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Abstract. This paper shows how secure information flow properties of
multi-threaded programs can be verified by model checking in a precise
and efficient way, by using the idea of self-composition.

It discusses two properties that aim to capture secure information
flow for multi-threaded programs, and it shows how these properties can
be characterised in modal μ-calculus. For this characterisation, a self-
composed model of the program is constructed. More precisely, this is a
model that contains two copies of the labelled transition system induced
by the program, so that the program is executed in parallel with itself.
The self-composed model allows to compare two program executions in
a single temporal formula that characterises a secure information flow
property.

Both the formula and model are translated into the input language for
the Concurrency Workbench model checker. We discuss this encoding,
and use it for some practical experiments on several simple examples.

1 Introduction

One of the major challenges in the field of application security is multi-threading:
the possible interactions between different threads can make the behaviour of
an application highly intractable, and therefore multi-threaded applications are
notoriously hard to write correctly. Nevertheless, multi-threaded software is om-
nipresent, and thus the search for formal techniques to establish security proper-
ties of multi-threaded software continues. In particular, the following two ques-
tions have to be answered: (i) what does it mean for a multi-threaded application
to respect a security property, and (ii) how can we verify this?

This paper concentrates on the latter question: how can we develop a sound
and complete technique for the verification of secure information flow (or con-
fidentiality) properties of multi-threaded applications? The most common tech-
nique to verify secure information flow properties is to use an information flow
type system [18,17,3]; type systems have the advantage that they are efficient,
but they are not precise because they use syntactic equalities, and do not con-
sider dependencies between values (see e.g., [1] for more details).
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Therefore, as an alternative approach, the use of self-composition has been
advocated. Self-composition recasts the problem of security verification into a
standard program verification problem [1,6]. Originally, this was used for the
verification of non-interference [8], a technical property that defines secure infor-
mation flow of sequential programs. Traditionally, non-interference is expressed
as a property over two program executions. However, if a program is composed
with an independent copy of itself – i.e., where all variables are marked to be
different – then non-interference can be stated as a safety property over a sin-
gle execution of this self-composed program. More precisely, suppose we have
a statement S with a single low variable l. Non-interference states that if we
have two initial states in which l has the same value, then in the final states,
after execution of S, l should still have the same value. More formally: S is non-
interfering iff ∀s, s′.s(l) = s′(l) ∧ S(s) � t ∧ S(s′) � t′ ⇒ t(l) = t′(l). This is a
property about two program executions, but self-composition allows to express
this as a property over a single program execution. Let S′ be a copy of S where
all variable names are primed. Thus in particular l in S becomes l′ in S′. Then
we can say that S is non-interfering iff {l = l′}S; S′{l = l′}, i.e., if we have a
pre-state where l and l′ are equal and we execute first S and then S′, then in
the post-state l and l′ still have to be equal.

This idea has been exploited further for other definitions of secure information
flow. Terauchi and Aiken describe how self-composition of sequential programs
can be combined with a type system to characterise non-interference relaxed
with information downgrading [21]. Huisman et al. [11] describe how secure
information flow of multi-threaded applications is characterised by a temporal
logic formula. The advantage of the self-composition approach is that since the
characterisation is exact, soundness and completeness only depends on soundness
and completeness of the verification method for the logic. In particular, if secure
information flow is characterised by a temporal logic formula, a model checker
can be used to automatically verify secure information flow. In that case, the
temporal formula expressing the security property should be defined over a model
that is the product of two or more basic models representing a program.

The current paper follows up on the earlier paper by Huisman et al. [11].
This earlier paper discusses the definition of observational determinism. Obser-
vational determinism was introduced by Zdancewic and Myers as a generalisation
of non-interference for multi-threaded programs [23]. Huisman et al. show that
this definition is not precise, as it accepts programs that leak information, and
they propose an improved version. This definition has been further improved
by Terauchi [20] — this is the definition we will use in this paper1. In addi-
tion, Huisman et al. also show a CTL* formula that precisely characterises the
improved definition of observational determinism. However, there are several
shortcomings to the approach: the model over which the property is expressed
uses a non-standard composition operator to compose the two independent pro-
gram copies; and in addition there does not exist a ready-made model checker

1 Terauchi’s definition is very restrictive, therefore we have recently proposed an al-
ternative formalisation of observational determinism [10].
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for CTL*. To overcome these problems, Huisman et al. suggested also charac-
terisations in the modal μ-calculus [12]; however these characterisations turned
out not to be correct: they would reject for example a program that looped for
ever, while never changing a public variable.

The present paper overcomes these shortcomings as follows:

– It presents a characterisation of observational determinism as proposed by
Terauchi [20], in the modal μ-calculus, using a standard composition operator
to compose the two program copies;

– It shows that the approach also can be applied to other secure information
flow properties, concretely eager trace invariance, as proposed by Roscoe [16];

– The characterisation goes all the way to the model checker: both the program
model and the temporal logic formulae are encoded in the input language
for the CWB model checker [15];

Several simple example programs are model checked, to show that this approach
accepts secure programs that are typically rejected by a type system. From this
experience, we draw lessons on what has to be done to make this approach scale
to large-scale programs.

Organisation. The remainder of this paper is organised as follows. First,
Section 2 introduces the program model. Next, Section 3 presents eager trace
invariance and observational determinism. Then, Section 4 discusses their char-
acterisation as temporal logic formulae, and Section 5 discusses how the char-
acterisations are expressed in CWB. Finally, Section 6 concludes, and discusses
future work.

Running Example. To illustrate the different definitions and encodings in the
paper, throughout we will use the following example programs.

h := 0;if (h = 3) then l := h′ else ε fi || l := 3 (Program 1 )
h := 0;if (h = 3) then l := h′ else ε fi || h := 3 (Program 2 )

We use the convention that variables h and h′ contain private data, while the
value of l is publicly visible. The first program is secure, but to determine this
statically, one has to consider that h is always set to 0, thus the value of h′ will
never be assigned to l. The second program is not secure: in some interleavings
variable h′, containing private data, is assigned to the publicly visible variable l.

2 Program Model

This section formally defines syntax and semantics of a simple while language
with parallel execution. Individual transitions of the operational semantics are
assumed to be atomic. Execution is defined as an infinite sequence of configura-
tions, where configurations contain the (remaining) program to be executed and
the global memory. Parallel threads communicate via the global memory. For
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〈S1, μ〉 → 〈ε, μ′〉
〈S1;S2, μ〉 → 〈S2, μ

′〉
〈S1, μ〉 → 〈S′

1, μ
′〉

if S′
1 �= ε

〈S1;S2, μ〉 → 〈S′
1;S2, μ

′〉
〈S1, μ〉 → 〈ε, μ′〉

〈S1 || S2, μ〉 → 〈S2, μ
′〉

〈S2, μ〉 → 〈ε, μ′〉
〈S1 || S2, μ〉 → 〈S1, μ

′〉
〈S1, μ〉 → 〈S′

1, μ
′〉

if S′
1 �= ε

〈S1 || S2, μ〉 → 〈S′
1 || S2, μ

′〉
〈S2, μ〉 → 〈S′

2, μ
′〉

if S′
2 �= ε

〈S1 || S2, μ〉 → 〈S1 || S′
2, μ

′〉
〈if (b) then S1 else S2 fi, μ〉 → 〈S1, μ〉 if b(μ)

〈if (b) then S1 else S2 fi, μ〉 → 〈S2, μ〉 if ¬b(μ)

〈while (b) do S od, μ〉 → 〈S;while (b) do S od, μ〉 if b(μ)

〈while (b) do S od, μ〉 → 〈ε, μ〉 if ¬b(μ)

〈x :=E, μ〉 → 〈ε, μ[x �→ E(μ)]〉 〈ε, μ〉 → 〈ε, μ〉

Fig. 1. Operational Semantics

simplicity, we do not consider procedure calls, local memory, or synchronisation
between threads. Adding these would add more details to the program model,
but not essentially change the technical results (but it might of course influence
efficiency and performance of the verification). In particular, the characterisation
of observational determinism would not change, but only the possible executions
that have to be considered for its verification. To characterise eager trace invari-
ance, the operational semantics is extended with extra information, which can
straightforwardly be defined for more complex statements.

2.1 Syntax

First we define the syntax of the programming language. Let Var be a set of
variables, and dom(x) the domain of a variable x ∈ Var . Each variable in Var
has a security-level high or low assigned to it2. This assignment divides the set
Var into two disjoint subsets H and L, containing the variables with high and
low security level, respectively.

We do not give any concrete grammar for expressions; we assume that we can
write all the usual side-effect-free boolean and integer expressions. Statements
(∈ Stmt) are defined by the following grammar, where S ∈ Stmt , x ∈ Var , e is
any expression, b is a boolean expression, and ε is the empty statement.

S ::= x := e | S;S | if (b) then S else S fi | while (b) do S od | S || S | ε

2.2 Semantics

Next we define the semantics of the programming language.
2 As usual, we only consider two security levels, but the approach can easily be gen-

eralised to an arbitrary security lattice.



152 M. Huisman and H.-C. Blondeel

Stores. A store ∈ Store maps Var to values, such that each value v belongs to
the domain of the corresponding variable x. Formally:

Store = {μ : Var →
⋃

x∈Var

dom(x) | x �→ v , v ∈ dom(x)}

For μ ∈ Store, μ |L denotes the restriction of μ to L, i.e., ∀x ∈ L.μ |L(x) = μ(x),
and ∀x ∈ H.μ |Lx =⊥. Stores μ and μ′ are L-equivalent, denoted μ ≈L μ′, if
μ |L = μ′ |L (i.e., ∀l ∈ L.μ(l) = μ′(l)).

Operational semantics. Figure 1 presents the rules of the small step operational
semantics of our programming language. Transitions relate program configura-
tions (∈ Conf ), where a configuration 〈S, μ〉 consists of a statement S and a store
μ. For convenience we use accessor function store(〈S, μ〉) = μ. The last (identity)
transition rule in Figure 1 applies in case the program has terminated, ensur-
ing that there always is a transition enabled. Thus program behaviour can be
considered as a Kripke structure (which makes it suitable for model checking).

Traces. A trace (∈ Trace) is an infinite sequence of configurations. Given trace
T ∈ Trace, Ti denotes the (i + 1)th configuration of T ∈ Trace, that is T =
T0, T1, . . . , Ti, Ti+1, . . ..

Trace T is a program trace of S, starting in the initial store μ, denoted
〈S, μ〉 ⇓ T , if (i) T0 = 〈S, μ〉, and (ii) ∀i ∈ N. Ti → Ti+1. Notice that there
always is a transition enabled, thus for any initial configuration, an infinite trace
exists. Finally, the set of reachable configurations w.r.t. a statement S, and a
set of stores Σ ⊆ Store is formally defined as: reach(S, Σ) = {Ti ∈ Conf | μ ∈
Σ ∧ 〈S, μ〉 ⇓ T ∧ i ∈ N}.
Example 1. Consider Program 1. Its variables are divided in the sets H = {h, h′}
and L = {l}. Suppose we execute this program in initial state μ = (h �→ 1, h′ �→
1, l �→ 1). A possible execution of this program is (where P1 denotes the full
program):

〈P1, μ〉 → 〈if . . . || l := 3, μ[h �→ 0]〉 → 〈l := 3, μ[h �→ 0]〉 →
〈ε, (h �→ 0, h′ �→ 1, l �→ 3)〉 → 〈epsilon, (h �→ 0, h′ �→ 1, l �→ 3)〉 → . . .

Two other executions are possible, corresponding to the possible interleavings of
the two parallel statements. Considering all these executions results in the set:

reach(P1, {μ}) = { 〈P1, μ〉, 〈if . . . || l := 3, μ[h �→ 0]〉, 〈l := 3, μ[h �→ 0]〉,
〈h := 0;if . . ., μ[l �→ 3]〉, 〈if . . . , (h �→ 0, h′ �→ 1, l �→ 3)〉,
〈ε, (h �→ 0, h′ �→ 1, l �→ 3)〉}

3 Secure Information Flow

3.1 Eager Trace Invariance

In 1995, Roscoe observed that one way to guarantee that no private data is
leaked, is to require that the public data is deterministic [16]. He defined de-
terminism of public data in two ways: (i) eager trace invariance: the program’s
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behaviour stripped from all knowledge about private data should be determinis-
tic, or (ii) lazy trace invariance: the program’s behaviour, interleaved with any
arbitrary manipulations of private data should be deterministic. In this paper,
we further discuss only eager trace invariance3. Roscoe’s formal definition of
eager trace invariance - re-casted for programs - expresses the following: given
program P and two sequences of actions (histories) H and H′ that are equal
w.r.t. the low actions, i.e., the set of actions associated with low variables, then
after P has executed H or H′, respectively, any possible subsequent sequence of
actions should be equal w.r.t. the low actions.

To define this formally, we first define the actions of a program. In our program
model, parallel threads communicate by reading and writing from the shared
store. A sequence of communications describes what a statement “knows” at a
particular point, and reading a variable before or after a write action on this
variable will thus make a difference. Therefore, both read and write actions have
to be considered, and we define the following set of actions (divided by the
security level assignment of variables into ActL and ActH ):

Act = {writex,v | v ∈ dom(x) ∧ x ∈ Var} ∪ {readx,v | v ∈ dom(x) ∧ x ∈ Var}

We believe that this choice for the set of actions reflects the definition of eager
trace invariance most faithfully in our program model.

Example 2. The different executions of Program 1 from the initial store where
all variables are 1 can produce the following actions: writeh,0, readh,0, writel,3. For
Program 2 this would be: writeh,0, readh,0, writeh,3, readh,3, readh′,1, writel,1.

To capture the sequence of actions that has been executed, we extend the opera-
tional semantics with a history of actions. Single steps can cause multiple actions,
or no actions at all to happen, therefore we associate with each step a set of ac-
tions. Configurations are extended to the form 〈S, μ,H〉, with accessor function
hist, where a history (∈ Hist) is a sequence of sets of actions. The operational
semantics is adjusted to add information to the history; rules that evaluate or
write an expression, such as assignment, add new values to the current history.

Example 3. In the extended operational semantics, the first execution of Pro-
gram 1 becomes (where ε is the empty sequence):

〈P1, μ, ε〉 → 〈if . . . || l := 3, μ[h �→ 0], {writeh,0}〉 →
〈l := 3, μ[h �→ 0], {writeh,0}.{readh,0}〉 →
〈ε, (h �→ 0, h′ �→ 1, l �→ 3), {writeh,0}.{readh,0}.{writel,3}〉 →
〈ε, (h �→ 0, h′ �→ 1, l �→ 3), {writeh,0}.{readh,0}.{writel,3}.{}〉 → . . .

Reachability is extended in the obvious way, i.e., reach(S, Σ,H) is the set of
reachable configurations from S and Σ whose history equals H.
3 Lazy trace invariance can also be model checked, but this requires that a special

operation is added to the program model that models the arbitrary manipulation of
private data.
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Example 4. Consider Program 1 and let Store be the set of all possible stores.
Then for example:

reach(P1,Store, {writeh,0}) = {〈if . . . || l := 3, μ[h �→ 0], {writeh,0}) | μ ∈ Store}〉
reach(P1,Store, {writel,3}) = {〈h := 0;if . . ., μ[l �→ 3], {writel,3}) | μ ∈ Store})}〉
reach(P1,Store, {readh,0}) = {}

Two histories H1 and H2 are equivalent w.r.t. a set of actions A, denoted H1 ≡A

H2, if they are equivalent up to empty sets, after removing all actions that are
not in A. Now we can define eager trace invariance in the context of our program
model.

Definition 1 (Eager trace invariance). Statement S is eagerly trace invari-
ant w.r.t. L if

∀ H,H′ ∈ Hist .H =ActL H′.
∀c ∈ reach(S,Store,H).c′ ∈ reach(S,Store,H′).

∀T ∈ Trace.c ⇓ T ⇒
∃T ′ ∈ Trace.c′ ⇓ T ′ ∧ ∀m ∈ N. ∃n ∈ N. hist(Tm) ≡ActL hist(T ′

n)

This definition states the following. Suppose we have two histories H and H′

that correspond to initial executions of S, i.e., there are configurations c and c′

reachable by these histories. Then any possible continuation of c can be matched
by a continuation of c′ - where matching is understood as that the low actions
should coincide.

Notice that configurations c and c′ are only constrained by histories H and
H′, not by any initial store.

Example 5. Consider again Program 1. The histories that match on the low
actions either (i) have no low actions at all, or (ii) contain the action writel,3.
In case (i), any possible continuation will contain the low action writel,3; in case
(ii), any possible continuation will not produce any low action anymore. Thus
the program is eagerly trace invariant.

However, if we consider Program 2, the histories H = writeh,0.writeh,3 and
H′ = writeh,3.writeh,0 are equivalent w.r.t. the low actions (as there are none),
but their possible continuations are not. For any initial store μ, the first history
leads to the configuration 〈if . . . , μ[h �→ 3],H〉 and this will be continued by
the actions readh,3.writel,h′ (for whatever the value of h′ is). However, the history
H′ leads to a configuration 〈if . . . , μ[h �→ 0],H′〉 that will only be continued
by the action readh,0. Clearly, these continuations are not equivalent w.r.t. the
low actions. Thus Program 2 is not eagerly trace invariant.

Notice that if we would change the then branch in Program 2 to a statement
that would only read the value of l, e.g., h′ := l, then the program would still
not be eagerly trace invariant, because reading of low variables is considered to
be a visible action.
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3.2 Observational Determinism

Inspired by Roscoe’s observation about determinism, Zdancewic and Myers [23]
propose that a program has secure information flow if the low traces with pub-
lic data are independent of the private data, i.e., for any two low-equivalent
stores, the traces of low variables are the same, up to stuttering4. They call this
observational determinism.

Several variations of observational determinism have been proposed in the
literature. These vary in the definition of low trace equivalence. Zdancewic and
Myers define trace equivalence by requiring that the trace for each low variable
should be equivalent up to stuttering and prefixing [23]. Later, Huisman et al.
have shown that this definition is insecure, even for sequential programs [11].
However, Terauchi showed that also Huisman et al.’s definition is still insecure:
if location traces are considered independently, information can be deduced from
the relative order in which two locations are updated. He defines trace equiv-
alence as equality up to stuttering and prefixing of the complete low stores.
However, in a forthcoming paper, Huisman and Ngo [10] show that allowing
prefixing makes security scheduler-dependent. Therefore, in the definition of ob-
servational determinism, we define low trace equivalence, denoted T �L T ′ as
equality of the low stores up to stuttering.

Definition 2. Statement S is observationally deterministic w.r.t. L if

∀μ, μ′ ∈ Store. ∀T, T ′ ∈ Trace.
μ ≈L μ′ ∧ 〈S, μ〉 ⇓ T ∧ 〈S, μ′〉 ⇓ T ′ ⇒ T �L T ′

Example 6. Consider again Program 1. For any two low equivalent stores μ and
μ′, with initial value l0 for the variable l, the low store traces are of the following
shape: (l �→ l0) . . . (l �→ 3) . . .. Thus clearly, any two traces will be low equivalent,
and the program is observationally deterministic.

Consider Program 2. Two low equivalent stores μ and μ′ that differ in the
value of h′ can have traces that are not low equivalent. Suppose that h′ is 1
in μ and 2 in μ′. Then a low store trace starting from μ is of the shape (l �→
l0) . . . (l �→ 1) . . . or (l �→ l0) . . ., while a low store trace starting from μ′ is of the
shape (l �→ l0) . . . (l �→ 2) . . . or (l �→ l0) . . .. Thus, clearly not all traces are low
store equivalent, and the program is not observationally deterministic.

However, if in Program 2, the then branch would be changed to for example
h′ := l - thus only reading the value of l, then the program would be observa-
tionally deterministic. This illustrates the difference with eager trace invariance,
where also reading of variables is considered important (cf. Example 5).

4 Two traces are said to be equivalent up to stuttering if they are the same if all sub-
sequent duplicates are removed (e.g., xxyyz and xyyyzzz are stuttering equivalent,
because in both cases removing the subsequent duplicates results in the trace xyz).
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s |=T true
def⇔ true s |=T false

def⇔ false

s |=T p
def⇔ p ∈ λ(s)

s |=T ¬Φ def⇔ ¬ (s |=T Φ) s |=T Φ ∧ Ψ
def⇔ s |=T Φ ∧ s |=T Ψ

s |=T 〈α〉Φ def⇔ ∃s′ ∈ S. (s
α→ s′ ∧ s′ |=T Φ) s |=T [α]Φ

def⇔ ∀s′ ∈ S. (s
α→ s′ ⇒ s′ |=T Φ)

s |=T μX. Φ
def⇔ ∃k ∈ N. s |=T μXk.Φ s |=T νX. Φ

def⇔ ∀k ∈ N. s |=T νXk.Φ

μX0. Φ
def
= false μXk+1. Φ

def
= Φ[μXk.Φ/X]

νX0. Φ
def
= true νXk+1. Φ

def
= Φ[νXk.Φ/X]

Fig. 2. Semantics of modal μ-calculus

4 A Temporal Logic Characterisation of Secure
Information Flow

This section first presents the modal μ-calculus [12], the temporal logic used for
the characterisation. Then it shows how observational determinism and eager
trace invariance are characterised using this logic. The next section shows how
the properties and the model are encoded in the input language of the CWB
model checker, and uses this to verify secure information flow of some simple
examples.

4.1 Modal μ-Calculus

As mentioned above, in earlier work Huisman et al. proposed a characterisation
of observational determinism, using CTL∗. However, no readily available model
checker for CTL∗ exists. Moreover, the characterisation in CTL∗ used a non-
standard composition operator, tailored to the specific property at hand. To
make the approach generally applicable, therefore this paper uses the modal μ-
calculus [12] instead (whereas the modal μ-calculus characterisation in [11] was
not precise enough).

The modal μ-calculus is an extension of Hennessy-Milner logic with fixed-
point operators that allow to express recursion. Let N be a set of variable names,
ranged over by X . Let Lab be the set of actions labels, ranged over by α, and
let A be the set of atomic propositions, ranged over by p. Then the syntax of
modal μ-calculus formulae is given by the following grammar:

Φ ::= true | false | p | X | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | 〈α〉Φ | [α] Φ | μX. Φ | νX. Φ

Figure 2 defines the semantics of modal μ-calculus formulae, w.r.t. a labelled
transition system T = (S,Lab,→, A, λ), where S is the set of states, Lab the
set of transition labels, →⊆ S × Lab × S the transition relation, A the set of
atomic propositions, and λ : S → 2A is the valuation, describing for each state
which atomic propositions hold. The symbol s ranges over S. The semantics of
fixed-point formulae uses (inductively) defined fixed-point approximants [5].



Model-Checking Secure Information Flow for Multi-threaded Programs 157

4.2 Observational Determinism in Temporal Logic

To characterise observational determinism in the modal μ-calculus, we first define
a set of action labels: Act = {cx,v | x ∈ Var ∧ v ∈ dom(x)} ∪ {τ}. Intuitively, a
transition is labelled with cx,v if it changes the value of variable x to the value v.
Given a set of variables X , we use cX to abbreviate the set of labels that encode
changes to x ∈ X : cX = {cx,v | x ∈ X ∧ v ∈ dom(x)}.

The operational semantics is updated with these labels: each transition that
assigns v to variable x (where v is different from x’s former value) is labelled
cx,v; all other transitions are labelled with the silent transition label τ . Notice
that assignment of a non-changed value is not considered as a change – it will
be labelled τ . Sequential and parallel composition propagate transition labels.

Example 7. Consider the example execution of Program 1 in example 1. In the
updated operational semantics, this execution becomes:

〈P1, μ〉 ch,0−−→ 〈if . . . || l := 3, μ[h �→ 0]〉 τ−→ 〈l := 3, μ[h �→ 0]〉 cl,3−−→
〈ε, (h �→ 0, h′ �→ 1, l �→ 3)〉 τ−→ 〈ε, (h �→ 0, h′ �→ 1, l �→ 3)〉 τ−→ . . .

We wish to check whether a program is observationally deterministic. In or-
der to do this, we need to compare two program executions. The trick of self-
composition is to compose the program with itself in such a way that the exe-
cution of the self-composed program corresponds to the two executions of the
individual program copies (originally proposed in [1,6]). In our case, we do this
by executing the two program copies in parallel. To be able to extract the two
program executions, we clearly separate the program configurations of the two
programs in every state.

Thus, the self-composed program model is defined as the labelled transition
system T = (S,Lab,→, A, λ), where we define:

– the set of states S = Conf × Conf , i.e., states contain configurations for
both program copies,

– the set of action labels Lab = {(a)j | a ∈ Act ∧ j ∈ {1, 2}}, where the index
j denotes which program copy performs the action,

– the transition relation →⊆ S × Lab × S using the labelled operational se-
mantics described above:

c1
a−→ c′1

(c1, c2)
(a)1−−→ (c′1, c2)

c2
a−→ c′2

(c1, c2)
(a)2−−→ (c1, c

′
2)

– the set of atomic propositions A = {eqL}, and
– the valuation λ : S → P (A) such that eqL ∈ λ((c1, c2)) ⇔ ∀l ∈

L.store(c1)(l) = store(c2)(l).

Theorem 1. A program S is observationally deterministic if and only if, for all
stores μ and μ′,

(〈S, μ〉, 〈S, μ′〉) |=T ΦOD
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where: ΦOD = eqL ⇒ νX.always(cL1) ([(cL)1] Υ )
Υ = eventually(−)L

2 (eqL) ∧ always(cL)2 ([(cL)2] (eqL ∧ X))
(−)L

i = {(a)i | ∃l ∈ L. a = cl ∨ a = τ}, i ∈ {1, 2}
(cL)i = {(a)i | a �= cL}, i ∈ {1, 2}

alwaysA(φ) = νY.φ ∧ (
∧

a∈A

[a] Y ) eventuallyA(φ) = μY.φ ∨ (
∧

a∈A

[a] Y )

Proof. For space reasons, we refer to Blondeel’s Master’s thesis [2] for the proof
of this theorem5.

Intuitively, formula ΦOD expresses that if the low stores of the two program
copies are the same (eqL), then the trace corresponding to the transitions of the
first part and the trace corresponding to the transitions of the second part are
stuttering equivalent. Stuttering equivalence says that whenever the first part
changes a variable in L ([(cL)1] . . .), then Υ has to hold, expressing that: (i) there
is always a point reachable where the second program copy will change a variable
in L such that the low stores become equal again (eventually(−)L

2 (eqL)), and (ii) if
the second program copy is the only one to take transitions and those transitions
do not change low variables, (always(cL)2(. . .)), then after the second program
copy changes a low variable for the first time ([(cL)2] . . .), the two stores will be
equal and the whole formula will hold again (eqL ∧ R).

4.3 Eager Trace Invariance in Temporal Logic

In a similar spirit, eager trace invariance can be characterised. However, this
requires to compose the program with itself thrice: a program is eager trace
invariant if for every two executions that have the same initial low actions, there
exists a third execution that performs all initial actions of the second execution
and then mimics all future low actions of the first execution. This makes it
necessary that the initial store of the third model can remain undetermined
for a while, therefore we add an uninitialised store ⊥ to the model, defining
Conf ⊥ = Stmt × (Store ∪{⊥}), together with an explicit initialisation label init.

The temporal logic characterisation of eager trace invariance does not use
atomic propositions, so the model is of the form (S,Lab,→), where

– states S = Conf ⊥ × Conf ⊥ × Conf ⊥,
– labels6 Lab = {τ} ∪ {(a)j | a ∈ Act ∪ {init} ∧ j ∈ {1, 2, 3}}, and
– transitions → are defined as the obvious lifting of the standard operational

semantics, extended with explicit initialisation.

The formula abstracts away from the particular kind of high transitions that
occur. To model this, we define a so-called high transition relation ⇒H , with
corresponding modalities 〈〈a〉〉H and [[a]]H , respectively, as a variation of standard

5 In fact, this is a proof for the case where the location traces have to be stuttering
equivalent, instead of the complete traces - but the main structure of the proof
remains unchanged.

6 Where Act is as defined in the definition of eager trace invariance, page 153.
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weak transitions and modalities (that abstract over internal transitions). Let al

be a low action label, and let
(ah)j⇒ be the standard weak transition relation.

Then the high transition relation ⇒H is defined as follows.

s
τ⇒H s′ ⇔ s(⇒H′ )∗s′ s ⇒H′ s′ ⇔ ∃ah ∈ ActH .∃j ∈ {1, 2, 3}.s (ah)j⇒ s′

s
al⇒H s′ ⇔ s ⇒H

al⇒⇒H s′

Now we can characterise eager trace invariance as well in modal μ-calculus.

Theorem 2. A program S is eager invariant if and only if

(⊥,⊥,⊥) |=TS [(init)1] [(init)2] ΦETI

where ΦETI = [init1] [init2] (νX. 〈init3〉mimic3,1 ∧
∧

ah∈ActH

[[(ah)1]] X

∧ ∧
ah∈ActH

[[(ah)2]] 〈init3〉 〈〈(ah)3〉〉Ψ

∧ ∧
al∈ActL

[[(al)1]] [[(al)2]] 〈init3〉 〈〈(al)3〉〉Ψ)

Ψ = νY.mimic3,1 ∧
∧

ah∈ActH

[[(ah)1]] Y ∧ ∧
ah∈ActH

[[(ah)2]] 〈〈(ah)3〉〉Y

∧ ∧
al∈ActL

[[(al)1]] [[(al)2]] 〈〈(al)3〉〉Y

mimic3,1 = νZ.
∧

al∈ActL

[[(al)1]]H 〈〈(al)3〉〉H Z

Proof. See Blondeel’s Master thesis [2] for the proof.

Formula mimic3,1 expresses that for all histories generated by model 1, model 3
can generate a history which is low equivalent. Formula ΦETI and Ψ are identical,
except that Ψ assumes that the store of the third model is already initialised.
Intuitively, we loop in ΦETI until init3 has happened, and then we loop in Ψ .
Formula ΦETI and Ψ define all states where mimic3,1 should hold. These are all
states where (i) model 1 and 2 have communicated low equivalent histories, and
(ii) model 3 has communicated exactly the same history (including high actions)
as model 2. In other words, formula ΦETI and Ψ express that as long as model 1
and model 2 have low equivalent histories (i.e., one of them does a high action,
or they do the same low action), model 3 can reproduce the actions that model 2
has done so far (including high actions), and then mimic model 1 in its future
low actions.

5 Encoding in the Concurrency WorkBench

As mentioned above, in earlier work, Huisman et al. characterised observational
determinism using CTL∗ [11]. However, there is no readily available model
checker for CTL∗, therefore they experimented with Evaluator in the CADP
tool set [7] to model check the property. But since Evaluator only supports
alternation-free modal μ-calculus, while observational determinism (as defined
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by Huisman) only can be expressed as a μ-calculus formula with alternation
of greatest and least fixed points, only a stronger property could actually be
verified. Thus, it is preferable to use a model checker that supports full modal
μ-calculus, such as Concurrency WorkBench (CWB) [15]. This expressiveness
is needed, because the properties typically express requirements such as: if one
model can do a certain step, the other model (the program copy) has to be able
to mimic this step.

We encode our program model and the modal μ-calculus formulations of ob-
servational determinism and eager trace invariance in CWB’s specification lan-
guage. The encoding is quite straightforward, to be able to quickly get experi-
mental results.

CWB allows to define agents (or processes) in basic CCS, the Calculus of
Communicating Systems [14]. CWB’s specification language is quite restrictive,
and it does not provide any support for data. Thus there are no parametrised
actions, nor conditional statements, and we have to use basic CCS agents to
update and lookup variables.

In CCS, when a process performs action a, some parallel process or the envi-
ronment must simultaneously perform a co-action ′a (a corresponds to receiving
on channel a and ′a corresponds to sending on channel a). If ′a is performed by
a parallel process, then a and ′a together form a silent action τ . This action cor-
responds to an internal choice, and it is ignored by the weak modalities 〈〈α〉〉 and
[[α]] of the modal μ-calculus. Internal actions are used to control the behaviour
of the agents. All other actions communicate with the environment (external
choices). For each model, we have exactly one input action: input-mi for model
i. After this action, all variables in model i are initialised. The other actions,
with “output” in their name, denote a message that is sent to the environment.

Observational determinism and trace invariance assume different actions, there-
fore we have to give different CCS models. In the sequel, we describe the most
important aspects of the modelling of observational determinism. The modelling
of eager trace invariance uses a similar approach (and reuses part of the CWB
modelling for observational determinism); we refer to Blondeel’s Master thesis [2]
for details about this.

5.1 CWB Encoding of the Program Model

The first step to encode the program model is to model the store using CCS
agents. Each agent is of the form x−v−mi, where x is a variable, i a program copy
number and v a value in the (finite) domain of x. It is necessary to enumerate
all possible values, because CCS can not be parametrised with data. Each agent
can output the value, either to the environment, or internally. These actions
return the original agent. Further, we model updates, that return a different
agent, related with the new value of the variable. Every change is output, both
externally and internally. The internal communication ensures that the model of
the store is updated. As the updates consist of several actions, we have to ensure
that the variable cannot be changed in between. To do this, we introduce ‘begin’
and ‘end’ labels for variable updates, that ensure that each complete update is
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executed atomically. Consequently, the properties that we want to verify have to
be adapted for this: instead of checking for a single transition that corresponds
to a variable change, they have to match pairs of labels.

Also the individual transitions in the operational semantics (Figure 1) are not
atomic in the CCS model. To ensure atomicity of the steps in the operational
semantics, a special lock is defined per program model. Each transition in the
program model first acquires the lock, then executes the corresponding CCS
actions, and then releases the lock. In each model, we have one agent for the
assignment of a constant (AssignValue-mi) and one agent for the assignment
of the value stored in another variable (AssignVar-mi), for example:

agent AssignValue-mi(output-begin-change-x-to-v1-mi, change-x-v1-mi,
value-x-v1-mi, value-x-v2-mi, Follow-mi) =

takeLock-mi. (value-x-v2-mi. ’output-begin-change-x-to-v1-mi.
’change-x-v1-mi. ’output-end-change-mi. +
value-x-v1-mi. ’output-nochange-mi).

’releaseLock-mi.Follow-mi;
This agent should be understood as follows: first the lock for model mi is

acquired. If the current value of x in the model mi is v2, then a change to the
value v1 is communicated (both internally and externally), and then the change
has finished. If the value of x is already v1, then no change is communicated.
Then the lock is released, and the remainder of the model mi is executed.

All transitions of the operational semantics are modelled, except for those when
the program is terminated; this case is handled by the encoding of observational
determinism. Each program copy is modelled as the parallel composition of agents
modelling the program, the store and the lock mechanism. The complete program
is modelled as the parallel composition of two copies of such models.

Example 8. Consider again Program 1. Using our CWB encoding, the first pro-
gram copy is modelled as the following CCS agent. Notice that instead of using
integer values we explicitly encode Boolean values because we do not have any
data in CCS, and the modelling is intended as a proof of concept. All text pre-
ceded by * are comments:

agent Pr1-m1 =
* h := false

(AssignValue-m1( c-h-false-out-m1, * output-begin-change-x-to-v1-m1
c-h-false-m1, * change-x-v1-m1
v-h-false-m1, v-h-true-m1, * value-x-v1-m1, value-x-v2-m1

* if(h = true) then . . . else ε fi

If-m1( v-h-true-m1, v-h-false-m1, * then-condition, else condition
* l :=h′, then branch
AssignVar-m1( c-l-true-out-m1, c-l-true-m1, c-l-false-out-m1, c-l-false-m1,

v-l-true-m1, v-l-false-m1,
v-hprime-true-m1, v-hprime-false-m1, 0),

0))) | * else branch
* l := true
(AssignValue-m1( c-l-true-out-m1, c-l-true-m1, v-l-true-m1, v-l-false-m1, 0));
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This is executed in parallel with the locking mechanism to make the transition
steps of the program copy atomic and with the agent modelling the store of the
first program copy, after hiding the internal communication actions. Together
this results in the agent describing the program model for the first program copy.

agent ExPr1-m1 =
(Lock-m1 | StoreLHHprime-m1 | Pr1-m1) \ InternActions-m1 ;

Program copy 2 is exactly the same, with all m1 replaced by m2. Their
parallel composition - the program model of the self-composed program - is then
defined as ExPr1-m1|ExPr1-m2.

5.2 CWB Encoding of Observational Determinism

To model the observational determinism property in CWB, we first model equal-
ity of variables x ∈ VarL. Because we currently only encode Boolean values, it
is sufficient to check whether x in m1 is true if and only if x in m2 is true. This
results in the following property definition for Eq (where T is CWB notation
for true, and & is conjunction):

prop Eq =⋃
x∈VarL

( 〈 ’output-value-x-true-m1〉T ⇒ 〈 ’output-value-x-true-m2 〉 T ) &
( 〈 ’output-value-x-true-m2〉T ⇒ 〈 ’output-value-x-true-m1 〉 T );

To handle termination according to the operational semantics, we express ex-
plicitly when a model mi cannot do any action corresponding to the labelled
transitions by defining a set ProgressActions-mi. We explicitly add a live-
ness requirement ∼CanHoldBeforeEnd-mi, ensuring that there is no path on
which Phi always holds until the program terminates (where ∼ is CWB notation
for negation, and | for disjunction).

prop Finished-mi = [[ProgressActions-mi]]F;
set ProgressActions-mi =

{ ’output-begin-change-x-to-v-mi | x ∈ Store ∧ v ∈ dom(x)} ∪
{ ’output-end-change-mi, ’output-nochange-mi};

prop CanHoldBeforeEnd-mi(Phi) =
min(X. (Phi & Finished-mi) | (Phi & 〈〈ProgressActions-mi〉〉X));

Now we can model observational determinism and its subexpressions.

prop ObervationalDeterminism = [[init-m1]][[init-m2]]Eq ⇒ TraceInd;
prop TraceInd = max(R. Always-x-m1(

[[BeginChangeLowActions-m1]] [[’output-end-change-m1]]
Eventually-m2(Eq) & ∼CanHoldBeforeEnd-m2(∼Eq) &
Always-x-m2( [[BeginChangeLowActions-m2]]

[[’output-end-change-m2]](Eq & R))
set BeginChangeLowActions-mi =

{ ’output-begin-change-x-to-v-mi | x ∈ StoreL ∧ v ∈ dom(x)}



Model-Checking Secure Information Flow for Multi-threaded Programs 163

set Compl-change-x-mi =
{ ’output-begin-change-y-to-v-mi | y ∈ Store − {x} ∧ v ∈ dom(x)} ∪
{ ’output-end-change-mi, ’output-nochange-mi};

prop Always-x-mi(Phi) = max(X. Phi & [[Compl-change-x-mi]]X);
prop Eventually-mi(Phi) = min(X. Phi | [[ProgressActions-mi]]X);

We have verified this property on several simple example programs, including
running examples Program 1 and Program 2. Program 1 is observationally de-
terministic, but typically rejected by a type checker because of the information-
leaking then-branch that depends on a private variable - even though the con-
dition will never be true, thus the then branch will never be executed. This is
correctly accepted by CWB. Program 2 is not observationally deterministic, and
this is indeed rejected by CWB. We have tried the model checker on about 20
small example programs. In all cases, the model checker returns the (correct)
answer within milliseconds.

To try the encoding on more realistic examples, the encoding has to be im-
proved, because we would need more than just Boolean values.

6 Conclusions and Future Work

This paper describes a practical exercise in using the self-composition approach
to model check secure information flow for multithreaded programs. Concretely,
we show how eager trace invariance, proposed by Roscoe [16], and observational
determinism, in the version of Terauchi [20], can be characterised as temporal
logic formulae and encoded in the Concurrency WorkBench [15]. The encoding
can be used to check security of several simple example programs, including
examples that would be rejected by a type checker.

As future work, we plan to make the approach scale. For this, we need to
improve the modelling of the program model, without an explicit encoding of the
data domain. We will study whether parametrised boolean equation systems [4,9]
are appropriate for this. If so, we will develop a translation from a program in a
general-purpose programming language into such a system.

The properties that we studied in this paper are classical definitions of confi-
dentiality in a multithreaded program. However, they can be overly restrictive,
because they require the program behaviour to be completely deterministic. An
alternative approach is to define a probabilistic confidentiality property that re-
stricts the likelihood of a certain trace occurring. The literature contains several
examples of probabilistic secure information flow properties, e.g., [22,19,17]. We
are currently extending our approach to such probabilistic properties, using prob-
abilistic temporal logics and a probabilistic model checker, such as PRISM [13].
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