis).
Arner et al. (1995) compared the alterations in proteoglycan metabolism in antigen-induced arthritis

and polycation-induced arthritis in rabbits and determined the involvement of interleukin-1 in the
cartilage degradation that occurs in these models of rheumatoid arthritis.

Lewthwaite et al. (1995) studied the antifibrotic action of interleukin-1 receptor antagonist in antigen-
induced monoarticular arthritis in New Zealand white rabbits.

Arthritis occurs in pigs due to infection with Erysipelothrix rhusiopathiae (Ajmal 1969). Experimental
erysipelothrix infection in pigs can be used as a model for rheumatism research (Schulz et al. 1975a, b,
1977). Infections are established by oral or parenteral administration of standardized serotype
B erysipelas strains.

Erysipelothrix arthritis could also be produced in rats and rabbits (White et al. 1975; Glynn 1977).
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Arthritis due to infection with Mycoplasma synoviae occurs naturally among domestic poultry (Olson
et al. 1954, 1964). Arthritis in chickens after mycoplasma infection has been used as experimental model
(Kerr and Olson 1970; Cullen 1977).

Experimental models of arthritis due to streptococcal infections have been proposed for various
species: mice (Cayeux et al. 1966; Hook et al. 1960; Ohanian et al. 1969), rats (Jasmin 1967; Koga
et al. 1973), rabbits (Cecil et al. 1939; Cook and Fincham 1966; Ginsburg et al. 1968, 1977; Norlin 1960;
Shimizu et al. 1958; Stein et al. 1973), and pigs (Roberts et al. 1968, 1969).

Avridine-Induced Arthritis The injection of avridine [N,N-dioctadecyl-N0,N0-bis (2-hydroxyethyl)
propanediamine/CP-20961], emulsified in Freund’s adjuvant, at the base of the tail is arthritogenic in
susceptible rat strains (Meacock et al. 1994; Brun et al. 1995; Vingsbo et al. 1995; Lorentzen and
Klareskog 1997; Joe and Wilder 1999; Van Bilsen et al. 2004).
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Collagen Type II-Induced Arthritis in Rats

Purpose and Rationale As reported by Trentham et al. (1977), intradermal injection of homologous or
heterologous type II collagen in incomplete Freund’s adjuvant results in an inflammatory polyarthritis in
rats. The demonstration of antibodies to collagen in patients with rheumatic polyarthritis suggests that
autoimmunity may contribute to the pathophysiology of synovitis and joint destruction. Because of the
similarities of the symptoms in rats to human disease, the test is considered to be useful to detect anti-
inflammatory and immunosuppressive properties of test compounds.

Procedure Bovine type II collagen is prepared from nasal septum cartilage, which is cut into small
fragments, frozen in liquid nitrogen, and pulverized in a freezer mill. Proteoglycans are extracted
overnight by stirring 25 g of pulverized cartilage in 1 l of 0.2 N NaOH. Following centrifugation at
20,000 g for 30 min, the residue is washed with 250 ml of absolute ethanol, the supernatant aspirated, and
the residue vacuum dried. Hundred mg pepsin is added to 150 ml of 0.5M acetic acid, after which 1.0 g of
cartilage is added to reach a cartilage to pepsin ratio of 10:1 (w/w). The mixture is stirred 18 h at room
temperature and centrifuged at 20,000 g for 1 h. Acid soluble collagen present in the supernatant is
precipitated by adding NaCl to reach a final concentration of 0.9 M, followed by centrifugation at
20,000 g for 1 h. The precipitate from 1.0 g cartilage is dissolved in 100 ml 1.0 N NaCl/0.005 M
Tris–HCl, pH 7.5, and stirred for 3 days. Then, the solution is dialyzed against 0.02 M Na2HPO4, pH 9.4,
and the precipitate collected by centrifugation at 30,000 g for 1 h. The pellet is dissolved in 0.5 M acetic
acid, dialyzed against 6 l of 0.01 M acetic acid, and lyophilized. All procedures, unless otherwise stated,
are performed at 4 �C.

Test procedure. Collagen is dissolved in a concentration of 2.0 mg/ml in 0.1 M acetic acid overnight at
4 �C. This solution is added dropwise to an equal volume of chilled incomplete Freund’s adjuvant. Six to
12 male Wistar rats with an initial weight of about 120 g are used for each group. On day 1, each rat
receives a total of 0.5 mg collagen in 0.5 ml, equally divided, in five sites. All injections are intradermal,
one at the base of each appendage and one in the nape of the neck. Seven days postimmunization, the
animals receive identical booster injections. Control animals receive only the incomplete Freund’s
adjuvant diluted with 0.1 M acetic acid.

The volume of both hind paws is measured plethysmographically on day 20. To minimize the
possibility of including animals with minimal transient disease, only animals with a paw volume of
1.8 ml or greater are used for further testing. From days 20–40, the animals receive the test compounds
p.o. once a day. On day 41, the paw volumes are recorded again.

Evaluation The paw volumes of treated animals are recorded plethysmographically. The increase versus
day 20 is calculated. The increase is compared with that of controls or animals treated with a standard
drug. Otherwise, arthritic scores can be determined. Nonsteroidal anti-inflammatory drugs such as
indomethacin in a dose of 2 mg/kg p.o. or phenylbutazone in a dose of 150 mg/kg p.o., but not
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acetylsalicylic acid in a dose of 50 mg/kg p.o., have been found to be active. Likewise, corticosteroids and
immunosuppressives, but not D-penicillamine, were active.

Critical Assessment of the Method Nonsteroidal and steroidal anti-inflammatory compounds are
detected by this method which, however, does not allow a separation between these two groups.

Modifications of the Method From studies with a neutrophil elastase inhibitor, Janusz and Durham
(1997) concluded that the destruction of the joints in rat collagen-induced arthritis is at least partially due
to neutrophil elastase.

Romas et al. (2002) reported that osteoprotegerin reduces osteoclast numbers and prevents bone
erosion in collagen-induced arthritis in Dark Agouti rats.

Studies in Mice Hom et al. (1988), Takagishi et al. (1986, 1992), Cannon et al. (1990), Nemoto
et al. (1992), and Carlson et al. (1992) described the effects of immunomodulating agents in collagen-
induced arthritis in mice.

Wooley et al. (1993) investigated the anti-arthritic effect of recombinant human interleukin-1 receptor
antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice.

Joosten et al. (1994) found an accelerated onset of collagen-induced arthritis in DBA1 lac/J mice by
remote inflammation.

Miesel and Haas (1993), Miesel et al. 1994a, b) studied the effects of an active center analogue of
Cu2Zn2-superoxide dismutase in collagen type II-induced arthritis. Furthermore, the authors described a
model potassium peroxochromate-induced inflammation in rats and mice. One to 3 mmol/kg K3CrO8 was
administered by intraplantar application into the left hind paws of anesthetized rats or mice. Arthritis
index was assessed by a score system, or the inflammatory response was quantified scintigraphically
under a gamma camera by intravenous injection of 500 mCi Na99mTcO4.

Kumar et al. (1997) compared the cellular mechanisms involved in the control of collagen II-induced
arthritis and experimental autoimmune encephalomyelitis in mice.

Ruchatz et al. (1998) studied the role of IL-15 in development of antigen-induced immunopathology in
collagen-induced arthritis in DBA/1 mice. A soluble fragment of IL-15 receptor profoundly suppressed
the symptoms of collagen-induced arthritis.

Joosten et al. (1999) immunized male DBA-1 mice with 100 mg bovine type II collagen in CFA
enriched with Mycobacterium tuberculosis H37Ra (4 mg/ml) at the base of the tail. The mice were
boosted i.p. with 100 mg collagen dissolved in saline. After disease onset on day 28, the mice were treated
either with dimerically linked PEGylated soluble p55 TNFR1 receptor or with purified rabbit anti-murine
IL-1a and anti IL-1b. IL-1ab blockade prevented cartilage and bone destruction, whereas TNF-a
blockade only ameliorated joint inflammation.

Using a similar protocol, Plater-Zyberg et al. (2001) found a therapeutic effect of neutralizing
endogenous IL-18 activity in the collagen-induced model of arthritis and Lubberts et al. (2004) after
treatment with a neutralizing anti-murine interleukin-17 antibody.

Cuzzocrea et al. (2003) found a reduction in the evolution of murine type II collagen-induced arthritis
by treatment with rosiglitazone, a ligand of PPARg.

McIntyre et al. (2003) reported that a highly selective inhibitor of IkB kinase blocked both inflamma-
tion and destruction in collagen-induced arthritis in mice.

Chen et al. (2003) tested orally active inhibitors of TNF synthesis as anti-rheumatoid arthritis drugs
using collagen-induced arthritis in male DBA/1 J mice.

Nakae et al. (2002, 2003) generated IL-17-deficient mice and found a suppression of collagen-induced
arthritis.
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Podolin et al. (2005) described attenuation of murine collagen-induced arthritis by a selective small-
molecule inhibitor of IkB kinase 2, occurring via reduction of proinflammatory cytokines and antigen-
induced T cell proliferation.

Kuno et al. (2006) reported anti-inflammatory activity of a non-nucleoside adenosine deaminase
inhibitor in mice.

Hegen et al. (2008), Bevaart et al. (2010), Bolon et al. (2011), and Roy and Ghosh (2013) reviewed the
utility of animal models in arthritis and their suitability for therapeutic target evaluation and correlation
with clinical treatment of human rheumatoid arthritis. Many compounds have been evaluated in collagen-
induced arthritis including inhibitors of the Bruton’s tyrosine kinase (Liu et al. 2011), inhibitors of
Sphingosine-1-phosphate (Fujii et al. 2012), and agonists of the nicotinic alpha7 receptor
(Hu et al. 2014). Consistent with this finding, the role of the cholinergic pathway as an anti-inflammatory
mechanism has been explored in this model (Levine et al. 2014). Furthermore, technological advances for
imaging inflammation and monitoring therapeutic responses have been developed (Balducci et al. 2012;
Sevilla et al. 2015), which may help progress the discovery and development of new drugs, where
differentiation from drugs currently in clinical practice is mandated.
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Proteoglycan-Induced Progressive Polyarthritis in Mice

Purpose and Rationale Glant et al. (1987, 1992), Mikecz et al. (1987, 1990), and Poole (1989)
described a proteoglycan-induced progressive arthritis and spondylitis in BALB/c mice as an animal
model displaying similarities to human rheumatoid arthritis and ankylosing spondylitis as indicated by
clinical assessments, immunological parameters, and histopathological studies of diarthrodial joints and
spine.

Procedure High buoyant density cartilage proteoglycans are prepared from fetal and adult human,
canine or bovine articular cartilages, as well as 1-week-old mouse epiphyseal cartilage. Fetal human
articular cartilage proteoglycan digested with chondroitinase ABC (Hascall and Heinegård 1974) is used
to induce arthritis in female BALB/c mice. The mice are sensitized by intraperitoneal injection of 100 mg
of chondroitinase ABC-treated proteoglycan in 100 ml of phosphate-buffered saline, pH 7.2, and in
Freund’s complete adjuvant in a 1:1 emulsion. They are reinjected twice more with the antigen in
incomplete Freund’s adjuvant after 1 and 3 weeks. All BALB/c mice immunized with human articular
cartilage proteoglycan develop arthritis in diarthrodial joints after the third antigen injection. Sera from
mice with progressive polyarthritis are tested for antibodies to arthritogenic proteoglycans during weeks
12–18 of immunization. The limbs of all mice are examined daily to record clinical arthritic changes.
Swelling and redness, as the first symptoms of arthritis, and the thickness (diameter) of the knee, ankle
(intermalleolar diameter), wrist, and the dorsovolar thickness of the paw are recorded three times a week.
The most objective joint diameter is the intermalleolar one. The animals are treated with test drug or
vehicle for 12 weeks and serum samples taken by retro-orbital puncture for determination of antibodies to
proteoglycans. Seven weeks later, the mice are sacrificed, and limbs, tails, and lumbar spine are fixed,
decalcified, and embedded in paraffin for histological examination.

Evaluation Mean values of intermalleolar diameter and antibody titers of treated and non-treated
animals are compared by nonparametric statistics.

Modifications of the Method Stimpson and Schwab (1989) described a chronic remittent erosive
arthritis in rats induced by bacterial peptidoglycan-polysaccharide structures.

Glant et al. (2011) extended this model to generate a model based on recombinant human glycan1
containing T cell epitopes suspected of being arthritogenic. Delemarre et al. (2014) explored the efficacy
of autologous bone marrow transplantation in this model showing a stabilization of arthritis scores, and
Swart et al. (2014) showed that mesenchymal stem therapy provided by either the intra-articular or
intraperitoneal route may suppress proteoglycan-induced arthritis in a murine model.
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Pristane-Induced Arthritis in Mice

Purpose and Rationale The mineral oil 2,6,10,14-tetramethylpentadecane (known as pristane) induces
a chronic inflammatory arthritis in mice after intraperitoneal injection (Potter and Wax 1981; Hopkins
et al. 1984;Wooley et al. 1989; Chapdelaine et al. 1991;Wooley andWhalen 1991; Levitt et al. 1992; Abe
et al. 1995; Thompson et al. 1998;Wooley et al. 1998; Vigar et al. 2000). The immunological involvement
in the pathogenesis of pristane-induced arthritis was studied by several authors (Bedwell et al. 1987;
Thompson et al. 1990; Ghoraishian et al. 1993; Nishikaku et al. 1994; Vingsbo et al. 1996; Stasiuk
et al. 1997; Morgan et al. 2004). Moreover, the genetic basis for the susceptibility to pristane-induced
arthritis was studied (Lu et al. 2002; Olofsson et al. 2003; Brenner et al. 2005; Jensen et al. 2006). Not only
in mice but also in rats arthritis could be induced by pristane injections (Vingsbo et al. 1996; Zheng
et al. 2002, 2003; Webster et al. 2003; Holmberg et al. 2006).

Patten et al. (2004) characterized the model of pristine-induced arthritis (PIA) in mice by studying the
response to antirheumatic agents, expression of joint cytokines, and immunopathology.

Procedure

Induction and Characterization of PIA Male DBA/101aHsd mice were placed under isoflurane anesthe-
sia and injected intraperitoneally with 0.5 ml of pristane (Sigma-Aldrich, Poole, UK), and an identical
booster injection was given 7 weeks thereafter. The severity of arthritis was graded visually by assessing
the level of swelling in each paw, including the tarsus (ankle) or carpus (wrist) joints. The following
scoring system was used: 0.5 = swelling of toes only or very slight ankle/wrist swelling; 1 = slight
swelling of paw; 2 = moderate swelling of paw; 3 = marked swelling of paw; and 4 = substantial
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swelling of paw. Thus, the maximum total score per animal was 16. All batches also contained animals
that were not treated with pristane, and these served as comparators for all studies undertaken.

Mice were observed for paw or toe swelling in a time-course study lasting up to 180 days after the first
pristane injection. After study termination, the initially swollen hind paws were obtained for histologic
assessment and allocated to different study groups according to the duration of swelling. The remaining
three paws of each animal were used in cytokine studies.

Drug Preparation and Administration Schedules The effects of administration of established and novel
antirheumatic compounds were assessed using a therapeutic dosing schedule. Separate batches of mice
for each drug study were monitored weekly for the development of swollen paws from day 80 after the
first injection of pristane. Mice were included in the drug studies only if they developed a score of�1 in a
hind paw on two consecutive weekly observations between day 120 and day 134 after the first injection of
pristane (n = 7–13 per treatment group). At study termination, paws were obtained for histologic and
cytokine assessments, normally at 1 h after the final drug administration.

All orally administered treatments were undertaken by gavage. Prednisolone was suspended in 0.5 %
methylcellulose and administered orally once daily at a dose of 2 mg/kg. Methotrexate was dissolved in
physiologic saline and administered intraperitoneally three times per week at a dose of 9 mg/kg. Indo-
methacin and diclofenac were suspended in 1 % methylcellulose and given orally once daily at doses of
3 mg/kg and 2 mg/kg, respectively. Celecoxib was suspended in a solution of 66 % polyethylene glycol,
33 % water, and 1 % dimethyl sulfoxide and was administered orally twice daily at a dose of
30 mg/kg. Etanercept was dissolved in the supplied vehicle according to the instructions of the manu-
facturer and diluted using physiologic saline and was administered intraperitoneally three times per week
at doses of 300 mg and 100 mg per mouse. Murine sTNFR, consisting of twomurine p75 receptors fused to
murine IgG2a, was dissolved in physiologic saline and administered intraperitoneally three times per
week at doses of 300 mg and 100 mg per mouse. The selective p38 MAPK inhibitor SB242235
(synthesized at the US GSK Research Center) was suspended in 0.5 % tragacanth and 0.03 M
hydrochloric acid and given orally twice daily at doses of 30 mg/kg and 15 mg/kg.

Joint Cytokine Messenger RNA (mRNA) and Protein Assays The levels of mRNA and protein for the
proinflammatory cytokines TNFa, IL-1b, and IL-6 were measured in disaggregated joints by TaqMan
real-time reverse transcription-polymerase chain reaction (PCR) and enzyme-linked immunosorbent
assays (ELISAs), respectively. At study termination and, in the drug studies, 1 h after the final drug
treatment administration, the primary ankle joint was removed for histology, and the remaining paws were
removed and snap-frozen in liquid nitrogen (six to eight mice per group). For cytokine assessment, the
paw showing the highest score for swelling was selected with the proviso that it had also been swollen at
the start of the drug study. If the remaining three paws exhibited no swelling at study termination, then the
remaining ankle was selected for assay. Whole paws were frozen and pulverized using a mortar and pestle
filled with liquid nitrogen.

For the mRNA studies, total RNA was isolated from homogenized paws using RNeasy Mini Kits
(Qiagen, Crawley, UK). Samples were treated with 10 units of RNase-free DNase (Qiagen) for 15 min
during the RNA isolation process. Reverse transcription of mRNAwas carried out using TaqMan reverse
transcription reagents in an MJ Research PTC-200 PCR Peltier Thermal Cycler. TaqMan probes and
forward and reverse primers for the genes of interest (TNFa, IL-1b, and IL-6) and for housekeeping genes
(GAPDH and cyclophilin) were designed with Primer Express TM software (PE Applied Biosystems).
Cytokine mRNA expression levels were quantified by TaqMan real-time PCR using the ABI Prism 7900
Sequence Detector System (PE Applied Biosystems).
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Measurement of Serum Antibody Levels Blood was withdrawn from all mice before pristane injection and
monthly thereafter. Levels of antibodies were determined by ELISA. Plates were coated with 100 ml of
coating buffer (0.4 M phosphate buffer, pH 7.6) containing 5 mg of each antigen, at 4 �C overnight. The
antigens assessed were bovine aggrecan, bovine biglycan, human endoplasmic reticulum molecular
chaperone protein, bovine chondroitin sulfate A, bovine chondroitin sulfate B, bovine type I collagen,
chick type II collagen, murine type II collagen peptide, bovine decorin, bovine double-stranded DNA,
human fibronectin, lupine glucose-6-phosphate isomerase, mycobacterial 65-kDa heat shock protein,
murine aggregated IgG, joint extract from normal mice, and joint extract from arthritic mice. Plates were
washed three times with 0.05 % Tween 20 in PBS, and nonspecific binding was blocked by 5 % nonfat
milk in PBS overnight at 4 �C. Serum samples from at least six individual mice per time point were used.
Since 1:100 was the dilution determined to produce the optimal response to high-density proteoglycans,
mouse serum diluted 1:100 in 5 % milk/PBS was added to each well and incubated overnight at
4 �C. Subsequently, the plates were washed six times with 0.05 % Tween 20 in PBS and incubated
with alkaline phosphatase-conjugated goat anti-mouse IgG (Southern Biotechnology Associates, Bir-
mingham, Ala., USA) at 37 �C for 1 h. Plates were again washed six times and developed for 40 min in the
dark, using p-nitrophenyl phosphate as a chromatogen substrate. The optical density was measured at
405 nm (OD405nm) using an ultraviolet max spectrophotometer (Molecular Devices, Sunnyvale, Calif.,
USA). To ensure uniformity of the assay, negative control sera obtained prior to blood withdrawal and a
standard mouse anti-type II collagen antiserum were titered on each plate. Antibody binding was
expressed as the OD405nm in units, blanked against control.

Isolation of Splenocytes and Cell Proliferation Assays Spleens were excised and immediately immersed
in PBS. Tissue was mechanically disrupted to release cells, which were suspended in 10 ml of sterile PBS
and centrifuged for 10 min at 1,500 rpm. Prior to resuspension in medium, red blood cells were removed
from the spleen preparations by adding distilled water for 10 s and then adding PBS. Spleen cells were
then counted using a hemocytometer and washed and resuspended in RPMI at a final concentration of
2.5 � 106/ml.

Next, 100 ml of spleen cell aliquots (2.5 � 106/ml) was transferred to 96-well plates with 50 mg/ml of
each antigen (aggrecan, biglycan, chondroitin sulfate A, chondroitin sulfate B, type I collagen, type II
collagen, type II collagen peptide, decorin, fibronectin, and heat shock protein; all were derived from the
same species as described for the serum antibody studies) in complete RPMI 1640 medium. Cells were
incubated for 72 h at 37 �C in the presence of antigen. Then 20 ml of MTT solution (a mitochondrial
enzyme substrate) was added to each well (5 mg/ml). After a 6-h incubation, the culture supernatant was
discarded, and 200 ml of 10 % sodium dodecyl sulfate solution was added to each well. After incubation at
37 �C overnight, the OD590nm was read by microplate photospectrometer (Molecular Devices). The mean
OD values were recorded for each cell sample as a measure of antigen stimulation. Antigen-specific
responses were calculated as follows: (OD590nm [stimulated culture]) – (OD590nm [spontaneous prolifer-
ation culture]).

Histopathologic Evaluation In all studies, the primary ankle joint that was swollen at the beginning of the
time-course study or drug study was excised and fixed in 10% neutral buffered formalin. The tissues were
decalcified with formic acid and embedded in paraffin blocks. Sections (4–7 mm) were cut along a
longitudinal axis, mounted, and stained with hematoxylin and eosin or toluidine blue, and representative
slides for each animal were assessed. The following features were scored in six to ten animals per group:
inflammatory exudate, neutrophil and mononuclear cell infiltration, bone resorption, and synovial
hyperplasia. For drug studies, the effects of the agents on the pristane-induced pathologic condition
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were scored as follows: + = mild inhibition of pathologic features, ++ = moderate inhibition of patho-
logic features, and +++ = marked inhibition of pathologic features.

Evaluation Graphic and tabular data are expressed as the mean � SEM. Statistical significance was
tested by application of the Kruskal–Wallis test for clinical scores and by analysis of variance followed by
Dunnett’s test for the cytokine mRNA and protein time-course results. Antibody and cell proliferation
studies were analyzed using the least-squares significant difference post hoc test.

Modifications of the Method Brenner et al. (2006) published thermal signature analysis as a novel
method for evaluating inflammatory arthritis activity using rats with Freund’s adjuvant-induced
monoarthritis and pristane-induced arthritis. The thermal imaging system employs a platinum silicide
256 � 256 pixel detector array filtered to be sensitive to infrared radiation at a wavelength of 3–5 mm.

Lange et al. (2005) investigated the mode of action of methotrexate in different models for rheumatic
arthritis, such as fibroblast-induced arthritis in SCID mice, collagen-induced arthritis and anti-collagen II
antibody-induced arthritis in rats, and pristane-induced arthritis in DA rats, and models of multiple
sclerosis, such as experimental autoimmune encephalomyelitis in (Balb/c � B10.Q) F1 and B10.Q mice.

Pristane induces lupus-like kidney and pulmonary disease in mice (Satoh et al. 1995; Richards
et al. 1998; Lin et al. 2004; Chae et al. 2006).

De Franco et al. (2014) used the pristane-induced arthritis model to dissect genetic determinants for
high inflammation susceptibility and demonstrate the involvement of loci interaction with the Slc11a1
gene.
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Streptococcal Cell Wall-Induced Arthritis

Purpose and Rationale Streptococcal cell wall (SCW)-induced arthritis is a chronic and erosive
polyarthritis which may be induced in susceptible Lewis rats by a single injection of a sterile, aqueous
suspension of SCW via the intraperitoneal route of administration (Cromartie et al. 1977).

The model has been used to study the efficacy of a number of experimental drugs which include the
immunosuppressant cyclosporine A (Yocum et al. 1986); antibodies to IL-4, IL-10, interferon-g, and
monocyte chemotactic protein-1 (Schrier et al. 1998; Schimmer et al. 1998); the phosphodiesterase
inhibitor rolipram (Laemont et al. 1999); the bisphosphonate clodronate (Richards et al. 2001); N-butyryl
glucosamine (Wang et al. 2007); an inhibitor of the purinoreceptor P2X7 (McInnes et al. 2014); and the
TNF-a inhibitor etanercept (Chakravathy et al. 2014).

Procedure Lewis rats, typically 120–150 g at the start of the study, receive an injection into the ankle
joint of SCW (Lee Laboratories, Grayson, GA, USA). Susceptible animals can be identified by intra-
articular injection of SCW (5 mg) into the ankle joint up to day 21 prior to any therapeutic intervention,
which may reflect an acute phase of arthritis induction. The chronic, reactivation phase of the study,
during which therapeutic intervention is typically investigated, is achieved by intravenous injection of
SCW (100–200 mg). Studies normally run for 6–7 days post intravenous injection of SCWbut may run for
up to 30 days; animals are sacrificed prior to and after intravenous challenge for blood analysis and ankle
joint assessment.

Evaluation Disease severity is typically assessed using the following criteria:
1. A direct measurement of ankle swelling and mechanical hyperalgesia by von Frey threshold using

nylon filaments
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2. Assessment of histopathological measures which typically include synovitis, inflammation of synovial
sub-lining, chondronecrosis, and subchondral bone resorption

3. Radiographical assessment of joint structure

It is also common practice to take blood samples for analysis of biomarkers and drug pharmacokinetics.
Rioja et al. (2005) conducted an extensive analysis of the gene expression profile in response to
SCW-induced arthritis.

Modification of theMethod Kuiper et al. (1998) used a single intravenous injection of SCw (25 mg) and
assessed the effects of TNF-a and IL-1b blockade by administration of anti-cytokine antibodies 1 h prior
to arthritis induction. Wang et al. (2007) induced arthritis by a single intraperitoneal injection of SCW
(15 mg/g weight of rat) and studied the disease-modifying effects of N-butyryl glucosamine commencing
the day after SCW injection.
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Experimental Autoimmune Thyroiditis

Purpose and Rationale Immunization of rats or mice with porcine thyroglobulin results in thyroiditis
(Vladutiu and Rose 1971; Vladutiu 1983; McGregor et al. 1983; Hassman et al. 1985; Salamero
et al. 1987; Fournier et al. 1990).

Procedure Crude porcine thyroglobulin (PTg) solution is emulsified in complete Freund’s adjuvant in a
1:1 ratio. Female mice (6–8 weeks old) are primed with 50 mg PTg given s.c. into four or five sites of
injection and are boosted 14 days later with the same dose of PTg (s.c.) emulsified in incomplete Freund’s
adjutant. The test compounds are administered from day 0 (at priming) until day 21. Mice are bled on day
21 and on day 28 after priming. The sera are tested for the levels of anti-PTg antibodies using an enzyme-
linked immunosorbent assay (ELISA). On day 28, the animals are sacrificed and the thyroid glands
prepared. Five-micrometer-thick sections are stained with Masson-Goldner’s trichrome solution.

Evaluation The histological severity of experimental autoimmune thyroiditis is graded as a function of
mononuclear cell thyroid infiltration indices:
1. Interstitial accumulation of inflammatory cells distributed between two or more follicles
2. One or two foci of inflammatory cells reaching at least the size of one follicle
3. 10–40 % of the thyroid replaced by inflammatory cells
4. More than 40 % of the thyroid replaced by inflammatory cells

Mean values of treated animals are compared with controls.

Modifications of the Method Castagliola et al. (1994) induced autoimmune thyroid disease in BALB/c
mice by immunizing with the extracellular domain of the human TSH receptor expressed as a maltose-
binding protein fusion in bacteria. This type of thyroiditis could be transferred to naive BALB/c and NOD
mice (Castagliola et al. 1996).

Green et al. (1995) described a spontaneous model of autoimmune thyroiditis in MRL-lpr/lpr mice.
Furthermore, Green et al. (1996) induced thyroiditis in Lewis rats by immunization with thyroid extract

and thyroglobulin. A reduction of the gap junction proteins connexin 43, connexin 32, and connexin
26 was found in diseased thyroid tissue.

Wang et al. (2014) showed that overexpression of the human BH3 interacting-domain death agonist
(BID) in the thyroids of transgenic mice may increase their sensitivity to iodine-induced autoimmune
thyroiditis, noting that BID expression alone is not sufficient to induce thyroiditis.
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Coxsackievirus B3-Induced Myocarditis

Purpose and Rationale The effects of immunosuppressant drugs can be studied in the murine model of
coxsackievirus B3 myocarditis.
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Procedure Three-week-old male BALB/c mice are kept for 7 days before the experiment in a single, self-
contained animal isolation unit to exclude pre-diseased animals. They are maintained in disposable, filter-
topped cages and handled with gloves by gowned and masked personnel. The intraperitoneal route is used
for injection of virus in a 0.5 ml volume.

The CVB3 virus strain is grown on either Hep-2 or VERO cells, aliquoted, and maintained at �70 �C
until use. At the time of infection, seed virus is grown on either VERO or LLC-MK-2 cells with
Dulbecco’s modified Eagle medium, 12 % fetal calf serum, and gentamicin. Virus is harvested and
adjusted to an inoculum of 1.75 � 107 plaque-forming units/0.5 ml RPM-1640. The test drugs are given
subcutaneously daily for 8 days. On day 8, the animals are sacrificed, the hearts rapidly removed, and
divided into two equal cross sections. The basal portion is snap frozen for isolation of virus and
determination of drug level. The apical portion is fixed in 10 % formalin, dehydrated, and embedded in
paraffin. Five-mm sections are stained with hematoxylin–eosin and Masson’s trichrome stains. The bases
of the individual hearts are minced with a sterile scalpel, suspended in 1ml RPMI-1640, and homogenized
in a glass tissue grinder. The suspension is centrifuged at 8,000 g for 10 min at 4 �C. Supernatants are
harvested and frozen at �70 �C until assay. Serial tenfold dilutions of heart homogenates in minimum
essential medium are layered on confluent, 72-h-old VERO cells that had been grown in 96-well
microtiter plates. Monolayers are checked daily for 7 days for presence or absence of virus and rate of
cell destruction.

Evaluation The slides are examined by two observers blinded to the slide code, and inflammation and
necrosis are quantitated.

Modifications of theMethod Lane et al. (1991) showed that lipopolysaccharides promote CB3-induced
myocarditis in otherwise resistant B10. A mice.

Beisel et al. (1991) identified a putative shared epitope between coxsackievirus B4 and mouse alpha
cardiac myosin heavy chain.

Gauntt et al. (1993) found that epitopes shared between coxsackievirus B3 and normal heart tissue
contribute to CVB3-induced myocarditis in mice.

Xu et al. (2004) used the murine model to deliver a chitosan–DNA vaccine and showed protection
against acute CVB3 challenge. Park et al. (2009) and Yue et al. (2009) further explored approaches
supportive of potential immunotherapeutics in this model using pancreatitis as an additional endpoint
(Park et al. 2009). The model has also been used to investigate the innate immune response as a predictor
for the progression of cardiovascular disease and heart failure in male mice (Onyimba et al. 2011) and to
better understand the efficacy of further immunotherapeutic approaches where oral administration of
interferon-a2b-transformed Bifidobacterium longum was shown to protect animals from CVB3-induced
myocarditis (Yu et al. 2011).

A number of other agents have been tested in this model and include galectin-9 which ameliorated
CVB3-induced myocarditis (Lv et al. 2011), IL-17 which was found to be protective (Xie et al. 2012), and
the micro-RNA miR-21 which alleviated CVB3-induced myocarditis (He et al. 2013). A comparison of
the effects of ivabradine and carvedilol showed an expected effect on heart rate reduction and a potential
anti-inflammatory effect in the CVB3-induced myocarditis model.

Instead of coxsackievirus B3, Monrad et al. (1986) used encephalomyocarditis virus to induce
experimental myocarditis in mice.
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Porcine Cardiac Myosin-Induced Autoimmune Myocarditis in Rats

Purpose and Rationale Pummerer et al. (1991), Inomata et al. (1995), Suzuki (1995), and Dimitrijevic
et al. (1998) described autoimmune myocarditis in rats induced by porcine cardiac myosin.

Procedure Male Sprague–Dawley or Lewis rats at the age of 8–10 weeks are immunized with porcine
cardiac myosin either purchased from Sigma (St. Louis, MO, USA) or prepared from the ventricular
muscle of porcine hearts according to Murakami et al. (1976). The cardiac myosin fraction is dissolved in
phosphate buffer at a concentration of 10 mg/ml. The antigen solution is emulsified with equal volume of
complete Freund’s adjuvant supplemented with heat-killed mycobacterium tuberculosis. Rats are injected
subcutaneously into the foot pad with an immunizing dose of 5 mg of antigen in complete Freund’s
adjuvant/kg of body weight. Rats are injected intraperitoneally with test compounds either from day 0 to
6 (early treatment group) or from day 14 to 20 (late treatment group).

Immunized rats are sacrificed on days 8, 16, 21, and 34, respectively. Disease course and severity are
analyzed by macroscopic findings of the hearts and heart weight/bodyweight ratio as well as by
histological and immunohistochemical analysis. Macroscopic findings are scored as follows: 0, normal
finding; 1, presence of focal discolored area on the surface; and 2, presence of diffuse discolored areas
(Kodama et al. 1995).

The hearts are removed and weighted immediately after the rats are sacrificed, fixed in 10 % buffered
formalin, and embedded in paraffin. Serial section (5 mm in thickness) is stained with hematoxylin–eosin.
The severity of myocarditis is determined according to the following scoring system: 0, no inflammation;
1, histological cross section infiltrated up to 5 %; 2, 5–10 % infiltrates/section; 3, 10–20 % infiltrates/
section; greater than 20 % infiltrates/section.

For immunohistochemical staining, heart samples are embedded in OCT compound (Miles, Elkhart,
IN) and rapidly frozen. Cryostat sections are cut sequentially at 7 mm in thickness, mounted on glass
slides, and prepared for immunoperoxidase staining. Sections are fixed in cold acetone for 10 min and
extensively washed in 0.1 M Tris buffer solution, pH 7.6. Murine monoclonal antibodies specific for
different rat molecules are added at appropriate concentrations. After incubation at 4 �C overnight and
further buffer washes, the sections are incubated with peroxidase-conjugated anti-mouse immunoglobu-
lins for 60 min. Peroxidase reaction is visualized with 0.05 % diaminobenzidine in 0.01 % H2O2 for
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7–8 min. The color development is stopped by washing slides in running water. All samples are lightly
counterstained with hematoxylin, mounted in gelatin/glycerol medium, and assessed by light microscopy.

Evaluation Macroscopic and microscopic scores are expressed as mean values. Body weights, heart
weights, and heart weight/body weight ratio are expressed as mean � SD. Student’s t-test for paired
samples is used for comparison data within groups in reference to time, while two-sample t-test is used for
comparison data between groups.

Modifications of the Method Koyama et al. (1995) immunized Lewis rats with human cardiac myosin
suspended in complete Freund’s adjuvant and induced severe active myocarditis with acute and chronic
heart failure. The baseline left ventricular pressure was significantly lower in the chronic phase group, and
peak dP/dt was significantly lower in both the acute phase group and the chronic phase group than in the
respective controls. The animal model was recommended to study both acute heart failure related to acute
myocarditis and chronic heart failure due to diffuse myocardial fibrosis.

Neu et al. (1990, 1991; Neu and Ploier 1991; Penninger et al. 1993) induced severe autoimmune
myocarditis in some mouse strains by immunization with cardiac myosin in complete Freund’s adjuvant.

Wahed et al. (2005) used the method of immunization with porcine cardiac myosin to test the effects of
eplerenone, a selective aldosterone blocker, on the progression of left ventricular dysfunction and
remodeling in rats with dilated cardiomyopathy.
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Experimental Allergic Encephalomyelitis

Purpose and Rationale Experimental allergic encephalomyelitis was first produced in laboratory
animals by Rivers et al. in 1933. This pathological model is an immunologic disease arising from a
delayed hypersensitivity reaction to nervous tissue. In many respects, the model resembles autoimmune
diseases, especially demyelinating diseases, in man (Constantinescu et al. 2011), and the utility of animal
models as for drug discovery and development for neurological diseases especially multiple sclerosis
(MS) has been extensively reviewed (Croxford et al. 2011; Denic et al. 2011; Pachner 2011; Singhal and
Srivastava 2012; Tian et al. 2013). The method is used for evaluation of immunosuppressive properties of
drugs (Warford and Robertson 2011; Dasgupta et al. 2011; Paris et al. 2013; Mondal and Pahan 2015).
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Procedure Preparation of the encephalitogen: 3 g of spinal cord from guinea pigs or rats is homogenized
with 7.5 ml bidistilled water, 3.8 ml phenol, and 7.5 ml complete Freund’s adjuvant under cooling.

Groups of 6–12 male Wistar–Lewis rats with an initial body weight of 130–200 g are used. On day
0, experimental allergic encephalomyelitis is induced by subplantar injection of 0.1 ml of the encepha-
litogen into the left hind paw. An equal volume of Bordetella pertussis vaccine concentrate (200 � 109

organisms/ml) is injected into the same foot. From days 1–2, the animals receive the test compound or
vehicle only or the standard drug by oral administration once a day. Body weights of the animals are
recorded every second day. The clinical signs of experimental allergic encephalomyelitis consist of ataxia
or paresis, i.e., grossly irregular gait and weakness of one or both hind legs followed by flaccid paralysis of
the hindquarters, urinary incontinence, fecal impaction, and abdominal wall flaccidity. Animals showing
one of these clinical signs are considered positive for the purpose of evaluation.

Evaluation Starting from day 7, the severity of clinical signs and mortality are determined daily and
scored according to the following scheme:

Score

Per 20 g loss of weight 1

Paralysis of the tail 1

Paralysis of the hind paw 3

Complete paralysis 5

Death 6

Calculation of the Results The delay of onset of the paralytic symptoms is determined. The total score per
day is recorded for treated and control groups. On the day of maximal clinical symptoms occurring among
control animals, the total score of the treated groups is compared to the total score of the control group.
The percentage change is evaluated.

Doses of 0.5 mg/kg p.o. methotrexate, 1 mg/kg p.o. hydrocortisone, and 2.5 mg/kg
p.o. cyclophosphamide were found to be active, whereas nonsteroidal anti-inflammatory compounds
were inactive.

Critical Assessment of the Method The model of experimental allergic encephalomyelitis in rats is
suitable to distinguish between immunosuppressive and anti-inflammatory drugs. Experimental autoim-
mune encephalomyelitis is considered as a rodent model of the autoimmune disease multiple sclerosis
(Pearson et al. 1997; Deng et al. 2002).

Modifications of the Method The phosphodiesterase inhibitor pentoxifylline was found to prevent
induction of experimental autoimmune encephalomyelitis in Lewis rats (Rott et al. 1993).

Martin and Near (1995) studied the protective effect of the interleukin-1 antagonist IL-1ra on exper-
imental allergic encephalomyelitis in Lewis rats.

Experimental autoimmune encephalomyelitis in different strains of mice was described by Heremans
et al. (1996), Glabinski et al. (1997), and Liblau et al. (1997).

Baker et al. (1990, 1991, 2000) induced experimental allergic encephalomyelitis in Biozzi AB/H mice
by sensitization with 1 mg of mouse spinal cord homogenate emulsified in Freund’s complete adjuvant on
days 0 and 7. The disease is characterized by relapsing–remitting episodes similar to multiple sclerosis in
human beings. Biozzi AB/H mice also develop spasticity and tremor which can be antagonized by
cannabinoids.
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A chronic relapsing–remitting form of experimental autoimmune encephalomyelitis was induced in the
common marmoset Callithrix jacchus following a single immunization with human white matter by
Massacesi et al. (1995) and Genain and Hauser (1997) and recommended as a new model for multiple
sclerosis. This model has been used for histopathological characterization of magnetic resonance
imaging-detectable white matter lesions in a primate model of multiple sclerosis by ‘t Hart et al. (1998,
2004).

Experimental allergic neuritis in several animal species has been described by Waksman and Adams
(1955, 1956),; King et al. (1983),; McCombe et al. (1990), and Nakayasu et al. (1990). This disorder has
been considered to show similarities to the Guillain–Barré syndrome in man. The demyelinating process
initiated by the injected antigens is a lymphocyte-mediated reaction in which activated macrophages strip
myelin off the axons. Hartung et al. (1987) described the adoptive transfer experimental autoimmune
neuritis in Lewis rats by injection of P2-reactive T lymphocyte cell lines.

Mix et al. (1992) studied the effect of stilbene-type anion channel blockers on the immune response
during experimental allergic neuritis induced by bovine peripheral myelin.

Kojima et al. (1994) investigated the pathogenic potential of autoimmune Tcell responses to nonmyelin
autoantigens in the Lewis rat using the astrocyte-derived calcium-binding protein S100b as a model
nonmyelin autoantigen. In contrast to the experimental autoimmune encephalomyelitis induced by the
adoptive transfer of myelin basic protein-specific T line cells, S100b-specific T cell transfer induced
intense inflammation not only in the spinal cord but also throughout the entire CNS and also in the uvea
and retina of the eye.

Gautam et al. (1992) reported that a polyalanine peptide with only five native basic protein residues
induces autoimmune encephalomyelitis in mice. This peptide, called myelin basic protein (MBP)
Ac1–11, has been used by several authors for further studies on experimental autoimmune encephalo-
myelitis (Ratts et al. 1999; Matejuk et al. 2003).

Pearson et al. (1997) reported the induction of a heterogeneous T cell receptor repertoire in (PL/JXSJL/
J) F2 mice by myelin basic protein peptide Ac1–11 and its analogue Ac1–11[4A].

Deng et al. (2002) found that expression of the tyrosine phosphatase Src homology 2 domain-
containing protein tyrosine phosphatase 1 determines the T cell activation threshold and severity of
experimental autoimmune encephalomyelitis.

Maron et al. (2002) investigated the immunological properties of Cop1 (glatiramer acetate) to deter-
mine the degree to which its effects were antigen specific using myelin basic protein T cell receptor
transgenic mice. Immunization of these mice fed glatiramer acetate, myelin basic protein, orMBPAc1–11
resulted in decreased proliferation and IL-2, IL-6, and IFN-g production and increased secretion of IL-10
and TGF-b in glatiramer acetate-fed animals.

Gilgun-Sherki et al. (2003) reported that riluzole suppresses myelin oligodendrocyte glycoprotein-
induced experimental autoimmune encephalomyelitis in mice.

Pollak et al. (2003) studied the experimental allergic encephalitis-associated behavioral syndrome and
the modulation by anti-inflammatory treatments.

Diab et al. (2004) found that ligands for the PPAR-g and the retinoid X receptor exert additive anti-
inflammatory effects on experimental autoimmune encephalomyelitis. Duckers et al. (1997) studied the
effect of a neurotropic treatment on cortical lesion development in experimental allergic encephalomy-
elitis in rats by longitudinal in vivo magnetic resonance imaging methods.
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Acute Graft-Versus-Host Disease (GVHD) in Rats

Purpose and Rationale The intravenous injection of a mixture of parental splenocytes into healthy
inbred F1-rats results in graft-versus-host (GVH)-induced immune abnormalities. This is due to
T lymphocytes in the donor inoculum that recognize the major histocompatibility alloantigens expressed
by the F1-animals. The host F1 Tcells are genetically unable to recognize antigens of the parental donor as
foreign; thus, the response involves only donor recognition of host and not host recognition of donor. The
ensuing immune abnormalities lead to clinical symptoms of an acute, lethal GVH-disease (GVHD), i.e.,
profound immunodeficiency, anemia, hypogammaglobulinemia, and runting.

Procedure Three- to 4-month-old male F1-hybrid rats of the inbred strains Lewis (Rt-1 l) and Brown
Norway (BN, Rt-1n) (Zentralinstitut f€ur Versuchstierkunde, Hannover, Germany) are used as hosts for
cell grafts from the Lewis parental strain. The bone marrow cells are obtained by flushing hind femur bone
shafts with culture medium. These cells are then pooled together with spleen cells (ratio 2 bones/1 spleen).
The cell viability, determined by trypan exclusion, has to be more than 90 %. Each recipient is injected
with about 40 � 107 cells in a 1.5 ml suspension volume. The route of injection is the penis vein, allowing
an optimal control of correct intravenous application.

Prophylactic Drug Application For this experiment, two groups of 6 F1-hybrids each are injected with the
abovementioned bone marrow/spleen cell suspension. One group receives the test drug orally and daily
until the end of the experiment, homogeneously suspended in 1 % carboxymethylcellulose (CMC)
solution. The other group receives CMC alone and, thus, serving as the GVHD control group. The
experiment is terminated 2 weeks after disease induction, i.e., 1 week after the first appearance of GVHD
symptoms. All animals are sacrificed and clinical aspects documented; spleens weighed; histology of the
skin, liver, spleen, and lymph nodes performed; and organs photographed.

Therapeutic Drug Application In this experiment, rats are separated into four groups and treatment
begins with the first sign of GVHD symptoms (beginning of the second week). Because of the expected,
greater therapeutic difficulty, the daily dose of the test drug has to be doubled, again for 2 weeks duration.

The experiment is terminated either by sacrificing those rats that are too sick to be able to move around
the cage or at the end of the 4-week observation period, regardless of the clinical condition of the animals.
The clinical-chemical parameters are determined by routine procedures conducted with a Hitachi
autotechnicon.

Evaluation The tested parameters of therapeutic success or disease, respectively, are survival rate (%),
spleen weight (g), and body weight (g) as well as clinical-chemical parameters (bilirubin, alkaline
phosphatase, creatinine, white cell count) after 2 and 3 weeks.

Modifications of the Method Gelpi et al. (1994) established a chronic graft-versus-host disease in
(C5BL/10 � DBA/2) F1 mice with an injection of lymphoid cells from the parent DBA/2 strain. Most of
the animals developed antibodies against transfer RNA/protein particles.

Mosier et al. (1988) reported transplantation of human peripheral blood lymphocytes (PBL) into severe
combined immunodeficient (SCID) mice to construct hu-PBL-SCID mice. Kim et al. (1997) suggested
these mice for routine immunotoxicity investigations using lymph nodes of intestines as the lymphocyte
sources.

Ford et al. (1970) and Schorlemmer et al. (1997, 1998) used the popliteal lymph node assay to study the
local graft-versus-host reaction. The test is based on the enlargement of the draining popliteal lymph
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nodes as a result of injecting immunocompetent cells (1 � 108 parental Lewis spleen cells) into the hind
foot pad of Lewis � Brown Norway F1 recipients. The reaction is measured at day 6 after challenge as a
gain in lymph node weights.

Xu et al. (2010) explored the effects of both rapamycin and tacrolimus in the model measuring animal
survival after liver transplantation and reporting a differential effect on survival between the two drugs.
Xia et al. (2013) investigated the effects of Trichostatin A (TSA) in the rat model of liver transplantation
and concluded that TSA did not abrogate acute graft-versus-host disease due to a downregulation of
regulatory T cells.
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Influence on SLE-Like Disorder in MRL/lpr Mice

Purpose and Rationale Systemic lupus erythematosus (SLE) is an autoimmune disease in man that
affects multiple body organs and is characterized by the development of certain types of self-antigens.
Primarily, the antibodies formed against double-stranded DNA (dsDNA), the most prevalent in this
ailment, complex together and, with complement, deposit in the small blood vessels, leading to wide-
spread vasculitis. MRL Mpf lpr/lpr (MRL/lpr) mice spontaneously develop a severe disease with many
symptoms very similar to human SLE, i.e., hypergammaglobulinemia and glomerulonephritis
(Theofilopoulos and Dixon 1981). Recent years have seen the development of numerous animal models
of skin disease which have assisted the discovery of potential new drugs for clinical testing (Rottman and
Willis 2010; Avci et al. 2013) which in part have allowed progression of a number of small-molecule
candidate drugs (Kyttaris et al. 2013; Markopoulou and Kyttaris 2013).

Procedure Female MRL/lpr mice (originally from Jackson Laboratories, USA), displaying distinct
symptoms of SLE (between 12 and 13 weeks of age), are randomized and divided into groups of
12 animals each. At this age, the animals have already clinical manifestations of the SLE-like illness,
as determined by the disease index, but have not yet developed proteinuria. Animals with early symptoms
of disease are treated with various drugs, e.g., leflunomide, cyclosporine A, azathioprine,
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cyclophosphamide, or prednisolone, for 11 weeks, and the survival rate and disease index of these animals
are followed for 24 weeks. The disease index and urine protein level are determined once weekly.

Disease Index The subsequent clinical parameters are taken into consideration:
1. Ears: reddening of the skin, deterioration of the pinna
2. Nose: loss of hair, wasting of the skin
3. Lymph nodes: detection of swollen lymph nodes on any part of the body, especially the neck and

extremities
4. Fur: general condition of fur (e.g., shabby, mangy, etc.), loss of hair
5. Skin: inflammation of the skin, scab, and/or granuloma formation
6. Eyes: exophthalmos, deterioration due to inflammation, tumor formation around the eye, swelling of

the eyelid with eventual closure of the eye
7. Paws: reddening of the skin, swelling of the paw

Evaluation A score for each of the above-described parameters is given according to the severity of the
symptoms as follows:

Points for Clinical Index

Involvement Detectable Moderate Severe

Ears (each) 0.5 1.0 1.5

Nose 1.0 2.0 3.0

Lymph node (each) 1.0 2.0 3.0

Fur 1.0 2.0 3.0

Skin 1.0 2.0 3.0

Eyes (each) 1.0 2.0 3.0

Paws (each) 0.5 1.0 1.5

Body weight (one point for 5 g difference from week to week)
The determination of the disease index is performed, weekly, by the same individual, but without

knowledge of the group being evaluated. The points, for each animal, are registered and the total score, of
each group, summarized. The average score for the group is calculated, and significance between the
experimental group and the untreated diseased group is determined using the Student’s t-test.

Proteinuria Pooled urine is collected from each experimental group and the amount of protein in the
urine is calculated.

Modifications of the Method In addition to a lupus-like syndrome and massive T cell proliferation,
MRL-1pr/1pr (MRL/1) mice develop an arthritic process very similar serologically and histologically to
human rheumatoid arthritis. Boissier et al. (1989) found that in these animals, mouse type II collagen is
antigenic, but not arthritogenic.

Holmdahl et al. (1991) studied the involvement of macrophages and dendritic cells in synovial
inflammation of collagen-induced arthritis in DBA/1 mice and spontaneous arthritis in MRL/lpr mice.

Rordorf-Adam et al. (1985) used serum amyloid P component and autoimmune parameters in the
assessment of arthritis in MRL/lpr/lpr mice.

Furukawa et al. (1996) studied the autoimmune disease-prone genetic background in relation to Fas
defect in MRL/lpr mice.
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Kanno et al. (1992) found spontaneous development of pancreatitis in the MRL/Mp strain of mice.
Kusakari et al. (1992) compared hearing acuity and inner ear disorders of MRL/lpr mice with those of

BALB/c mice and found a significantly higher auditory brain stem response threshold. They
recommended this as a model of sensorineural hearing loss.

Bundick and Eady (1992) investigated the effects of an immunosuppressive agent on the development
of spontaneous lupus disease in female NZBW F1-hybrid mice.

Walker et al. (1996) reported a powerful suppressive effect of testosterone on the autoimmune disease
analogous to systemic lupus erythematodes spontaneously developed by F1-hybrids of New Zealand
Black (NZB) � New Zealand White (NZW) mice. A model was developed in which NZB dams carrying
NZB/NZW fetuses were treated with testosterone in a dose adequate to masculinize the external genitalia
in female fetuses.

Zoja et al. (1998) investigated bindarit, a compound devoid of immunosuppressive properties, in
NZB/W F1 hybrid mice developing an immune complex glomerulonephritis with proteinuria and
progression to renal insufficiency.

Kiberd and Stadnyk (1995) studied the role of endogenous interleukin-1 in established lupus nephritis
in MRL-lpr/lpr mice by administration of the IL-1 receptor antagonist IL-1ra.

Gleichmann et al. (1982) and Schorlemmer et al. (1997) induced a systemic lupus erythematodes-like
disease in mice by abnormal T and B cell cooperation. A chronic graft-versus-host reaction with the
pathologic symptoms of severe glomerulonephritis is induced in B6D2 (C5Bl/6 � DBA/2) F1 hybrid
mice receiving four i.v. injections (one per week) of 1 � 108 parental lymphoid spleen cells from DBA/2
donors. The inoculation of splenocytes into the BDF1 hybrid mice results in the development of a chronic
GvH reaction with lymphoid hyperplasia, autoantibody production, and immune complex
glomerulonephritis.

Chan et al. (1995) described ocular changes occurring in mice with experimental lupus erythematodes.
The ocular disease is characterized by bilateral subacute and chronic inflammation of the eyelids
(blepharitis) and hypertrophic meibomian glands. The severity of the ocular changes is strain dependent.
The authors recommend this experimental eye disease as an animal model for chronic blepharitis in
humans.

The changes of lacrimal and salivary glands found in MRL/lpr mice and other mouse strains with
autoimmune disorders were also regarded as model of Sjögren’s syndrome in human (Sullivan and
Edwards 1997; Toda et al. 1999).

The MRL-lpr mouse model has been used to provide cognitive dysfunction in neuropsychiatric
systemic lupus erythematosus (Jeltsch-David and Muller 2014), and peptide microarray technology has
been developed which may facilitate diagnosis and early detection of CNS-SLE (Williams et al. 2014).

Several studies have investigated the effects of T cell modulation in the MRL/lpr model (Richard
et al. 2013; Shinsuke and Hiroshi 2013), and the role of peptidylarginine deiminase and NET formation
has been investigated in the MRL/lpr model (Knight et al. 2014).

An assessment of the value of murine lupus models for translation of findings into the clinic (Bender
et al. 2014) has highlighted the individuals’ strengths of the various models available.

References and Further Reading

Avci P, Sadasivam M, Gupta A, De Melo WCMA, Huang Y-Y, Yin R, Rakkiyappan C, Kumar R,
Otufowora A, Nyame T, HamblinMR (2013) Animal models of skin disease for drug discovery. Expert
Opin Drug Discov 8:331–355

Bartlett RR, Popovic S, Raiss RX (1988) Development of autoimmunity in MRL/lpr mice and the effect
of drugs on this murine disease. Scand J Rheumatol Suppl 75:290–299

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 74 of 131



Bartlett RR, Mattar T, Weithmann U, Anagnostopulos H, Popovic S, Schleyerbach R (1989) Leflunomide
(HWA 486): a novel immunorestoring drug. In: Lewis AJ, Doherty NS, Ackerman NR (eds) Thera-
peutic approaches to inflammatory diseases. Elsevier Science, New York, pp 215–228

Bender AT, Wu Y, Cao Q, Ding Y, Oestreicher J, Genest M, Akare S, Ishizaka ST, Mackey MF
(2014) Assessment of the translational value of mouse lupus models using clinically relevant bio-
markers. Transl Res 163:515–532

Boissier MC, Texier B, Carlioz A, Fournier C (1989) Polyarthritis in MRL-1pr/1pr mice: mouse type II
collagen is antigenic, but not arthritogenic. Autoimmunity 4:31–41

Bundick RV, Eady RP (1992) The effects of CP 17193, an immunosuppressive pyrazoloquinoline, on the
development of spontaneous lupus disease in NZBW F1 hybrid mice. Clin Exp Immunol 89:179–184

Carlson RP, Baeder WL, Caccese RG, Warner LM, Sehgal SN (1992) Effects of orally administered
rapamycin in animal models of arthritis and other autoimmune diseases. Ann NYAcad Sci 685:86–113

Chan CC, Gery I, Kohn LD, Nussenblatt RB,Mozes E, Singer SD (1995) Periocular inflammation in mice
with experimental systemic lupus erythematodes. A new experimental blepharitis and its modulation.
J Immunol 154:4830–4835

Furukawa F, Kanauchi H, Wakita H, Tokura Y, Tachibana T, Horiguchi Y, Imamura S, Ozaki S, Takigawa
M (1996) Spontaneous autoimmune skin lesions of MRL/n mice: autoimmune disease-prone genetic
background in relation to Fas-defect MRL/lpr mice. J Invest Dermatol 107:95–100

Gleichmann E, van Elven EH, van der Veen JPW (1982) A systemic lupus erythematodes (SLE)-like
disease in mice induced by abnormal T- and B-cell cooperation. Preferential formation of antibodies
characteristic of SEL. Eur J Immunol 12:152

Gunn HC, Hiestand PC (1988) Cyclosporine A and cyclosporine G enhance IgG rheumatoid factor
production in MRL/Ipr mice. Transplant Proc 20(Suppl 4):238–242

Holmdahl R, Tarkowski A, Jonsson R (1991) Involvement of macrophages and dendritic cells in synovial
inflammation of collagen induced arthritis in DBA/1 mice and spontaneous arthritis in MRL/Lpr mice.
Autoimmunity 8:271–280

Jeltsch-David H, Muller S (2014) Neuropsychiatric systemic lupus erythematosus and cognitive dys-
function: the MRL/lpr mouse strain as a model. Autoimmun Rev 13:963–973

Kanno H, Nose M, Itoh J, Taniguchi Y, Kyogoku M (1992) Spontaneous development of pancreatitis in
the MRL/Mp strain of mice in autoimmune mechanism. Clin Exp Immunol 89:68–73

Kiberd BA, Stadnyk AW (1995) Established murine lupus nephritis does not respond to exogenous
interleukin-1 receptor antagonist: a role for the endogenous molecule? Immunopharmacology
30:131–137

Konya C, Kyttaris VC (2013) T cells as treatment targets in systemic lupus erythematosus. Rheumatol
Curr Res 3:120. doi: 10.4172/2161-1149.1000120

Knight JS, Subramanian V, O’Dell AA, Yalavarhi S, Zhao W, Smith CK, Hodgin JB, Thompson PR,
Kaplan MJ (2014) Peptidylarginine deaminase inhibition disrupts NET formation and protects against
kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. doi: 10.1136/
annrheumdis-2014-205365

Kusakari C, Hozawa K, Koike S, Kyogoku M, Takasaka T (1992) MRL/MP-lrp/Lrp mouse as a model of
immune-induced sensorineural hearing loss. Ann Otol Rhinol Laryngol 101:82–86

Kyttaris VC, Kampagianni O, Tsokos GC (2013) Treatment with Anti-Interleukin 23 Antibody Amelio-
rates Disease in Lupus-Prone Mice. BioMed Res Int 2013. Article ID 861028, 5 pp. doi:10.1155/2013/
861028

Marcinko K, Parsons T, Lerch JP, Sled JG, Sakic B (2012) Effects of prolonged treatment with memantine
in the MRL model of central nervous system lupus. Clin Exp Neuroimmunol 3:116–128

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 75 of 131



Markopoulou A, Kyttaris VC (2013) Small molecules in the treatment of systemic lupus erythematosus.
Clin Immunol 148:359–368

Richard EM, Thiyagarajan T, Bunni MA, Basher F, Roddy PO, Siskind LJ, Nietart PJ, Nowling TK
(2013) Reducing FLI1 levels in theMRL/lpr lupus mouse model impacts Tcell function by modulating
glycosphingolipid metabolism. PLoS One. doi: 10.1371/kournal.pone.0075175

Rordorf-Adam C, Serban D, Pataki A, Gruninger M (1985) Serum amyloid P component and autoim-
mune parameters in the assessment of arthritis in MRL/lpr/lpr mice. Clin Exp Immunol 61:509–516

Rottman JB, Willis CR (2010) Mouse models of systemic lupus erythematosus reveal a complex
pathogenesis. Vet Pathol 47:664–676

Schorlemmer HU, Dickneite G (1992) Preclinical studies with 15-deoxyspergualin in various animal
models for autoimmune diseases. Ann N YAcad Sci 685:155–174

Schorlemmer HU, Dickneite G, Enßle KH (1995) Immunoregulation of murine SLE-like diseases by
interleukin-4-receptor. Lupus 4(Suppl 2):8

Schorlemmer HU, Kurrle R, Bartlett R (1997) The new immunosuppressants, the malononitrilamides
MNA 279 and MNA 715, inhibit various graft-vs.-host diseases (GvHD) in rodents. Drugs Exp Clin
Res 23:167–173

Shinsuke N, Hiroshi I (2013) Over-expression of Epstein-Barr virus-induced gene 3 protein (EIB3) in
MRL/lpr mice suppresses their lupus nephritis by activating regulatory T cells. Autoimmunity
46:446–454

Sullivan DA, Edwards JA (1997) Androgen stimulation of lacrimal gland function in mouse models of
Sjögren’s syndrome. J Steroid Biochem Mol Biol 60:237–245

Theofilopoulos AN, Dixon FJ (1981) Etiopathogenesis of murine SLE. Immunol Rev 55:179–216
Toda I, Sullivan BD, Rocha EM, Da Silveira LA, Wickham LA, Sullivan DA (1999) Impact of gender on

exocrine gland inflammation in mouse models of Sjögren’s syndrome. Exp Eye Res 69:355–366
Walker SE, Keisler LW, Caldwell CW, Kier AB, Vom Saal FS (1996) Effects of altered prenatal hormonal

environment on expression of autoimmune disease in NZB/NZW mice. Environ Health Perspect
104(Suppl 4):815–821

Williams S, Stafford P, Hoffman SA (2014) Diagnosis and early detection of CNS-SLE in MRL/lpr mice
using peptide microarrays. BMC Immunol 15:23

Zoja C, Corna D, Benedetti G, Morigi M, Donadelli R, Guglielmotti A, Pinza M, Bertani T, Remuzzi
G (1998) Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease.
Kidney Int 53:726–734

Prevention of Experimentally Induced Myasthenia Gravis in Rats

Purpose and Rationale Myasthenia gravis is an organ-specific autoimmune disease in man that results
in skeletal muscles’weakness. Typically, the sufferer has drooping eyelids, a blank facial expression, and
weak, hesitant speech. This is due to the formation of autoantibodies against the nicotinic acetylcholine
receptor (AChR). The formation of autoantibodies to acetylcholine’s receptor leads to a gradual destruc-
tion of the receptors in skeletal muscles that receive nerve impulses and initiate muscle contractions. As a
result, affected muscles fail to respond or react only weakly to nerve signals.

Experimental myasthenia gravis (EMG) can be induced in rats by injecting them with heterologous
AChR or with recombinant a-subunits (two) of the AChR (portion of the AChR to which acetylcholine
mainly binds) (Lennon et al. 1991), and the utility of clinical trials to guide the use of animal models has
been recently addressed (Punga et al. 2015). The animals display symptoms of myasthenia
(electrophysiological evidence of altered neuromuscular function) and detectable antireceptor antibodies.
The severity of the disease can vary, but most animals display, at the very least, a weakness and fatigability
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of foot grip. The disease gradually leads to abnormal gait and eventually the inability of the animals to
walk or even right themselves.

Procedure Female rats of AO strain, 6–10 weeks old, are used. Three groups of rats are included in the
experiment:
1. Immunized with acetylcholine receptor (AChR) protein and treated with test drug.
2. Immunized with AChR protein without drug.
3. Nonimmunized, non-treated control rats. The test drug is applied per os daily. First dose is administered

on the day of immunization and the last on the day of sacrifice.

Immunization with AChR Protein AChR protein isolated from Torpedo marmorata is emulsified with
complete Freund’s adjuvant, and 100 mg/rat is injected intradermally in the hind foot pad. As additional
adjuvant, 2.6 � 1010 Bordetella pertussis microorganism is administered simultaneously by intramus-
cular injection in the hind leg.

Antibody Determination Anti-AChR-protein antibodies are measured by enzyme-linked immunosorbent
assay (ELISA) as described by Norcross et al. (1980). AChR protein is diluted to a final concentration of
2.5 mg/ml in 0.05 M carbonate buffer, pH 9.6. Two hundred ml of this solution is placed in each well of a
microtitration plate (Flow Laboratories Inc.). After an overnight incubation at 4 �C, the plates are washed
thoroughly with 0.01 M phosphate-buffered saline (PBS) solution containing 0.05 % Tween 20 (Sigma)
subsequently referred to as PBS/T. Sera from all groups of rats are serially diluted in PBS/T, and 200 ml is
added to each micron well except in the background row (control row) and incubated at 4 �C for 2 h. After
washing, 200 ml of 1:1,000 diluted peroxidase-conjugated goat anti-rat immunoglobulin (Sera Lab.
Sussex, England) in PBS/T is added to the micron wells and incubated for an additional 60 min at
4 �C. After plates are washed, 200 ml of substrate-citrate buffer and 0.2 ml of 10 % H2O2 are added and
then incubated in the dark at room temperature for 30 min. The reaction is stopped by addition of 50 ml of
2 M H2SO4 and the OD determined by using Titert Multiscan.

Two-Color Flow Cytometry Thymic cell suspensions are obtained by mincing tissue and passing it
through 80-mm stainless mesh. After being washed three times in PBS, the cells are resuspended in
PBS at a cell density of 107 viable cells/ml. The cell viability is determined by the trypan blue exclusion
test. Erythrocytes are removed by addition of ammonium chloride. Cell staining and flow cytometric
analyses are done as described by Itoyama et al. (1989). Thymocyte subsets expressing CD4 and/or CD8
molecules are defined by staining with monoclonal antibodies obtained from Serotec, Oxford, England:
phycoerythrin (PE)-conjugated anti-W3/25 (CD4) and fluorescein isothiocyanate (FITC)-conjugated
anti-MRC OX8 (CD8). Two � 105–1 � 106 cells suspended in 100 ml of PBS are exposed sequentially
for 30 min to FITC-conjugated anti-CD8 and PE-conjugated anti-CD4 monoclonal antibodies. Isotype-
matched control monoclonal antibodies are used to prove the specificity of binding. Cell analysis is
performed using FACScan flow cytometer from Becton Dickinson. One � 104 events per sample are
analyzed by Consort 30 and Lysis software. All data are collected and displayed on a log scale of
increasing green and orange fluorescence intensity. This is presented as two-dimensional contour maps
and as percentage of thymocytes by integrating counts in selected areas of the contour plots.

Stereologic Analysis of Thymuses Thymuses of animals of all groups are prepared for light microscopic
analysis. For this purpose, thymus tissue is fixed in Carnoy’s solution, embedded in paraffin, and 3–5-mm-
thin sections are stained with hematoxylin and eosin. Cortex and medulla are analyzed stereologically
using the point counting method described by Weible (1963). Volume density (Vv) of the examined
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structures is determined by the following equation: Vv = Pi/Pt, where Pi represents the number of points
of the examined structure and Pt the total number of points. Vv refers to the volume fraction, i.e., volume
of a feature per unit test volume (Tascaland Vaughn-Williams 1981).

Evaluation EMG is evaluated clinically by daily examination of muscle weakness and scored as follows:

+ = weakness of grip with fatigability
++ = abnormality of gait
+++ = inability to walking and righting

Immediately after appearance of clinical signs of EMG, rats are sacrificed, and blood and thymuses are
taken for determination of anti-AChR-protein antibodies and histological analysis of thymuses and
thymocyte subsets, respectively.

Statistical analysis of data is performed by Student’s t-test (data of stereological analysis) and
Mann–Whitney U-test (results of flow cytometric analysis of thymocyte subsets).

Modifications of the Method McIntosh and Drachman (1987) described an in vitro suppressor assay
using responder cells from the lymph nodes of Lewis rats immunized sc. with acetylcholine receptors
emulsified in complete Freund’s adjuvant and suppressor cells from spleens of rats immunized i.p. with
acetylcholine receptors absorbed on bentonite. Antibodies were determined after stimulation with ace-
tylcholine receptors from cocultures of responder cells and putative suppressor cells treated previously
with an immunosuppressant.

Arag and Blalock (1994) developed a method of altering B cell-mediated autoimmune diseases by
induction of anti-idiotypic antibodies by immunization with complementary peptides. A peptide encoded
by RNA complementary to RNA for the Torpedo acetylcholine receptor main immunogenic region,
AChR 67–16, was tested in the Lewis rat model of experimental autoimmune myasthenia gravis.

Russell et al. (2012) reported on the testing of CK-2017357 (Tirasemtiv) in rat model of myasthenia
gravis and showed as a troponin activator it improved muscle function in this model.

Oliveira et al. (2015) describe the role of CD73 in impaired neuromuscular transmission in the EMG
model and further describe the potential role of adenosine in the pathophysiology on this neuromuscular
disorder.
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Glomerulonephritis Induced by Antibasement Membrane Antibody in Rats

Purpose and Rationale Masugi nephritis and other nephritis models of immunological origin in rats
have been used for evaluation of immunosuppressive activity (Heymann et al. 1959; Shibata et al. 1966;
Ito et al. 1983; Thoenes et al. 1989; Ogawa et al. 1990, 1991).

Procedure

Preparation of Rabbit Antiserum Against Rat Glomerular Basement Membrane Glomeruli are separated
from the homogenate of rat renal cortex by successive use of three metal sieves (150-, 180-, and
200-mesh). The basement membrane fraction is obtained by centrifugation and ultrasonic disruption. It
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is then digested with trypsin, dialyzed, and lyophilized. The resultant substance is employed as antigen.
An emulsion of 1 mg of the antigen in 0.2 ml saline with 0.2 ml of complete Freund’s adjuvant is injected
intracutaneously into white rabbits once a week for 6 weeks. One week later, production of the
antibasement membrane antibody is confirmed in guinea pigs by the passive cutaneous anaphylaxis
test. The blood is collected from the carotid artery, incubated at 56 �C for 30 min to inactivate components
of the complement and stored at �20 �C until use.

Induction of Glomerulonephritis in Rats Male Sprague–Dawley rats weighing about 300 g are injected
with 0.5 ml of the rabbit antiserum via the tail vein. On the following day, they are further injected
subcutaneously with an emulsion (0.25 ml) of physiological saline solution containing 5 mg of rabbit
gamma globulin in an identical volume of complete Freund’s adjuvant.

Treatment The rat antibasement antibody is injected 5 days before the start of administration of the test
compound. Before the first dose, urinary total protein is determined and rats with nephritis are so assigned
as to provide almost equal distribution of severity of the disease per group. The test compounds are
administered orally for 14 days. The urine is collected at 7 and 14 days of treatment. After 14 days, the
animals are sacrificed, blood is collected, and the thymus and kidneys are removed. Histopathological and
immunohistochemical studies are performed in kidney tissue.

Evaluation Scores are given for microscopic findings in the following:

Glomeruli
• Cell proliferation in glomeruli
• PAS-positive granules in the epithelium of glomeruli
• Fibrin deposits in Bowman’s space
• Adhesion to Bowman’s capsule

Tubuli
• Hyaline cast
• Dilation of tubuli

Scores are also given for immunofluorescence findings for rat IgG, rat C3, and rabbit IgG.
Furthermore, total urinary protein, plasma total cholesterol, plasma fibrinogen, and thymus/body

weight ratio are compared between drug-treated animals and controls by statistical means.

Modifications of the Method Lan et al. (1995) investigated the pathogenic role of interleukin-1 in the
progression of established rat crescentic glomerulonephritis by administration of the interleukin-1
receptor antagonist IL-1ra.

Giménez et al. (1987) and Thoenes et al. (1987) induced autoimmune tubulointerstitial nephritis in the
Brown Norway rat by injection of bovine tubular basement membrane.

Development of a systemic T lymphocyte-dependent autoimmune syndrome in Brown Norway rats
including glomerulonephritis with high proteinuria was induced with mercuric chloride by Baran
et al. (1986), Aten et al. (1988), and Lillevang et al. (1992).

Kokui et al. (1992) induced nephrosis with proteinuria in rats by intraperitoneal injection of puromycin
aminonucleoside.

Lundstrom et al. (1993) studied the Heymann nephritis antigenic complex using a rat yolk sac
carcinoma cell line that expresses glycoprotein 330, the main antigen in this autoimmune disease.
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Taylor et al. (2009) demonstrated a role for the purinergic P2X7 purinoreceptor in experimental
glomerulonephritis showing that mice harboring a knockout for the receptor were renoprotective, further
supported by a nonclinical intervention study with A-439079. Smith et al. (2010) investigated the role of
spleen tyrosine kinase (SYK) in a rat model of glomerulonephritis with R788 (fostamatinib) and showed
reduction of glomerular crescents and improvement in renal function establishing SYK as a target for
potential future clinical investigation.

Suana et al. (2011) have shown that immunoliposomes carrying a low-dose mycophenolate mofetil
cargo may prevent creatine increase and albuminuria in a model of experimental mesangial proliferative
glomerulonephritis model in the rat.

D’Souza et al. (2013) developed a bicongenic rat model of experimental crescent glomerulonephritis to
develop a system for investigating macrophage-dependent glomerulonephritis.

Recently Takakura et al. (2014) demonstrate an antiproliferative effect of the anti-inflammatory and
antifibrotic agent pirfenidone in a rat model of basement membrane glomerulonephritis.
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Inhibition of Allogenic Transplant Rejection

Purpose and Rationale Transplantation of allogenic organs to recipients results in rejection of the
transplants (Sanchez-Fueyo and Strom 2011). This effect can be suppressed or delayed by immunosup-
pressive agents, and the role of B cells has been investigated in animal models suggesting a role in
mechanisms of transplant tolerance (Chesneau et al. 2013). Various organs are used for allogenic
transplantation in animal experiments, such as skin pieces (Schorlemmer et al. 1993), kidney (Lee
1967; K€uchle et al. 1991), rat heart, rat small intestine (Xiao et al. 1994; Zhang et al. 2014), and corneal
buttons (Coupland et al. 1994). The immunosuppressive activity can be evaluated either by using a major

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 82 of 131



histocompatibility complex variant strain combination or a strong allogenic system, and the advances and
limitations of murine models have been recently described (Schroeder and DiPersio 2011).

Procedure For skin transplantation male animals of inbred strains of Fischer (F334), Lewis (LEW),
Brown Norway (BN), and Dark Agouti (DA) rats are used. Rat tail skin (donor) is cut into square pieces of
0.5–1.0 cm and transplanted to the tails of recipient rats. Rejection is defined as the day when the skin graft
is of red-brown color and hard consistency. As strain combination with a major histocompatibility variant,
transplantation from LEW to F334 is performed. Using a strong allogenic system, the high responder DA
to LEW donor-recipient combination is used. The immunosuppressive agents, e.g., cyclosporine or
leflunomide, are given orally up to 20 days. Ten animals are used for each group.

Evaluation The mean values of rejection time of treated groups are compared statistically with vehicle-
treated controls using Student’s t-test or the Mann–Whitney U-test.

Modifications of theMethod Schorlemmer and Kurrle (1997) used Lewis (LEW, Rtl*l) rats as receivers
and Balb/c mice as donors in a xenotransplantation model of mouse-to-rat skin grafts. Rejection was
defined as the day when the skin graft turned red-brown and became hard. For quantification of
xenospecific IgM and IgG antibody titers, the test sera (dilution 1:10) were incubated with 1 � 106

purified T cells (by sheep anti-mouse Dynabeads, Deutsche Dynal GmbH, Hamburg, Germany) from
Balb/c donor spleens for 30min at 4 �C. The cells were washed three times with phosphate-buffered saline
(pH 7.2) and then stained for IgG or IgM xenoantibodies; 50 ml of FITC-conjugated goat antibodies,
specific for the Fc-portion of rat IgG or specific for the m-chain of rat IgM, was added. After 30 min at
4 �C, the cells were washed twice and analyzed by flow cytometry.

Techniques for transplantation of several organs have been elaborated.
For kidney transplantation, male rats, 5–7 months of age, are used as donors and recipients for the

orthotopic right kidney transplantation as described by Lee (1967) with a modification of ureter–ureter
anastomosis (Thoenes et al. 1974). Because bilateral nephrectomy is performed at transplantation, animal
survival is dependent upon the allograft’s function. All rats that do not excrete urine on the first
postoperative day are excluded from further studies. As a control concerning long survival, syngenically
transplanted rats are maintained up to 300 days.

Engelbrecht et al. (1992) described a new rapid technique for renal transplantation in the rat. The
method combines a special sleeve anastomotic technique for the renal artery, conventional end-to-end
anastomosis of the renal vein, and implantation of the ureter into the bladder.

A porcine renal transplant model has been used by Almond et al. (1992).
Peters et al. (1993) reviewed the therapeutic potential of tacrolimus in renal and hepatic transplantation.
For studying heart transplantation, heterotopic implantation of hearts from BN to LEW rats is

performed (Williams et al. 1993). The diagnosis of rejection is established once the palpable cardiac
allograft impulse ceases. Further studies with rat cardiac allografts have been performed by Hancock
et al. (1990). The Fischer 344 rat (donor)/Long Evans rat (recipient) combination was used by Kahn
et al. (1991). Walpoth et al. (1993) used magnetic resonance spectroscopy for assessing myocardial
rejection in the transplanted rat heart.

Shiraishi et al. (1995) evaluated the effectiveness of the interleukin-1 receptor antagonist IL-1ra in the
immune and inflammatory responses to rat heart allografts.

Cardiac transplantation between inbred rat strains that differ for weak histocompatibility antigens is
associated with the development of arteriosclerosis in arteries of the donor graft myocardium (Cramer
et al. 1990; Adams et al. 1992).

Drug Discovery and Evaluation: Pharmacological Assays
DOI 10.1007/978-3-642-27728-3_45-1
# Crown Copyright 2015

Page 83 of 131



A heterotopic rat heart transplant model and the influence of infection were described by Kobayashi
et al. (1993).

The hamster to rat cardiac xenograft model has been used by several authors (de Masi et al. 1990;
Steinbr€uchel et al. 1991; van den Bogaerde et al. 1991; Woo et al. 1993; Fujino et al. 1994; Schuurman
et al. 1994). The hearts from Syrian hamsters were implanted heterotopically in male Lewis rats, with
anastomoses between the infrarenal abdominal aorta and inferior vena cava of the recipient and the donor
aorta and right pulmonary artery, respectively.

Primate cardiac xenografts were performed by McManus et al. (1993) using cynomolgus monkeys
(Macaca fascicularis) as donors and baboons (Papio anubis) as recipients.

Chronic rejection of rat aortic allograft was studied by Mennander et al. (1991). Administration of
cyclosporine induced accelerated allograft arteriosclerosis.

Heterotopic transplantation of small intestine has been performed from BN to LEW rats. The
mesenteric venous drainage is reconstructed either via the vena cava or the portal vein (Xiao
et al. 1994). An isolated Thiry–Vella loop was prepared by Xia and Kirkman (1990). Kellnar
et al. (1990) described allogenic transplantation of fetal rat intestine with anastomosis to the normal
bowel of the host. Langrehr et al. (1991) investigated under which circumstances graft-versus-host
disease occurs following fully allogenic small bowel transplantation in the rat. Kirsch et al. (1991) studied
the extent to which intestinal transplants in rats undergo functional and morphologic compensation.

Liver transplantation procedure has been described by Svensson et al. (1995), allowing measurement
of bile secretion.

Orthotopic left lung transplantation was performed in inbred rats by Katayama et al. (1991).
Tracheal allografts were implanted into the abdomen of recipient rats (Davreux et al. 1993).
In vivo electrophysiology of rat peripheral nerve transplants was studied by Yu et al. (1990).

A sciatic-tibial nerve graft was harvested from the donor rat between the sciatic notch and the ankle. In
the recipient, the tibial nerve and the sural nerve were resected. The nerve graft was placed along the
natural course of the native tibial nerve. Nerve repair was performed using standard end-to-end epineural
microsuture technique.

A model of neurovascularized rectus femoris muscle transplantation in rats was established by
Muramatsu et al. (1994).

The orthotopic transplantation of vascularized skeletal allografts (rat distal femur and surrounding
muscular cuff) has been described by Lee et al. (1995).

Long-term survival of limb allografts in rats was studied by Kuroki et al. (1991). The donor and
recipient limbs were prepared simultaneously by amputation at mid-femur. The donor limb was fixed
orthotopically by Kirschner wire. The donor and recipient femoral arteries, veins, and sciatic nerves were
anastomosed using a microsurgical technique.

For cornea transplantation, Brown Norway rats (RT11�n) serve as donors and Lewis rats (RT11) as
recipients (Coupland et al. 1994). Both the donor and recipient rats are anesthetized with xylazine
hydrochloride and ketamine hydrochloride. Twenty min prior to surgery, the recipient rats also receive
0.5 mg/kg atropine sc. and phenylephrine hydrochloride 5% eyedrops. Under sterile conditions and using
an operation microscope, two donor corneal buttons (3.5 mm) are harvested from the donor rat using a
trephine and curved Castroviejo scissors. The donor animals are then sacrificed by ether inhalation. The
left eyes of the recipient rats are prepared by removing a central 3.0-mm button using a trephine and
curved Castroviejo scissors. A drop of sterile methylcellulose (1 %) is placed over the 3.0-mm corneal
opening before the donor cornea is fixed with 10 interrupted sutures. The anterior chamber is not
reestablished following surgery. Prior to closure of the eyelids with three or four interrupted sutures,
Polyspectran eyelid gel is placed over the operated eye. Forty-eight hours following surgery, the eyelid
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sutures are removed, allowing for the first time assessment of the cornea on the slit-lamp microscope. Slit-
lamp evaluations are performed every 2–3 days under i.m. anesthesia with ketamine, with assessment of
the cornea by scoring graft opacity, edema, and vascularization.

Recently the role of indoleamine 2,3-dioxygenase as an immunomodulator has been reviewed in
models of allogenic pancreatic islet and skin transplantation (Gill et al. 2013).
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