Skip to main content

Experimental Models for Drug Evaluation in Noise-Induced Hearing Loss and Age-Related Hearing Impairment

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The contribution of noise and aging to hearing loss are distinct, yet interrelated. Noise-induced hearing loss (NIHL) is one of the leading – preventable – causes of hearing loss worldwide. NIHL is usually characterized by an elevation in the hearing threshold, and the area of damage is most pronounced one-half octave above the frequency of noise exposure. A significant body of evidence suggests that NIHL damage results from noise-induced free radical production (Oishi and Schacht 2011). Age is an independent risk factor for acquired hearing loss, although its effects may be difficult to distinguish from those of noise exposure in the clinical setting. The mechanism underlying age-related hearing loss (presbycusis) is heavily influenced by an individual’s genetic susceptibility, and there is thus dramatic variation. Four-way cross animal models allow a longitudinal examination of these factors in relation to age and hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Noise-Induced Hearing Loss (NIHL) In Vivo

  • Abbas PJ, Brown CJ (2014) Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway. Hear Res

    Google Scholar 

  • Christie KW, Eberl DF (2014) Noise-induced hearing loss: new animal models. Curr Opin Otolaryngol Head Neck Surg 22:374–383

    Article  PubMed  Google Scholar 

  • Clark WW, Clark CS, Moody DB, Stebbins WC (1974) Noise-induced hearing loss in the chinchilla, as determined by a positive reinforcement technique. J Acoust Soc Am 56:1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AM, Stagner BB, Martin GK, Lonsbury-Martin BL (1999) Age-related loss of distortion product otoacoustic emissions in four mouse strains. Hear Res 138:91–105

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Salt AN (1983) Electrochemical profile for potassium ions across the cochlear hair cell membranes of normal and noise-exposed guinea pigs. Hear Res 11:219–233

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (1999) Long-term sound conditioning enhances cochlear sensitivity. J Neurophysiol 82:863–873

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise – induced hearing loss. J Neurosci 29:14077–14085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Prell CG (2012) Noise-induced hearing loss: from animal models to human trials. Adv Exp Med Biol 730:191–195

    Article  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Lonsbury-Martin BL (2006) Assessment of cochlear function in mice: distortion-product otoacoustic emissions. In: Crawley JN et al (eds) Current protocols in neuroscience; Chapter 8: Unit 8 21C

    Google Scholar 

  • Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48:513–523

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Talo SA (1972) Temporary threshold shifts produced by exposure to high-frequency noise. J Speech Hear Res 15:624–631

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Talo SA, Gordon GS (1973) Decay of temporary threshold shift in noise. J Speech Hear Res 16:267–270

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Schmiedt RA, Kulish LF (1990) Age-related changes in auditory potentials of Mongolian gerbil. Hear Res 46:201–210

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091(1):89–102

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2008) Recent findings and emerging questions in cochlear noise injury. Hear Res 245(1–2):5–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Oishi N, Schacht J (2011) Emerging treatments for noise-induced hearing loss. Expert Opin Emerg Drugs 16:235–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991

    Article  CAS  PubMed  Google Scholar 

  • Salvi R, Boettcher F (2008) Animal models of noise-induced hearing loss. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, Totowa, New Jersey. pp 289–301

    Google Scholar 

  • Saunders JC, Mills JH, Miller JD (1977) Threshold shift in the chinchilla from daily exposure to noise for six hours. J Acoust Soc Am 61:558–570

    Article  CAS  PubMed  Google Scholar 

  • Szabo Z, Harasztosi C, Szucs G, Sziklai I, Rusznak Z (2003) A detailed procedure and dissection guide for the isolation of spiral ganglion cells of the guinea pig for electrophysiological experiments. Brain Res Protoc 10:139–147

    Article  Google Scholar 

  • Stebbins WC, Smith DW, Moody DB (1988) Discrimination strategies in animal psychophysics and their role in understanding sensory receptor function. Psychopharmacol Ser 4:199–214

    CAS  PubMed  Google Scholar 

  • Turner JG, Parrish J (2008) Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. Am J Audiol 17:S185–S192

    Article  PubMed  Google Scholar 

  • Willott JF (2006) Overview of methods for assessing the mouse auditory system. In: Crawley JN et al (eds) Current protocols in neuroscience;Chapter 8:Unit8 21A

    Google Scholar 

  • Yuan Y, Chi F (2014) Dynamic changes in hair cell ribbon synapse induced by loss of spiral ganglion neurons in mice. Chinese Med J 27:1941–1946

    Google Scholar 

Age-Related Hearing Loss (ARHL)

  • Johnsson LG, Hawkins JE Jr (1972) Sensory and neural degeneration with aging, as seen in micro dissections of the human inner ear. Ann Otol Rhinol Laryngol 81:179–193

    Article  CAS  PubMed  Google Scholar 

  • Schacht J, Altschuler R, Burke DT et al (1842) Alleles that modulate late life hearing in genetically heterogeneous mice. Neurobiol Aging 2012(33):e15–e29

    Google Scholar 

  • Schacht J, Altschuler RA, Burke DT, Chen S, Dolan D, Galecki AT, Kohrman D, Miller RA (2012) Alleles that modulate late life hearing in genetically heterogeneous mice. Neurobiol Aging 33:1842.e15–1842.e29

    Article  CAS  Google Scholar 

  • Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382

    Article  CAS  PubMed  Google Scholar 

  • Sha S-H, Kanicki A, Dootz G, Talaska AE, Halsey K, Dolan D, Altschuler R, Schacht J (2008) Age-related auditory pathology in the CBA/J mouse. Hear Res 243:87–94

    Article  PubMed Central  PubMed  Google Scholar 

  • Sha S-H, Kanicki A, Halsey K, Wearne KA, Schacht J (2012) Antioxidant-enriched diet does not delay the progression of age-related hearing loss. Neurobiol Aging 33:1010.e15–1010.e16

    Article  CAS  Google Scholar 

  • Willott JF, Erway LC, Archer JR, Harrison DE (1995) Genetics of age-related hearing loss in mice. II. Strain differences and effect caloric restriction on cochlear pathology and evoked response thresholds. Hear Res 88:143–155

    Article  CAS  PubMed  Google Scholar 

  • Willott J, Schacht J (2010) Interventions and future therapies: lessons from animal models. In: Gordon-Salant S, Frisina R, Popper AN, Fay RR (eds) The aging auditory system. Handbook of auditory research, vol 35. Springer, New York, pp 275–293

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ray, A., Schacht, J., Brenner, M.J. (2014). Experimental Models for Drug Evaluation in Noise-Induced Hearing Loss and Age-Related Hearing Impairment. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics