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Abstract. We investigate the problem of deciding first-order theories of finite
trees with several distinguished congruence relations, each of them given by some
equational axioms. We give an automata-based solution for the case where the
different equational axiom systems are linear and variable-disjoint (this includes
the case where all axioms are ground), and where the logic does not permit to
express tree relations x = f(y, z). We show that the problem is undecidable
when these restrictions are relaxed. As motivation and application, we show how
to translate the model-checking problem of AπL, a spatial equational logic for
the applied pi-calculus, to the validity of first-order formulas in term algebras
with multiple congruence relations.

1 Introduction

Term algebras play a crucial role in the symbolic modeling of cryptographic protocols.
In the applied π-calculus [2], a variant of the π-calculus tailored to the study of security
protocols, the history of communications at some point of a protocol can be represented
by a frame, consisting of a set of terms, each representing a message that has been
sent, together with a set of names that are assumed to be secret at the beginning of the
communication. For instance, the encryption of a secret s using someone’s public key
pub(k) (with the equational axiom dec(enc(x, pub(k)), k) = x) can lead to the frame
F0 := ({k, s}, {u0 = pub(k), u1 = enc(s, u0)}) where the first element of the pair
is the set of secret (or hidden) names (here k and s) of the frame. Analyzing frames is
crucial to discover potential flaws in security protocols.

Usually, one checks the properties of frames against two particular queries: the de-
ducibility of a term from a given frame, and the static equivalence of two given frames.
Assuming passive attackers who can observe messages exchanged on all public chan-
nels, deducibility corresponds to what they may infer from these observations, while
static equivalence asserts indistinguishability between two protocols. These two prop-
erties are decidable for a fairly large (at least from a practical perspective) class of
underlying equational theories, as shown by Abadi and Cortier [1]. However, many
other properties, more tailored to a particular protocol, are imaginable. For instance, in
the frame F above, one may ask whether the owner of the private key k will be able to
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uncover s. To provide a more general decision procedure that would also apply to these
properties, one may wish to use a logic for which the model-checking problem is de-
cidable. Since first-order logics over a term algebra cannot easily express the properties
above, other formalisms need be considered.

In this paper, we study the decidability of the model-checking of AπL [20,19], a
spatial logic for the applied π-calculus, and more precisely of a fragment FSL of it
we call frame spatial logic, that is dedicated to frames. This fragment exposes two of
the main ingredients of AπL, hidden name revelation and spatial conjunction, which
we believe to be generally useful in naturally expressing security properties of frames.
For instance, the hidden name revelation can be used to capture the subtler property
mentioned above using the formula Nk. u0 = pub(k) ∧ (∃x. Ns. x = s), which reads
informally as follows: by revealing k, whose public key is published on u0, one may
craft a term x, independent of s but which may depend on k (given the position of the
existential quantifier in the formula), such that x is equal to s (here x = dec(u2, k)
would be a valid witness). Spatial conjunction ∗ between two properties expresses the
fact that the current frame can be decomposed into two subframes that do not share any
hidden name such that each subframe satisfies one of the subformulas. For instance, the
formula 1 := ¬0 ∧ ¬(¬0 ∗ ¬0) describes precisely the non-empty frames that may
not be decomposed into two non-empty frames. Using this formula, one may express a
property Φ about a part of a frame that represents a single session of a protocol (sup-
posing that each session is distinguished from the others by the use of a unique hidden
name in each message) with (1 ∧ Φ) ∗ true. Decomposing frames spatially may also
help expose which parts of the frame are responsible for the leak of a secret: the for-
mula (∃x. Nn. x = n) ∧ ¬(∃x. Nn. (Φ1 ∗ x = n)) means that a secret name is leaked,
but that the messages in the part of the frame described by Φ1 are necessary to obtain
this secret. The frame spatial logic FSL is also rich enough to express that a given term
is deducible from a frame and to characterize a particular frame.

Reducing the model-checking problem of the logicFSL to a purely equational logic
with no spatial connectives gives rise to formulas where multiple congruence relations
may appear, which come from the various (fragments of) frames {ui = ti}i∈I under
consideration, each introducing additional axioms ui = ti to the term algebra. Another,
more restricted case of multiple congruence relations can be found in the logic of frames
LF of Hüttel and Pedersen [16], in which one can compare terms either syntactically
(t1 = t2) or according to the underlying equational theory E (t1 =E t2).

In this paper, we introduce the general framework of first-order constraints systems
with multiple congruence relations. There exist a number of decidability results for
the first-order theory of term algebras, or equivalently finite trees, and more generally
for the first-order theory of the quotient of a term algebra by some congruence. Most
of these decidability results were obtained by quantifier elimination. One of the key
observation for quantifier elimination procedures is that the rule

∃x. (x = t ∧ φ) � φ[x←t] if x �∈ Vars(t)

where φ is an arbitrary conjunction of literals, and φ[x←t] denotes the formula obtained
by replacing every occurrence of the variable x by the term t, requires = to be a con-
gruence relation with respect to all functions and predicates of the structure. However,
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when faced with several congruence relations, the observation above cannot be naively
used as a basis for quantifier elimination. The reason is that, faced with a formula like
∃x1, x2. (x1 =1 t1∧x2 =2 t2∧φ) where =1 and =2 are two different congruence rela-
tions of our structure, one cannot simply eliminate x1 or x2 as before. Indeed =1 would
not necessarily be a congruence with respect to =2, and vice versa, since in general
the equational axioms used for defining these equivalence relations would be indepen-
dent. One might however hope that there is a solution to this problem. If {θ1, . . . , θn}
is a complete set of unifiers of x =1 t1, that is for the equational theory =1, then the
above formula would be equivalent to ∃x2, ȳ1. (x2 =2 t2∧φ)θ1∨ . . .∨∃x2, ȳn. (x2 =2

t2∧φ)θn where ȳi is the set of extra variables introduced by the unifier θi. The question
is whether a similar combination result can be achieved for the full first-order theory.

Results. In this paper, we show the decidability of the first-order theory of term alge-
bras with several congruence relations. The predicates of our structure are of the form
x =i y, where each =i is given by a set of linear and variable-disjoint equational ax-
ioms. The structure does not contain function symbols, and hence does not allow to
express relations of the form x = f(y, z). This restriction makes the structure accessi-
ble to automata-theoretic techniques, which is a key to our decidability result. We show
that decidability no longer holds when we allow term relations like x = f(y, z), or
when one generalizes to flat axiom systems. However, our decidability result can be
extended to the quotient of the term algebra under a certain class of rewrite systems
(which represent underlying equational theories on terms) for which a completion pro-
cedure terminates. We show that it is the case for rewrite rules of the form g→x where g
is a jack (see page 174) and all =i are axiomatized by ground equations. We also show
that undecidability is reached as soon as one of the =i is the tree equality.

From a security point of view, as we will show, this means that deducibility and static
equivalence, as well as the model-checking problem of FSL, are all decidable when
the underlying equational theory can be expressed as a rewrite system such that the
completion procedure mentioned above terminates. This is the case in particular for the
theory of pairs and of symmetric and asymmetric encryption with fixed keys, but not
for the theory of signed messages for instance.

Related work. This paper is the result of two lines of research: decidability results
for first-order theories on the one side, and the study of process algebras for security
protocols on the other side.

The decidability of the first-order theory of finite trees over a finite signature, with
syntactic equality as the only predicate, was first shown by Malc’ev [22], this result
was later rediscovered and extended independently by Maher [21] and Comon and Les-
canne [10]. Encouraged by this result, several researchers started in the late 80s the
program to show decidability of the first-order theory of term algebras with different
predicates than just syntactic equality. Research basically went into several directions:
one direction was to add relations other than equality to the theory, in particular ordering
relations that were useful for ordered rewrite calculi [6,17], or for typing of program-
ming languages [24,18]. Another direction was the addition of predicates that can be
recognized by various classes of tree automata [5,8]. A third direction was to replace
the syntactic equality relation in the original result by an equality relation modulo a set
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of equational axioms. The initial optimism was fueled by the fact that for quantifier-free
positive constraints, so-called unification systems, the extension of syntactic unification
to unification modulo equational theories has led to a rich theory and many useful re-
sults (see, for instance, [3] for a survey). The probably strongest result in this direction
is the decidability of the theory of term algebras modulo so-called shallow equational
theories [9]. However, it also turned out that the limits of decidability are met much
earlier with first-order theories than with unification problems, and undecidability of
the theory of term algebras modulo some important equational theories were shown,
among them AC [25,23].

From the perspective of symbolic cryptography, our work can be compared with the
one of Abadi and Cortier [1] in which they show that term deduction and static equiva-
lence are decidable for many equational theories. Most of the classes they consider are
out of the reach of the techniques presented here; however, our work takes a different
approach than theirs: we consider the decision of any property that can be expressed
in FSL, for instance the mere existence of a leaked secret name (which amounts to
quantifying over the terms that can be deduced from a frame), or more generally of
any property expressible in a first-order theory with multiple congruence relations and
a background term rewrite system. This makes both results incomparable.

Outline. Section 2 collects the necessary background on term algebras, tree automata,
and term rewriting. In Section 3, we establish the decidability of the first-order theory
of term algebras with multiple congruence relations, and the undecidability under small
relaxations of our hypothesis. In Section 4, we show how to extend the decidability
result to a certain class of “background” rewrite systems. Finally, Section 5 introduces
the application to the study of the frames of the applied π-calculus.

2 Preliminaries

We assume the usual notions of rewriting. A signature Σ is a set of function symbols
with arity. The subset of function symbols of Σ of arity n is denoted by Σn. A signature
Σ is called monadic if when it contains only unary and constant function symbols (Σ =
Σ0 ∪Σ1). The set of variables is V ; given a signature Σ, we denote by T (Σ, V ) the set
of terms over Σ, and by T (Σ) the set of ground terms (terms without variables). A term
t ∈ T (Σ, V ) can be conveniently seen as a function from its set of positions Pos(t)
(non-empty set of sequences of positive integers that is closed under prefix and left
brother) into Σ ∪ V . Let Vars(t) denote the set of variables of t, depth(t) its depth, t|p
the subterm of t at position p, and t[s]p the replacement in t of the subterm at position
p by s. The term t is called linear if every variable of Vars(t) occurs exactly once in t.

Equations are considered non-oriented, that is � = r is identified with r = �. We
call an equation � = r ground when Vars(�) = Vars(r) = ∅, variable-disjoint when
Vars(�) is disjoint with Vars(r), flat when depth(�), depth(r) ≤ 1 and shallow when
every variable of Vars(�) ∩ Vars(r) occurs at depth at most 1 in � and r. A set of equa-
tions is variable-disjoint (resp. ground, flat, shallow) when each of its equations is. Any
flat equation is shallow, and any ground equation is both shallow and variable-disjoint,
while in general flat or shallow equations are not necessarily variable-disjoint.
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Let R be a rewrite system, and E a set of equational axioms. We write s −−→
R

t
when s rewrites to t in one step by R, and s ←−−→

E
t when s transforms to t in one

equational proof step by E. The relations −−→∗
R

and =E are the reflexive and transitive
closures of respectively−−→

R
and←−−→

E
, that is, in the latter case, s =E t when s and t are

equal modulo the set E of equations. We write =E,R for the reflexive, symmetric and
transitive closure of←−−→

E
∪ −−→

R
.

Given a finite signature Σ, a (bottom-up) tree automaton A is given by (Q, F, Δ)
where Q is a finite set of states, F ⊆ Q is called the set of accepting states, Δ is a set
of rewrite rules f(q1, . . . , qn) → q with f ∈ Σn, q1, . . . , qn, q ∈ Q. The automaton A
accepts a tree t iff t −→∗ q ∈ F by the transition rules Δ. The language LA is the set
of all trees accepted by A. Tree automata enjoy (almost) all the nice properties of word
automata, in particular closure under Boolean operations, decidability of the emptiness
problem, determinization, minimization [7].

The convolution operation defined below allows to code n-tuples of trees as trees
over a signature of n-tuples. Let Σ be a signature with � �∈ Σ. We define the signature
Σ[n], for n ≥ 1, as

Σ[n] = {[f1, . . . , fn] | fi ∈ Σ ∪ {�}, fi �= � for at least one i}.

The arity of [f1 . . . , fn] in Σ[n] is the maximum of the arities of those fi that are in Σ.
For t1, . . . , tn ∈ T (Σ), the convolution t1 ⊗ . . . ⊗ tn is the tree t ∈ T

(
Σ[n]

)
defined

by Pos(t) = Pos(t1) ∪ . . . ∪ Pos(tn), and for all π ∈ Pos(t), t(π) = [f1, . . . , fn]
where fi = ti(π) if π ∈ Pos(ti), and fi = � otherwise. Projection is defined by
πi(t1 ⊗ . . .⊗ tn) = ti.

For example, let Σ = {h, f, a}, where a is a constant, f unary, and h binary. Then
we have that f(a)⊗ h(a, f(a)) = [f, h]([a, a], [�, f ]([�, a])).

Now, one can define tree-automatic representations and tree-automatic structures
analogously to the definition given in [4] for automata over finite words. This definition
applies only to so-called relational structures, that is structures that have only predicates
in their logical language and no constants or function symbols. This is not a restriction
as constants or functions can always be expressed by predicates. Let A be a structure
over a relational signature with relation symbols R1, . . . , Rn. A tree-automatic repre-
sentation of A is given by

1. a finite signature Σ,
2. a recognizable tree language Lδ ⊆ T (Σ),
3. an onto function ν : Lδ → |A| (|A| denotes the universe of A),
4. a recognizable tree language LR ⊆ T (Σ[n]) for each relation symbol R of the

signature of A, such that for all t1, . . . , tn ∈ Lδ, t1 ⊗ . . .⊗ tn ∈ LR if and only if
(ν(t1), . . . , ν(tn)) ∈ RA –we say that the relation RA is recognizable.

A structure is tree-automatic if it has a tree-automatic representation. The first-order
theory of any tree-automatic structure is decidable.

Ground Tree Transducers (GTT) have been introduced in [11]. A GTT is defined
by two tree automata A1 and A2 over the same signature Σ, and possibly with shared
states. The GTT defined by A1 and A2 recognizes the pair (t, t′) ∈ T (Σ)2 iff there
exists a context C, terms ti, t

′
i ∈ T (Σ), and states qi for 1 ≤ i ≤ n, such that t =
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C[t1, . . . , tn], t′ = C[t′1, . . . , t
′
n], ti −→∗ qi by A1 and t′i −→∗ qi by A2. Any relation

defined by a GTT is recognizable, and the set of GTT-definable relations is closed under
iteration (Kleene star) [12].

3 The Case of Several Congruence Relations

Definition 1. Let Σ be a countable signature with an upper bound on the arities of
the function symbols, (Ei)i∈I be a finite family of finite sets of equations over Σ, and
(Lj)j∈J a finite family of recognizable tree languages over finite subsets of the sig-
nature Σ. The first-order structure A(Σ, (Ei)i∈I , (Lj)j∈J ) is defined as follows: the
universe is the set of all ground Σ-terms, there are no constant or function symbols,
for every i ∈ I we have a binary relation =i, interpreted as t1 =i t2 iff t1 =Ei t2,
for every j ∈ J we have a unary relation Lj , interpreted as Lj(t) iff t ∈ Lj . The
structure H(Σ, (Ei)i∈I , (Lj)j∈J ) contains in addition to A(Σ, (Ei)i∈I , (Lj)j∈J ) all
symbols from Σ as function symbols, interpreted as free constructor symbols.

Note that first order logic with equality comes as a particular case, when Ei = ∅
for some i. In this case, we can write = for =i. This definition allows to consider a
structure in which every ground term t ∈ T (Σ) exists as a syntactic constant. This
would be represented by having in the family of recognizable tree languages, for every
t ∈ T (Σ), the language consisting of the single term t only (each such language is of
course recognizable). Also, note that the logical language of H(Σ, (Ei)i∈I , (Lj)j∈J )
allows to express unification problems like x = f(y, z); however this is not possible in
A(Σ, (Ei)i∈I , (Lj)j∈J ).

We will show that one can effectively construct, given as input a finite family (Ei)i∈I

of linear and variable-disjoint equation systems and a finite family (Lj)j∈J of recog-
nizable tree languages, a tree-automatic representation of A(Σ, (Ei)i∈I , (Lj)j∈J ). The
first step is to define the encoding of the algebra as trees over a finite signature, the (mi-
nor) difficulty here being that the algebra contains trees over a possibly infinite alphabet
but with a bounded arity. We elude the details.

The languages Lj , j ∈ J , are recognizable by definition. In order to show that
every =i, i ∈ I , is recognizable we construct a Ground Tree Transducer as follows:
Given the linear and variable-disjoint equational theory E = {s1 = t1, . . . , sn = tn},
let A1 be the tree automaton that recognizes the set of instances of si in state qi, for
any i, and the set of instances of ti in state pi, for any i. Symmetrically, let A2 be the
tree automaton that recognizes the set of instances of si in state pi, for any i, and the
set of instances of ti in state qi, for any i. These automata can be constructed exactly
because each equational axiom is linear. Since the axioms are variable-disjoint, the
GTT defined by A1 and A2 recognizes a pair of terms (t, t′) iff t is obtained from
t′ by a parallel equational replacement with respect to E. The transitive closure of this
relation is exactly the equality relation modulo E, which is again a GTT [12], and hence
recognizable. Hence:

Theorem 1. Let Σ be an arity-bounded countable signature. The following problem is
decidable: given a finite family (Ei)i∈I of finite sets of linear variable-disjoint equa-
tions over Σ, a finite family (Lj)j∈J of recognizable tree languages over Σ, and a
first-order formula φ, does A(Σ, (Ei)i∈I , (Lj)j∈J ) |= φ hold?
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Thm. 1 no longer holds if generalized to the structure H(Σ, (Ei)i∈I , (Lj)j∈J ), that is
if one also allows relations like x = f(y, z).

Theorem 2. It is undecidable whether a given existential closed first order formula
holds in a given structure H(Σ, (Ei)1≤i≤3, (Lj)1≤j≤3) with Σ finite, E1 and E2 finite
sets of ground equations, and E3 = ∅.
Proof (sketch) . We encode the problem of acceptance of the empty tape for Tur-
ing machines. A configuration of a Turing machine M is represented as a right-comb
ci = g(ci,1, g(ci,2, . . . , g(ci,k, 
) . . .)) where g is a binary symbol and the constant sym-
bols ci,j are either letter of the input alphabet of M , or a state of M , used to indicate
the position of its head. A computation c0, . . . , cn of M (sequence of successive con-
figurations) is also encoded as a right comb f(c0, . . . , f(cn, 
)). We consider the closed
formula φ defined as follows:

∃y, y1, y2, x. Lsp(y)∧y =E1 y1∧Lc(y1)∧y =E2 y2∧Lc(y2)∧L0(x)∧y1 = f(x, y2)

where L0 and Lc are the languages of term representations of respectively the initial
configurations of M (there are several such representations because we use padding),
and sequences of configurations (possibly not successive) of M , ending with a final
configuration. The regular language Lsp contains roughly the term representation of
sequences of convolution products of pairs of successive configurations (roughly, terms
of the form f(c0⊗ d1, . . . , f(cn−1⊗ dn, f(cn⊗ 
, 
))) where the configuration di+1 is
obtained from ci using a transition of M ).

Moreover, E1 and E2 define respectively the left and right projections over the sig-
natures of pairs. Hence φ holds in H(Σ, (Ei)i∈1,2, (Lsp, Lc, L0)) iff M admits a suc-
cessful computation (y1) starting with an initial configuration. �

Note that the above problem is decidable for arbitrary first-order formula and structures
H(Σ, (E1), ∅) where E1 is a shallow equational system [9]. However, Thm. 1 no longer
holds when one replaces variable-disjoint equational systems by flat equational systems.
The signature considered in the next theorem is monadic, hence the results holds already
when considering a domain of words.

Theorem 3. It is undecidable whether a given existential closed first order formula
holds in a given structure A(Σ, (Ei)1≤i≤3, (Lj)1≤j≤2) with Σ finite and monadic, E1

and E2 finite sets of flat equations, and E3 = ∅.
Proof (sketch) . We reduce from the Post correspondence problem (PCP). Let P =
{(ui, vi)

∣
∣ ui, vi ∈ {a, b}+, 1 ≤ i ≤ N} be an instance of PCP and let L :=

max(|ui|, |vi| | i ≤ N). We consider a monadic signature containing a constant symbol

 and unary function symbols a, b and Pi,j for all 1 ≤ i ≤ N and 1 ≤ j ≤ L. The
purpose of the symbols Pi,j is to represent a “skeleton” of solution of P , i.e. a sequence
of indexes that will be replaced by letters of the ui’s or vi’s using two sets of flat equa-
tions E1 and E2. In E1, we have equations like Pi,j(x) = ui,j(x) if 1 ≤ i ≤ N and
1 ≤ j ≤ |ui| (ui,j is the jth letter of ui) and Pi,j(x) = x if |ui| < j, and similarly for
vi in E2.

Moreover, we have two tree automata: Lα recognizing {a, b}+
, and LP recognizing
{Pi,1 · · ·Pi,L | 1 ≤ i ≤ N}∗ 
. Finally, the closed formula φ := ∃x, u, v. LP (x) ∧
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x =E1 u ∧ x =E2 v ∧ Lα(u) ∧ Lα(v) ∧ u = v holds in A
(
Σ, (Ei)1≤i≤3, (Lα, LP )

)

iff P has a solution. �

4 Adding a Background Term Rewrite System

In this section we show that Thm. 1 can be extended to the case where all equations are
taken modulo an additional term rewrite system with some particular properties. The
first property is that the system is canonical, that is normalizing and confluent, such
that each term has a unique normal form. This allows us to restrict the universe of the
logic structure to contain only terms in normal form, and each ground term would be
interpreted in that structure as its normal form.

Definition 2. Let Σ, (Ei)i∈I , (Lj)j∈J be as in Def. 1, and R be a canonical, left-
linear rewrite system. The first-order structure A(Σ, (Ei)i∈I , (Lj)j∈J , R) is defined
as A(Σ, (Ei)i∈I , (Lj)j∈J ) in Def. 1 except that the universe is restricted to R-normal
forms and that t1 =i t2 is interpreted as t1 =Ei,R t2.

Note that the term rewrite system may indeed intervene even when the structure con-
tains only terms in normal form, and when all equational systems are normalized with
respect to the rewrite system. Take, for example, a rewrite system R consisting of the
rule left(pair(x, y))→ x and the equational system E = {c = pair(a, b)}. The system
E is normalized w.r.t. R, and so are the terms a and left(c). However, left(c) = a is a
consequence of E ∪R but not of E alone.

We say that there is a critical pair (CP) between two rewrite rules �→ r and g → d
if there exists a substitution σ and a non-variable position p of g such that gσ |p= lσ,
in that case the critical pair is the equation gσ[rσ]p = dσ.

For the decidability result below we require in addition the rewrite system to be
orthogonal, that is left-linear and without critical pairs. The set of terms in normal
forms is then recognizable as a consequence of left-linearity [7]; absence of critical
pairs will be useful in the proof of Thm. 4. Orthogonality implies confluence [15].

The idea is to “complete” any of the given equational systems Ei w.r.t. R, by adding
the CP (which are equations) between equations and rules of R. If this process termi-
nates for each of these systems Ei then we can conclude. Given an equation l = r and
a rewrite rule g → d, we consider the following two cases of critical pairs:

cp1) There is a substitution σ and a non-variable position p of g such that gσ |p= lσ,
in that case the critical pair is gσ[rσ]p = dσ.

cp2) There is a substitution σ and a non-variable position p of l such that gσ = lσ |p,
in that case the critical pair is rσ = lσ[dσ]p.

We say that E′ is the completion of E by R when E′ is the smallest set containing
E and that contains all its own critical pairs with R. If this set is finite then it can be
calculated from E by successive addition of critical pairs.

Lemma 1. If R is orthogonal and E′ is the completion of E by R then s =E,R t iff
s =E′ t for all terms s, t in R-normal form.
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Proof . Any E′ proof step can be simulated by several E, R proof steps, so the back
direction is obvious. For the other direction, first note that when s =E,R t then s =E′,R
t since E ⊆ E′. Any proof of s =E′,R t can be transformed into a proof such that
any R-rewrite step is either preceded by an R rewrite-step, or by an E-step such that
the redex of the rewrite step has a non-trivial overlap with the previous equational step.
This is a consequence of the orthogonality of R and the fact that s and t are in R-normal
form, since a rewrite step can be commuted with a non-overlapping equational step. If
the shortest such proof used an R-step then we could replace the preceding equational
step and that rewrite step by one single equational step (their critical pair), which would
yield a contradiction. �
In order to meet the hypotheses of Thm. 1, we have to assure that the critical pair is
again linear and variable-disjoint. Linearity may be violated only by a non-linearity of
d (since all other terms are linear), and variable disjointness may be violated in case cp1

when gσ[•]p is not ground. We obtain together with Lemma 1 and Thm. 1:

Theorem 4. Let Σ be an arity-bounded countable signature, and R an orthogonal and
terminating term rewrite system. There exists a decision procedure for the following
problem: given a finite family (Ei)i∈I of finite sets of linear variable-disjoint equations
over Σ, such that each Ei has a finite completion by R that is linear and variable-
disjoint, given a finite family (Lj)j∈J of recognizable tree languages over Σ, and a
first-order formula φ, does A(Σ, (Ei)i∈I , (Lj)j∈J , R) |= φ hold?

Example. Let R be the term rewrite system with rules left(pair(x, y)) → x,
right(pair(x, y)) → y and let E be the following equational theory: E =
{pair(a, pair(b, c)) = d}. Completion terminates successfully with the following equa-
tional system: E = {pair(a, pair(b, c)) = d, a = left(d), pair(b, c) = right(d), b =
left(right(d)), c = right(right(d))}.
We can characterize a simple case in which completion always succeeds: we call a term
a jack when it is either shallow and linear, or f(t1, . . . , ti, . . . , tn) such that some ti is
shallow and linear, and each tj with j �= i is a constant.

Lemma 2. When R is a non-overlapping rewrite system of rules g → x where each g is
a jack, x ∈ Vars(g), and E a ground equational system such that no constant occurring
on a left-hand side of R is a side of E, then completion of any variable-disjoint and
linear equation system is finite.

Proof . The rewrite system is, as an easy consequence of the hypotheses, terminating
and orthogonal. Since any right-hand side is subterm of a left-hand-side, which in turn is
linear, all terms involved and hence all CP are linear. If l = r is an equation and gσp =
lσ an overlap, then due to the definition of jacks and the third condition in the lemma,
gσ[•]p is ground, and hence the CP is variable-disjoint. We elude the termination proof
of completion. �
Here is an example of a term rewrite system that satisfies the conditions of Lem. 2. This
system describes the cryptographic operators of pairing and projection, and asymmetric
encryption and decryption for fixed keys.

left(pair (x, y))→ x dec(enc(x, pub(a)), a)→ x enc(dec(x, pub(a)), a)→ x
right(pair (x, y))→ y dec(enc(x, b), pub(b))→ x enc(dec(x, b), pub(b))→ x
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In this case, equational axioms may not contain a or b (the ground subterms of the left-
hand sides of R). The generalization of these axioms to arbitrary keys represented by
a variable, i.e. dec(enc(x, pub(y)), y) → x would lead to a left-hand side that is not a
jack. Thm. 4 does not hold when the completion is no longer variable-disjoint.

Theorem 5. It is undecidable whether a given existential closed first order formula
holds in a given structure A(Σ, (Ei)1≤i≤3(Lj)1≤j≤2, R) with Σ finite, R containing
rules of the form f(x, c) → x for f ∈ Σ2, c ∈ Σ0 and x ∈ V , E1, E2 finite sets of
ground equations over Σ, E3 = ∅.
Proof . Similarly to the proof of Thm. 3, we reduce from PCP. The main difference
is that we use binary terms of the form f(α1, . . . f(αn, 
) . . .) instead of unary ones
(words). The letters of the PCP alphabet and the auxiliary symbols Pi,j are now constant
symbols, and the equations of E1 have the form Pi,j = ui,j if 1 ≤ j ≤ |ui| or Pi,j =
� if |ui| < j ≤ L (and similarly for vi with E2). The TRS contains only one rule
f(�, x)→ x. �
Note that in the case of the proof of Thm. 5, the completion of an equation Pi,j = � by
the rule f(�, x)→ x yields the non variable-disjoint equation f(Pi,j , x) = x.

5 Application to the Spatial Logic for Frames

In this section, we recall the definitions of the frames of the applied π-calculus (Aπ for
short) and the fragment FSL of the spatial equational logic AπL. We then show how
to reduce the model-checking problem of FSL to the satisfaction of a first-order con-
straint system with multiple congruence relations and a background equational theory,
which allows us to apply the results of the previous section in the context of the study
of cryptographic protocols.

5.1 Frames

A frame is a record of the current knowledge of the environment in the form of ac-
tive substitutions, each accounting for a message that has been sent over the network.
Frames act as snapshots of the history of communications during the reduction of Aπ
processes. Their study is useful for the post-mortem analysis of the knowledge leaked
by a process as well as for characterizing observationally equivalent processes.

Formally, we suppose given a signature Σ that contains the disjoint and countable
sets Vπ and N π representing respectively Aπ variables (not to be confused with term
variables: from the point of view of the signature, Aπ variables are constants) and
names. V is the usual set of (first-order) variables, distinct from Vπ. A frame is a pair
(H, S), where H ⊆ N π is a finite set of hidden names and S is a finite set of ground
equations of the form u = r, where u ∈ Vπ and r is a ground term (which can contain
aπ variables and names, but no term variables). Following the original definition of the
applied π-calculus [2], we only consider frames F = (H, {u1 = r1, . . . , uk = rk})
where the ui’s are pairwise distinct and there is no cycle in the Aπ variables (i.e. there
is an ordering (i1, . . . , ik) of the indices such that uij does not appear in rij′ when
j ≤ j′). The ui’s (resp. ri) form the domain (resp. codomain) of F , written dom(F )
(resp. codom(F )). We suppose fixed an equational theory E , used to model crypto-
graphic primitives (for instance defined as a rewrite system as in the previous section).
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Notations. We will use the letters h, n, m, s to refer to elements of N π, u for ele-
ments of Vπ, a for elements of N π ∪ Vπ and x, y for elements of V . We write t for
arbitrary terms in T (Σ, V ), and r for ground terms in T (Σ). The expressions fn(t) and
fav (t) respectively denote the sets of names and Aπ variables of t, defined as usual, and
fnav (t) := fn(t) ∪ fav (t). These notations are lifted to the sets of free names and Aπ
variables of frames and formulas in the standard way, with fn((H, S)) := fn(S) \H .
The union of disjoint sets is denoted by �.

Frames are considered up to the following structural congruence relation that ac-
counts for α-equivalence over hidden names, for vacuous hidden names, and for the
rewriting of terms using the equational theory:

Definition 3. Structural congruence ≡ is the smallest equivalence relation on frames
satisfying the following assertions1:

α-CONV (H, S) ≡ (H [n←n′], S[n←n′]) if n ∈ H and n′ �∈ H ∪ fn(S)
NEW (H, S) ≡ (H ′, S) if H ∩ fn(S) = H ′ ∩ fn(S)
REWRITE (H, {u1 = r1, . . . , uk = rk}) ≡ (H, {u1 = r′1, . . . , uk = r′k})

if ∀i ∈ {1, . . . , k}. ri ←−−→∗E r′i

Let us now recall the two essential notions of deducibility and static equivalence for
frames. Two ground terms r1 and r2 are equal in the frame F , written F �E r1 = r2

(or F � r1 = r2 if E is clear from context) when there exists a frame (H ′, S′) ≡ F
such that fn(r1, r2) ∩H ′ = ∅ and r1 ←−−−−→∗E∪S′ r2.

Definition 4. A ground term r is deducible from the frame (H, S) if there exists a term
r′ such that fn(r′) ∩H = ∅ and (∅, S) � r = r′.

F and F ′ are statically equivalent, written F ≈s F ′, when dom(F ) = dom(F ′)
and, for all ground terms r, r′, F � r = r′ if and only if F ′ � r = r′.

Definition 5. Two frames F1 = (H1, S1) and F2 = (H2, S2) are orthogonal if H1 ∩
H2 = ∅, dom(F1)∩dom(F2) = ∅, fn(codom(F1))∩H2 = fn(codom(F2))∩H1 = ∅,
and S1 � S2 is acyclic. The composition F = F1 ∗ F2 of orthogonal frames F1, F2 is
the frame (H1 �H2, S1 � S2).

As usual, we write F1 ≡ F2 ∗ F3 if there are F ′
1, F

′
2, F

′
3 such that F ′

1 = F ′
2 ∗ F ′

3 and
Fi ≡ F ′

i . For instance, the following equality holds:

({n}, {uo = pub(n)}) ∗ ({n}, {u1 = enc(n, u0)})
≡ ({k, s}, {u0 = pub(k), u1 = enc(s, u0)})

The composition of two frames requires their rewriting so as to prevent clashes of
their respective hidden names, hence ({k}, {uo = pub(k)}) and ({k, s}, {u1 =
enc(s, pub(k)})) can be composed into ({k, k′, s}, {u0 = pub(k), u1 =
enc(s, pub(k′))}) but not into ({k, s}, {u0 = pub(k), u1 = enc(s, pub(k))}).

1 We slightly deviate from the standard structural congruence defined by Abadi and Fournet [2],
as we assume that substitutions of a frame are not taken into account when rewriting the terms
of this frame (for instance, in our setting, (H, {u1 = u2, u2 = r}) �≡ (H, {u1 = r, u2 =
r})). This does not change the notions of deducibility and static equivalence.



Multiple Congruence Relations, First-Order Theories 177

F, v � t1 = t2 ⇔ F �E t1v = t2v
F, v � 0 ⇔ F ≡ (∅, ∅)
F, v � c©a ⇔ ∀F ′ ≡ F. a ∈ fnav(F ′)
F, v �¬Φ ⇔ F, v � Φ
F, v � Φ1 ∧ Φ2 ⇔ F, v � Φ1 and F, v � Φ2

F, v � Φ1 ∗ Φ2 ⇔ ∃F1, F2. F ≡ F1 ∗ F2, F1, v � Φ1 and F2, v � Φ2

F, v � ∃x.Φ ⇔ ∃r ∈ T (Σ). F, (v ∪ {x→r}) � Φ
F, v � Ia. Φ ⇔ ∃a′ /∈ fnav(F, v, Φ). F, v � Φ[a←a′]

F, v � Nn. Φ ⇔ ∃n′ /∈ fn(F, v, Φ).∃(H ′, S′).
F ≡ ({n′} �H ′, S′)
and (H ′, S′), v � Φ[n←n′]

F, v � Φ � n ⇔ ({n} ∪H,S), v � Φ

Fig. 1. Satisfaction relation of FSL for a frame F = (H,S)

5.2 The Frame Logic FSL

Consider the fragment FSL of AπL formed by the formulas Φ of the following gram-
mar, where t1, t2 ∈ T (Σ, V ), a ∈ N π � Vπ, x ∈ V , and n ∈ N π.

Φ ::= t1 = t2 | 0 | c©a | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∗ Φ2 | ∃x. Φ | Ia. Φ | Nn. Φ | Φ� a

The semantics of the logic is given by a satisfaction relation between a frame
F = (H, S), a valuation v mapping term variables of V to ground terms of T (Σ),
and a formula Φ. It is shown in Fig. 1, and is devised so as not to distinguish between
structurally congruent frames. Intuitively, t1 = t2 is an equality test under the ambient
equational theory E augmented by the equalities in F , 0 describes empty frames, c©a
is true whenever the name or Aπ variable a appears free in all the frames structurally
congruent to F , ¬, ∧ and ∃ is the classical first-order fragment, Ia is the Gabbay-
Pitts quantifier over fresh names or Aπ variables (i.e. it quantifies over names–or Aπ
variables–that do not appear free in neither the frame nor the remaining formula), Nn
is a quantifier over hidden names of the frame (intuitively, it reveals a secret name of
the frame, which may be vacuous if it does not appear free in the set of equations S of
F ), ∗ is the spatial conjunction that decomposes F into two orthogonal subframes, and
Φ�n hides the name n in F and proceeds with Φ.

For instance, the deducibility of a secret name (without specifying which one) is ex-
pressed by ∃x. Nk. x = k: as the term quantification is placed first, the guessed term x
cannot mention the revealed name k. The general deducibility problem is also express-
ible in this fragment, but the formula depends on the frame F = ({h1, . . . , hl}, {u1 =
t1, . . . , uk = tk}) due to α-conversion issues:

deducible(F, t) := ∃x. Nh1, . . . , hl. (x = t ∧ u1 = t1 ∧ . . . ∧ uk = tk)

Other security properties are expressible using spatial logics, for instance regarding
the quantity of information leaked in a frame: ∃x. Nk. x = k holds if there is at least
one secret leaked by the frame, while ∃x, y. Nk, k′. x = k ∧ y = k′ asserts that two in-
dependent secrets are. The formulas presented in the introduction also fit our fragment.
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5.3 From Spatial to Equational

In this section, we reduce the model-checking problem for FSL to the evaluation of an
equational formula over a term algebra. We assume given a signature Σ ⊇ N π � Vπ

and an equational theory E defined by an orthogonal, terminating term rewrite system
RE . Moreover, we can assume that all the rewrite rules in RE mention only variables,
and no constants, as it is always the case in Aπ equational theories. For every finite set
S of ground equations of the form u = r, =S denotes←−−−−→∗

S∪E . Consider the first-order
logic Leq defined by the following grammar (we omit its semantics for brevity):

φ ::= t1 =S t2 | n ∈ fn(t) | u ∈ fav (t) | φ1 ∧ φ2 | ¬φ | ∃x. φ | In. φ

Let A := A(Σ, (=S)S , (Ca)a∈Nπ�Vπ , RE) where Ca := {t | a ∈ fnav(t)}. We give
below a translation H, S, Φ �→ �H, S, Φ� that associates an equational formula in Leq

to a frame (H, S) and a spatial formula Φ, built by induction on Φ with the following
inductive hypothesis:

Lemma 3. For all v, H , S and Φ, A, v � �H, S, Φ� if and only if (H, S), v � Φ.

Notations. We write t = t′ for
∧n

i=1 ti = t′i (and similarly for sets of terms) and
m ∈ fn(t) for

∨n
i=1 m ∈ fn(ti) (and similarly for u ∈ fav (t)). Arities are implicitly

supposed to match: in ∃t. t = codom(S), t’s size is implicitly chosen to match the size
of codom(S). Finally, � (resp. ⊥) is a formula that is always true (resp. always false),
for instance n = n for some n (resp. ¬n = n).

The translation of c©a follows its semantics and thus is quite straightforward. It is
defined as ⊥ when a ∈ H , � when a ∈ dom(S), and otherwise as

�H, S, c©a� := ∀x. x =∅ codom(S)⇒ a ∈ fnav(x)

Hiding a name consists merely of adding h to the set of hidden names, and term
quantification is left as-is, since the semantics of ∃x for FSL and Leq are the same.
As we know all the hidden names of the frame, we can treat name revelation as a
disjunction over those names and a fresh name n′, the latter accounting for the fact that
one can reveal “fake” hidden names (using NEW):

�H, S, Φ�n� := �H ∪ {n}, S, Φ� �H, S, ∃x. Φ� := ∃x. �H, S, Φ�

�H, S, Nn. Φ� := In′.
∨

h∈H�{n′}
�H \ {h}, S, Φ[n←h]�

To translate an equality t1 = t2 one has to take care of the hidden names of S, as
Leq only allows substitutions as parameters of equality tests, and not general frames.
To overcome this, we simulate the behavior of hidden names by replacing the names of
S that appear in H with fresh names H ′ such that H ′ ∩ fn(S, t1, t2) = ∅. It is easy to
check that these fresh names behave like hidden names for the equality test.

�{h1, . . . , hk}, S, t1 = t2� :=
Ih′

1, . . . , h
′
k. t1[h1, . . . , hk←h′

1, . . . , h
′
k] =S t2[h1, . . . , hk←h′

1, . . . , h
′
k]
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To translate ∗, we need to be able to state that the set of hidden names appearing in
two subframes are disjoint one from another up to rewriting of terms using the equa-
tional theory. This is achieved by the operator t1⊥Ht2 below which states that two sets
of names t1 and t2 may be rewritten so as not to share names in H :

t1⊥Ht2 := ∃x1, x2. x1 =∅ t1 ∧ x2 =∅ t2 ∧
∧

h∈H

(h ∈ fn(x1)⇒h /∈ fn(x2))

The translation of frame composition then only needs to quantify over all 2-partitions
of the set of active substitutions that yield orthogonal subframes:

�H, S, Φ1 ∗ Φ2� :=
∨

S1�S2=S

(codom(S1)⊥Hcodom(S2) ∧ �H, S1, Φ1� ∧ �H, S2, Φ2�)

This particular step of our translation would be unsound if substitutions of the
frame could be applied to other substitutions of the frame, like in the original ap-
plied π-calculus. Finally, �H, S,¬Φ� := ¬�H, S, Φ�, �H, S, Φ1 ∧ Φ2� := �H, S, Φ1� ∧
�H, S, Φ2�, and �H, S,0� := � if S = ∅ and ⊥ otherwise. From the inductive hypoth-
esis of Lem. 3 we deduce:

Theorem 6. For all frame F = (H, S) and formula Φ of FSL one can effectively
compute a formula φ of Leq such that F � Φ if and only if A � φ. Moreover, the
predicates =S′ that appear in φ are all such that S′ ⊆ S.

5.4 Deciding the Model-Checking of FSL and Static Equivalence

We now show how to apply Thm. 4 to the decidability of security properties of frames,
namely the ones expressible in FSL, as well as static equivalence.

Theorem 7. Let (H, S) be a frame such that the completion of S under RE terminates
and is linear and variable disjoint. Then the problem to decide, for a formula Φ ∈
FSL, whether (H, S) satisfies Φ is decidable when the comparisons are all of the form
r =S′ r′, x =S′ r or x =S′ x′ where S′ ⊆ S.

Proof . Let us write Aφ (resp. Sφ) for the finite set of a (resp. S′) such that a ∈ fn(t)
or a ∈ fav (t) (resp. =S′) appears in φ, and Aφ for A(Σ, (=S′)S′∈Sφ

, (Ca)a∈Aφ
, RE).

For φ to be a formula over this structure (which does not include function symbols), the
comparisons t1 =S t2 have to be restricted to those of the forms r =S r′, x =S r or
x =S x′ (where r, r′ ∈ T (Σ) denote ground terms and x, x′ ∈ V are term variables).
This restriction corresponds to the hypothesis of the theorem on Φ, which is satisfied by
all the formulas presented in this paper.

Let us observe that one can eliminate Gabbay-Pitts quantifiers in any formula by
first rewriting the formula in prenex form (the only non-homomorphic case being
∃x. In. φ⇔ In. ∃x. (¬n ∈ fn(x))∧φ), and then dropping them. Since by hypothesis
the completion of S terminates under RE , the completions of every S′ ⊆ S also ter-
minates. Moreover, the equations =S′ are over ground terms, hence are trivially linear
and variable-disjoint, and the languages Ca are all recognizable. Thus Thm. 4 applies
on Aφ, which shows that the satisfiability problem

?� φ for the logic Leq is decidable. �
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In particular, the model-checking problem of FSL is decidable whenever the condi-
tions on RE and S of Lemma 2 are satisfied, hence for the equational theory of pairs or
of fixed key symmetric or asymmetric encryption (or any combination thereof), what-
ever the considered frame S is.

This result also applies with the original definition of structural congruence for
frames by Abadi and Fournet [2] (see the footnote page 176). However, our transla-
tion of the ∗ logical operator would not produce a finite formula anymore, hence this
connector would have to be dropped to retain decidability. One may also easily add the
Aπ variable hiding operator of AπL Φ� u, which we omitted to simplify our syntax
for frames (in which hidden variables have no meaning), without impairing Thm. 7.

Finally, Leq can also express static equivalence between two frames F = ({hi}i, S)
and F ′ = ({h′

i}i, S′) by the following formula, thus providing a decidable way of
deciding such a relation when the equational theory obeys the constraints above:

F ≈s F ′ iff ∀x, x′.
∧

i,i′
¬hih

′
i′ ∈ fn(x, x′)⇒(x =S x′ ⇔ x =S′ x′)

6 Conclusion

Classically used decision procedures for first-order theories seem not be applicable
when faced with multiple congruence relations defined by independent equational ax-
ioms. Automata-based methods, on the other hand, have the advantage that the com-
bination of different predicates, each of them recognizable for the same encoding of
the elements of the algebra, comes for free. However, they can handle only restricted
classes of equational axioms. Whether it is possible to push the method to, for instance,
non left-linear background equational theories like check (x, pub(k), sign(x, k))→ ok
is up to future work.

As an application, we have obtained a decidability result for the model-checking of
a rich fragment of AπL and static equivalence, under a class of realistic equational
theories. It is incomparable with previous decidability results obtained for deducibil-
ity and static equivalence only [1]. Considering a larger fragment of AπL would be
challenging, in particular in the handling of Aπ variable revelation Nu. Φ, which is not
supported in our setting as it amounts to quantifying over a new, unknown substitution
u = r against which terms can be tested. Such an extension would require not only to
consider multiple congruence relations, but also to quantify over them. We conjecture
that techniques similar to those exposed in this paper could be applied to the study of
the model-checking of the frame logic of Hüttel and Pedersen.
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A Coping with Countable Signatures

In order to show that A(Σ, (Ei)i∈I , (Lj)j∈J ) is an automatic structure we first have to
define the encoding of the algebra as trees over a finite signature, the (minor) difficulty
here being that the algebra contains trees over a possibly infinite alphabet but with a
bounded arity.

If n is the maximal arity of a function symbol in Σ then we can arrange all function
symbols of arity n into a (finite or infinite) enumeration. The signature of the automatic
representation would consist of a constant 0, a unary function s, and function symbols
f0, . . . , fi, each fi being of arity i + 1. A function symbol f(x1, . . . , xn) ∈ Σ of
arity n, being number i in the enumeration, would be represented for the automatic
representation as fn(si(0), x1, . . . , xn). The interpretation function ν is straightforward
to define, and the automaton for Lδ would just have to ensure that 0 and s only occur
as first argument of the fi, and that the first argument of any fi is of the form sj(0),
possibly with a bound on j in case there are only finitely many function symbols of the
corresponding arity.

More exactly, let n be the maximal arity occurring in Σ, and let for any i, 0 ≤ i ≤ n,
mi ∈ N ∪ ∞ be the number of symbols in Σ of arity i. The tree automaton that
recognizes all terms that are encoding of a ground Σ-term is fi(qi, q . . . , q) → q for
any i. Here, the state q is the only accepting state that recognizes all encodings of terms.
For any i, the state qi recognizes all encoding of natural numbers that are not larger than
mi: If mi = ∞ then we define 0 → qi and s(qi) → qi, and for mi ∈ N we have that
0→ p0

i , s(pj
i )→ pj+1

i (when j < mi) and pmi

i → qi.

B Proof of Theorem 2

To prove that the first-order theory of H(Σ, (Ei)1≤i≤3, (Lj)1≤j≤3) is undecidable for
ground equations (Thm. 2), we propose a reduction of the acceptance problem of the
empty tape for deterministic Turing machines using a technique of shifted pairing [14].

Let M be a deterministic Turing machine computing on a tape bounded on the left
and unbounded on the right, with input alphabet Γ ∪ {
} (
 is a special blank symbol),
state set S, initial state s0, final state set Sf , and transition function δ : (S \ Sf) × Γ ∪
{
} → S×Γ ∪{
}×{left, right, stay}. Note that it is assumed wlog that entering a final
state terminates the computation. Moreover, we also assume wlog that before entering
a final state, M deletes the whole tape (all the symbols of Γ are replaced by 
).

We represent a configuration of M as a word c in Γ ∗S Γ ∗
∗, where the unique state
symbol s ∈ S in c indicates the current position of the head of M in the configuration,
in the sense that the head of M is on the symbol of Γ ∪ {
} immediately following s in
c. The length of a word c is denoted |c|. The languages of initial and final configurations
of M are respectively C0 := s0


∗ and Cf := Sf

∗. The transition relation of M , written

�M , is the binary relation on configurations such that c �M c′ iff c′ is obtained from c
according to δ. For instance, if δ(s, a) = 〈s′, a′, left〉, then c = αbsaβ
m with α, β ∈
Γ ∗, b ∈ Γ and c′ = αs′ba′β
m, if δ(s, a) = 〈s′, a′, right〉, then c = αsaβ
m and
c′ = αa′s′β
m, and if δ(s, a) = 〈s′, a′, stay〉, then c = αsaβ
m and c′ = αs′a′β
m. A
computation of M is a finite sequence c0, c1, . . . , cn of configurations of M such that
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c0 ∈ C0 and for all 0 ≤ i < n, ci �M ci+1. It is successful if the state of cn is final, i.e.
cn ∈ Sf 
∗ by hypothesis.

We shall encode the configurations and computations of M as right-combs built on
the signature Υ := {f : 2, g : 2, 
 : 0, # : 0} ∪ {b : 0 | b ∈ Γ ∪ S}. Let us moreover

extend Υ into the signature Σ := Υ ∪ Υ
[2]
0 (i.e. Σ extends Υ with the set of constant

symbols of the form [a, b] with a, b ∈ Σ0 ∪ {�} such that a or b is not �).
A computation c0, . . . , cn is encoded as a term f(ct

0, . . . , f(ct
n, 
)) of T (Σ), where

for all 0 ≤ i ≤ n, ct
i is the term encoding of the configuration ci = ci,1 . . . ci,k defined

as ct
i := g(ci,1, . . . , g(ci,k, 
)).

Let L0 := {ct
0 | c0 ∈ C0} be the recognizable language of term encodings of

initial configurations of M . Let Lc be the recognizable language of terms of the form
f(ct

0, . . . , f(ct
n, 
)), with n ≥ 0, such that for all 0 ≤ i ≤ n, ci is a configuration of M

(i.e. ci ∈ Γ ∗S Γ ∗
∗) and cn is a final configuration of Cf .
For technical convenience, we shall use below a simplified convolution product �

defined only on configurations of same length or a configuration and 
:

g(a, s) � g(b, t) = g([a, b], s � t) 
 � 
 = 
 g(a, s) � 
 = g([a, �], s � 
)

It is easy to verify that the set {ct
� dt | c �M d, |c| = |d|} is a recognizable tree

language of T (Σ). Hence, the following set is also a recognizable tree language (called
shifted pairing language):

Lsp :=
{
f(ct

0�dt
1, . . . , f(ct

n−1�dt
n, f(ct

n�
, 
))) | ∀0 ≤ i < n.

{ |ci| = |di+1|
& ci �M di+1

}
.

Note that in the definitions of Lsp and Lc, the configurations c0,. . . ,cn and d1, . . . , dn

are arbitrary. In particular it is not required that the sequence c1, . . . , cn is a computation
of M (otherwise the languages would not be recognizable!).

We define two ground equational theories describing roughly the left and right pro-
jections on terms of Lsp. More precisely, these theories E1 and E2 are defined by

E1 := {[a1, a2] = a1 | [a1, a2] ∈ Υ
[2]
0 } E3 := ∅

E2 := {[a1, a2] = a2 | a1, a2 ∈ Σ0}
∪ {g([
, �], 
) = #, g([
, �], #) = #}
∪ {f(g([sf , �], #), 
) = 
} (sf ∈ Sf)

Let us now consider the following closed first-order formula φ over
H(Σ, (Ei)1≤i≤3, (L⊗, Lc)), and establish now the correctness of the reduction.

∃y, y1, y2, x. Lsp(y)∧y =E1 y1∧Lc(y1)∧y =E2 y2∧Lc(y2)∧L0(x)∧y1 = f(x, y2)

Lemma 4. φ is satisfiable in H(Σ, (Ei)i∈1,2, (Lsp, Lc, L0)) iff M admits a successful
computation starting with a blank tape.

Proof . For the if direction, assume that there exists a finite computation c0, . . . , cn of
M with c0 ∈ C0 = s0


∗ and cn ∈ Sf 
∗. We can assume moreover that the configura-
tions c0, . . . , cn have all the same length, using if necessary some padding with 
’s at
the right.
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Let y = f(ct
0 � ct

1, . . . , f(ct
n−1 � ct

n, f(ct
n � 
, 
))). By definition, y ∈ Lsp.

Let y1 = f(ct
0, . . . , f(ct

n, 
)) and y2 = f(ct
1, . . . , f(ct

n, 
)). We can observe easily
that y1 ∈ Lc, y =E1 y1 and y =E2 y2. Moreover, with x0 = ct

0, we have x0 ∈ L0 and
y1 = f(x0, y2). Hence φ is satisfiable in H(Σ, (Ei)i∈1,2, (Lsp, Lc, L0)).

For the only if direction, assume that φ is satisfiable, and let y, y1, y2, x0 be terms such
that y ∈ Lsp, y =E1 y1, y =E2 y2. y1 ∈ Lc, y2 ∈ Lc, x0 ∈ L0 and y1 = f(x0, y2).

Let y = f(ct
0 � dt

1, . . . , f(ct
n−1 � dt

n, f(ct
n � 
, 
))) with n ≥ 0, and for all 0 ≤

i < n, |ci| = |di+1| and ci �M di+1 (*). Since y =E1 y1 and y1 ∈ Lc, it holds that
y1 = f(ct

0, . . . , f(ct
n, 
)). Moreover cn ∈ Cf (set of final configurations) by definition

of Lc. Since y =E2 y2 and y2 ∈ Lc, we have necessarily y2 = f(dt
1, . . . , f(dt

n, 
)) (the
terms of Lc do not contain the symbols � or #).

Finally, y1 = f(x0, y2) implies that x0 = ct
0 and dt

i = ct
i for all 1 ≤ i ≤ n. From

(*), it follows that ci �M ci+1 for all 0 ≤ i < n. Hence c0, . . . , cn is a successful
computation of M starting with a blank tape since x0 ∈ L0. �

C Proof of Theorem 3

The proof is by reduction of the Post correspondence problem (PCP). The principle of
the reduction presented here follows an idea used in [13] for showing undecidability of
another problem (termination of shallow term rewriting systems).

Let us consider the following instance of PCP without empty words given by a finite
set of pairs of words: P := {(ui, vi)

∣
∣ ui, vi ∈ {a, b}+, 1 ≤ i ≤ N}. A solution of

P is a finite sequence (ij)0≤j≤k with 1 ≤ i0, . . . , ik ≤ N , such that ui0ui1 . . . uik
=

vi0vi1 . . . vik
. The problem of the existence of a solution is undecidable. For all 1 ≤ i ≤

N , let ui = ui,1 . . . ui,|ui| and vi = vi,1 . . . vi,|vi|. Let L := max(|ui|, |vi| | i ≤ N),
and let us define the signature Σ := {a : 1, b : 1, 
 : 0} ∪ {Pi,j : 1 | 1 ≤ i ≤
N, 1 ≤ j ≤ L}. For the sake of readability, we shall write the terms of T (Σ) as words
of Σ∗

1Σ0. The purpose of the symbols Pi,j in the words Pi is to represent a “skeleton”
of solution of P , i.e. a sequence of indexes that will be replaced by letters of the ui’s or
vi’s by the following two sets of flat equations

E1 = { Pi,j(x) = ui,j(x) | 1 ≤ i ≤ N, 1 ≤ j ≤ |ui| }
∪ { Pi,j(x) = x | 1 ≤ i ≤ N, |ui| < j ≤ L }

E2 = { Pi,j(x) = vi,j(x) | 1 ≤ i ≤ N, 1 ≤ j ≤ |vi|}
∪ { Pi,j(x) = x | 1 ≤ i ≤ N, |vi| < j ≤ L}

Let E3 = ∅. For all 1 ≤ i ≤ N , let Pi be the word Pi,1 · · ·Pi,L. Let us consider two
tree automata: Lα recognizing {a, b}+
, LP recognizing {Pi | 1 ≤ i ≤ N}∗ 
. Finally,
let us show that the reduction is correct, where φ is the following closed formula:

φ := ∃x, u, v. LP (x) ∧ x =E1 u ∧ x =E2 v ∧ Lα(u) ∧ Lα(v) ∧ u = v.

Lemma 5. φ is satisfiable in A
(
Σ, (Ei)1≤i≤3, (Lα, LP )

)
iff P has a solution.

Proof . For the if direction, assume that P admits a solution (ij)0≤j≤k with 1 ≤
i0, . . . , ik ≤ N , and ui0ui1 . . . uik

= vi0vi1 . . . vik
. Let x = Pi0 · · ·Pik


 and let
u = ui0ui1 . . . uik


 and v = vi0vi1 . . . vik

. Hence u = v. Moreover, x ∈ LP ,

u, v ∈ Lα, and x =E1 u, x =E2 v. Therefore φ is satisfiable.
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For the only if direction, assume that φ is satisfiable, and let x, u, v be terms such
that x ∈ LP , x =E1 u, x =E2 v, u ∈ Lα, v ∈ Lα, and u = v. Let x = Pi0 · · ·Pik



for some 1 ≤ i0, . . . , ik ≤ N . From x =E1 u and u ∈ Lα, it follows that necessarily
u = ui0ui1 . . . uik


. Note that the equations of E1 can be applied in both direction,
i.e. Pi,j can be replaced by ui,j (or deleted) but also ui,j can be replaced by another
Pi′,j′ when ui,j = ui′,j′ . But this Pi′,j′ will eventually be placed by ui,j in order to get
u ∈ Lα (there are no other replacement possible). Similarly, v = vi0vi1 . . . vik


. From
u = v, it follows that (ij)0≤j≤k is a solution of P . �

D Termination of Completion

Lemma 6. Let R be a non-overlapping rewrite system of rules g → x where each g is
a jack, x ∈ Vars(g), and E a ground equational system such that no constant occurring
on a left-hand side of R is a side of E, then completion of any variable-disjoint and
linear equation system terminates.

Proof. In the special situation of this lemma, critical pairs are formed as follows:

1. there is a substitution σ and a non-variable position p of g such that gσ |p= l, in
that case the critical pair is g[r]p = dσ.

2. there is a substitution σ and a position p of l such that gσ = l |p, in that case the
critical pair is r = l[dσ]p.

First note that addition of critical pairs maintains the invariant that no constant occurring
on a left-hand side of R is a side of E. This is due to the fact that, in the first case, g
cannot be a constant.

Let G denote the set of ground subterms of the left-hand sides of R. We define, for
any term t, φ(t) as the size of t, where all terms in G are understood to have size 0.
More precisely,

φ(t) =
{

0 if t ∈ G
1 + Σi=n

i=1 φ(ti) if t = f(t1, . . . , tn) �∈ G

For any n there exist only finitely many terms t with φ(t) ≤ n since G is finite. We will
show that when superposition of l = r with the rewrite rule g → d leads to addition
of the critical pair l′ = r′ then φ(l′) + φ(r′) ≤ φ(l) + φ(r). As a consequence, only
finitely many critical pairs can be added. We consider the two cases above:

1. In that case we have, by the form of the rewrite system, that p is of length at most 1.
Hence, g[•]p is of the form f(t1, . . . , ti−1, •, ti+1, . . . , tn) where ti ∈ G. As a
consequence, φ(r′) = φ(g[r]p) ≤ φ(r) + 1.

On the other hand, l cannot be an element of G since no side of the equational
system is a ground subterm of a left-hand side of R, and hence φ(l) > 0. We have
that l′ = dσ is a proper subterm of l, and hence that φ(l′) < φ(l).

2. First note that gσ cannot be an element of G since the rewrite system is orthogonal.
Hence, φ(l′) < φ(l), and we conclude in this case since r = r′. �
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