Skip to main content

Connectivity and Molecular Ecology of Antarctic Fishes

  • Chapter
  • First Online:
Book cover Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

Abstract

Intraspecific biodiversity is affected by homogenizing factors, mostly through gene flow, and differentiating factors such as mutation, genetic drift and selection. At first sight, the structure of fish populations of the Southern Ocean should be under influence of the Circumpolar Antarctic Current. Some species do indeed show evidence for strong connectivity, with genotypes being shared across the full range. However, species-specific life-history traits and local factors influence the patterns of many taxa such that distinct populations have evolved. Also global change (fishing and climate change) measurably impacts genetic structure, such that ma­nagement measures are needed. Quota systems have been implemented for some time, while the delineation of marine protected areas is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allcock AL, Barratt I, Eléaume M et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res II 58:242–249

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    CAS  Google Scholar 

  • Anderson RF, Chase Z, Fleisher MQ, Sachs J (2002) The Southern Ocean’s biological pump during the last glacial maximum. Deep-Sea Res II 49:1909–1938

    CAS  Google Scholar 

  • Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm BO (eds) Proceedings 5th Congress European Ichthyol 1985, pp 357–372. Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Anonymous (2005) Evolution and biodiversity in the Antarctic, Science Plan SCAR 2004. SCAR report 24:37–47

    Google Scholar 

  • Appleyard S, Ward R, Williams R (2002) Population structure of the Patagonian toothfish around heard, McDonald and Macquarie Islands. Antarctic Sci 14:364–373

    Google Scholar 

  • Appleyard SA, Williams R, Ward RD (2004) Population genetic structure of Patagonian toothfish in the west Indian sector of the Southern Ocean. CCAMLR Sci 11:12–32

    Google Scholar 

  • Ashford J, La Mesa M, Fach B, Jones C, Everson I (2010) Testing early life connectivity using otolith chemistry and particle-tracking simulations. Can J Fish Sci 67:1303–1315

    Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge

    Google Scholar 

  • Becker LA, Pascual MA, Basso NG (2007) Colonization of the Southern Patagonia ocean by exotic chinook salmon. Cons Biol 21:1347–1352

    Google Scholar 

  • Blaxter ML (2003) Molecular systematics: counting angels with DNA. Nature 421:122–124

    CAS  Google Scholar 

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8:3–6

    Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Google Scholar 

  • Chown SL, Sinclair BJ, Jansen van Vuuren B (2008) DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biol 31:651–655

    Google Scholar 

  • Christie MR, Tissot BN, Albins MA et al (2010) Larval connectivity in an effective network of marine protected areas. PLoS One 5:e15715

    CAS  Google Scholar 

  • Clark MS, Fraser KPP, Burns G, Peck LS (2008) The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol 31:171–180

    Google Scholar 

  • Clark MS, Thorne MAS, Toullec J-Y et al (2011) Antarctic krill 454 pyrosequencing reveals chaperone and stress transciptome. PLoS One 6:e5919

    Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP et al (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc B 362:149–166

    Google Scholar 

  • Clement O, Ozouf-Costaz C, Lecointre G, Berrebi P (1998) Allozyme polymorphism and phylogeny of the family Channichthyidae. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. Springer, Milan, pp 299–309

    Google Scholar 

  • Creer S, Fonseca VG, Porazinska DL et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19(Suppl 1):4–20

    Google Scholar 

  • Cullis-Suzuki S, Pauly D (2010) Failing the high seas: a global evaluation of regional fisheries management organizations. Mar Pol 5:1036–1042

    Google Scholar 

  • De Broyer C, Danis B et al (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res II 58:5–17

    Google Scholar 

  • Dettaï A, Adamowizc SJ, Allcock L, et al. (2011) DNA barcoding and molecular systematics of the benthic and demersal organisms of the CEAMARC survey. Polar Sci 38:298–312

    Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    CAS  Google Scholar 

  • di Prisco G, Cocca E, Parker SK, Detrich HW III (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    Google Scholar 

  • Duhamel G, Ozouf-Costaz C, Cattaneo-Berrebi G, Berrebi P (1995) Interpopulation relationships in two species of Antarctic fish Notothenia rossii and Champsocephalus gunnari from the Kerguelen Islands: an allozyme study. Antarctic Sci 7:351–356

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Google Scholar 

  • Eastman JT, Barrera-Oro E (2010) Buoyancy studies of three morphs of the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biol 33:823–831

    Google Scholar 

  • Everson I, North A, Paul A, Cooper R, McWilliam N (2001) Spawning locations of mackrel icefish at South Georgia. CCAMLR Science 8:1–12

    Google Scholar 

  • FAO (2010) The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department. Food and Agriculture Organization of the united Nations, Rome

    Google Scholar 

  • Flores JA, Sierro FJ (2007) Pronounced mid-Pleistocene southward shift of the Poar Front in the Atlantic sector of the Southern Ocean. Deep Sea Res II 54:2432–2442

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Cons. Biol 126:131–140

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA 107:18286–18293

    CAS  Google Scholar 

  • Galindo H, Olson D, Palumbi S (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626

    CAS  Google Scholar 

  • Galindo HM, Pfeiffer-Herbert AS, McManus MA et al (2010) Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol Ecol 19:3692–3707

    Google Scholar 

  • Gon O, Heemstra P (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, p 462

    Google Scholar 

  • Grant S, Constable A, Raymond B et al (2006) Bioregionalisation of the Southern Ocean: report of the experts workshop. WWF Australia and ACE CRC, Hobart

    Google Scholar 

  • Grant RA, Linse K (2009) Barcoding Antarctic biodiversity: current status and the CAML initiative, a case study of marine invertebrates. Polar Biol 32:1629–1637

    Google Scholar 

  • Griffiths HJ, Danis B, Clarke A (2011) Quantifying Antarctic marine biodiversity: The SCAR-MarBin data portal. Deep-Sea Res II 58:18–29

    Google Scholar 

  • Gutt J, Hosie G, Stoddart M (2010) Marine life in the Antarctic. In: McIntyre AD (ed) Life in the World’s Oceans. Diversity, distribution and abundance. Chapter 11:203–220

    Google Scholar 

  • Harris J, Haward M, Jabour J, Woehler EJ (2007) A new approach to selecting Marine Protected Areas (MPAs) in the Southern Ocean. Antarctic Sci 19:189–194

    Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fisheries 9:333–362

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Royal Soc London B 270:313–321

    Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD et al (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc Royal Soc London B 270:2125–2132

    Google Scholar 

  • Huybrechts P (1993) Glaciological modeling of the late Cenozoic East Antarctic ice sheet: stability or dynamism? Geogr Ann 75A:221–238

    Google Scholar 

  • Janko K, Lecointre G, DeVries AL et al (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7:220

    Google Scholar 

  • Jones C, Anderson E, Balushkin A et al (2008) Diversity, relative abundance, new locality records and population structure of Antarctic demersal fishes form the northern Scotia Arc islands and Bouvetoya. Polar Biol 31:1481–1497

    Google Scholar 

  • Jørgensen C, Enberg K, Dunlop ES et al (2007) Managing evolving fish stocks. Science 318:124–125

    Google Scholar 

  • Kellerman A (1990) Catalogue of early life stages of Antarctic notothenioid fishes. Ber Polarforsch 67:45–136

    Google Scholar 

  • Kock KH (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review. Part I. Polar Biol 28:862–895

    Google Scholar 

  • Kock KH, Purves M, Duhamel G (2005) Interactions between cetaceans and fish-eries in the Southern Ocean. Polar Biol 28:379–388

    Google Scholar 

  • Kock KH, Reid K, Croxall J, Nicol S (2007) Fisheries in the Southern Ocean: an ecosystem approach. Phil Trans R Soc Lond B Biol Sci 29:2333–2349

    Google Scholar 

  • Koubbi P, Moteki M, Duhamel G et al (2011) Ecoregionalization of mycto-phid fish in the Indian sector of the Southern Ocean: Results from generalized dissimilarity models. Deep-Sea Res II 58:170–180

    Google Scholar 

  • Kuhn K, Gaffney P (2006) Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 29:927–935

    Google Scholar 

  • Kuhn K, Gaffney P (2008) Population subdivision in the Antarctic toothfish (Dissostichus mawsoni) revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs). Antarctic Sci 4:327–338

    Google Scholar 

  • Kuhn K, Near T, Jones C, Eastman J (2009) Aspoects of the biology and population genetics of the Antarctic nototheniid fish Trematomus nicolai. Copeia 2:320–327

    Google Scholar 

  • Laurel BJ, Bradbury IR (2006) “Big” concerns with high latitude marine protected areas (MPAs): trends in connectivity and MPA size. Can J Fish Aquat Sci 63:2603–2607

    Google Scholar 

  • Lautrédou AC, Bonillo C, Denys G et al (2010) Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): how valuable is barcoding with COI? Polar Sci 4:333–352

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclim Palaeoecol 198:11–37

    Google Scholar 

  • Lecointre G (2012) Phylogeny and systematics of Antarctic teleosts: methodological and evolutionary issues. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 97–117

    Google Scholar 

  • Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep-Sea Res II 53:885–1008

    Google Scholar 

  • Lubchenko J, Palumubi SR, Gaines SD, Andelman S (2003) Plugging a hole in the ocean: the emerging science of marine reserves. Ecol Appl 13:S3–S7

    Google Scholar 

  • Marshall C (2012) Aspects of protein cold adaptation in Antarctic fish. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 143–155

    Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587

    CAS  Google Scholar 

  • Meredith M, Brandon M, Murphy E et al (2005) Variability in hydrographic conditions to the east and northwest of South Georgia, 1996–2001. J Mar Syst 53:143–167

    Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Poulsen NA et al (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276

    Google Scholar 

  • North A (2001) Early life history strategies of notothenioids at South Georgia. J Fish Biol 58:496–505

    Google Scholar 

  • North A, Murray A (1992) Abundance and diurnal vertical distribution of fish larvae in the early spring and summer in a fjord at South Georgia. Antarctic Sci 4:405–412

    Google Scholar 

  • North A, White M (1987) Reproductive strategies of Antarctic fish. In: Kullander S, Fernholm B (eds). Proceedings 5th Congress European Ichthyol, pp 381–391. Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13(Suppl 1):S146–S158

    Google Scholar 

  • Papetti C, Susana E, La Mesa M et al (2007) Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island. Polar Biol 30:1605–1613

    Google Scholar 

  • Papetti C, Susana E, Patarnello T, Zane L (2009) Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands. Mar Ecol Prog Ser 376:269–281

    Google Scholar 

  • Papetti C, Pujolar JM, Mezzavilla M et al (2012) Population genetic structure and gene flow patterns between populations of the Antarctic icefish Chionodraco rastrospinosus. J Biogeogr (in press)

    Google Scholar 

  • Parker R, Paige K, DeVries A (2002) Genetic variation among populations of the Antarctic toothfish: evolutionary insights and implications for conservation. Polar Biol 25:256–261

    Google Scholar 

  • Patarnello T, Marcato S, Zane L, Varotto V, Bargelloni L (2003) Phylo-geo-graphy of the Chionodraco genus (Perciformes, Channichthydae) in the Southern Ocean. Mol Phylog Evol 28:420–429

    CAS  Google Scholar 

  • Patarnello T, Verde C, di Prisco G et al (2011) How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study. Bioessays 33:260–268

    Google Scholar 

  • Peck LS, Clark MS, Clarke A et al (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365

    Google Scholar 

  • Peck LS, Clark MS, Morley SA et al (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Fund Ecol 23:248–256

    Google Scholar 

  • Peck LS, Clark MS (2012) Understanding adaptations and responses to change in Antarctica: recent physiological and genomic advances in marine environments. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 157–182

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    CAS  Google Scholar 

  • Pettis RW, Forest A (1979) Chemical composition of ferromanganese nodules from the Southern Ocean. Aust J Mar Freshw Res 30:535–539

    CAS  Google Scholar 

  • Pörtner HO (2006) Climate dependent evolution of Antarctic ectotherms: an integrative analysis (EASIZ, SCAR). Deep-Sea Res II 53:1071–1104

    Google Scholar 

  • Reilly A, Ward RD (1999) Microsatellite loci to determine stock structure of the Patagonian toothfish Dissostichus eleginoides. Mol Ecol 8:1753–1756

    CAS  Google Scholar 

  • Rock J, Costa FO, Walker DI et al (2008) DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematic focus. Antarct Sci 20:253–262

    Google Scholar 

  • Rogers A, Morley S, Fitxcharles E et al (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean Sectors of the Southern Ocean. Mar Biol 149:915–924

    Google Scholar 

  • Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Phil Trans R Soc B 362:2191–2214

    CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folkes C, Walker R (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    CAS  Google Scholar 

  • Scheffer M, Carpenter S, de Young B (2005) Cascading effects of overfishing marine systems. Trends Ecol Evol 20:579–581

    Google Scholar 

  • Schneppenheim R, Kock K, Duhamel G, Janssen G (1994) On the taxonomy of the Lepidonotothen squamifrons group (Pisces, Perciformes, Nototheniodei). Arch Fish Mar Res 42:137–148

    Google Scholar 

  • Selkoe KA, Watson JR, White C et al (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726

    Google Scholar 

  • Shaw P, Arkhipkin A, Al-Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Atlantic Polar Front and deep-water troughs as barriers to genetics exchange. Mol Ecol 13:3293–3303

    CAS  Google Scholar 

  • Smith P, Gaffney P (2005) Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers. CCAMLR Science 12:43–51

    Google Scholar 

  • Smith P, McVeagh M (2000) Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. J Fish Biology 57:72–83

    CAS  Google Scholar 

  • Susana E, Papetti C, Barbisan F et al (2007) Isolation and characterization of eight microsatellite loci in the icefish Chaenocephalus aceratus (Perciformes, Notothenioidei, Channichthyidae). Mol Ecol Notes 7:791–793

    CAS  Google Scholar 

  • Tavares M, De Melo GAS (2004) Discovery of the first known benthic invasive species in the Southern Ocean: the North Atlantic spider crab Hyas araneus found in the Antarctic Peninsula. Antarctic Sci 16:129–131

    Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Google Scholar 

  • Thomson PG, Davidson AT, van den Enden R et al (2010) Distribution and abundance of marine microbes in the Southern Ocean between 30 and 80 degrees E. Deep-Sea Res II 57:815–827

    CAS  Google Scholar 

  • Bilyk KT, DeVries AL (2010) Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol 158:382–390

    Google Scholar 

  • Tin T, Fleming ZL, Hughes Ka et al (2009) Impacts of local human activities on the Antarctic environment. Antarctic Sci 21:3–33

    Google Scholar 

  • Tittensor DP, Mora C, Jezt W et al (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1103

    CAS  Google Scholar 

  • Trivelpiece WZ, Hinken JT, Miller AK et al (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108:7625–7628

    CAS  Google Scholar 

  • Van Houdt JKJ, Hellemans B, van de Putte A, Koubbi P, Volckaert FAM (2006) Isolation and multiplex analysis of six polymorphic microsatellites in the Antarctic notothenioid fish, Trematomus newnesi. Mol Ecol Notes 6:157–159

    Google Scholar 

  • Van de Putte AP, Van Houdt JKJ, Maes GE et al (2009) Species identification in the trematomid family using nuclear genetic markers. Polar Biol 32:1731–1741

    Google Scholar 

  • Van de Putte AP, Van Houdt JKJ, Hellemans B, Collins M, Volckaert FAM (2012) High genetic diversity and connectivity in a common mesopelagic fish of the Southern Ocean: the myctophid Electrona antarctica. Deep-Sea Res II. In press

    Google Scholar 

  • Verde C, Giordano D, Russo R, di Prisco G (2012) The adaptive evolution of polar fishes. Lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 197–213

    Google Scholar 

  • Vogiatzi E, Lagnel J, Pakaki V et al (2011) In silico mining and characterization of simple sequence repeats from gilthead sea bream (Sparus aurata) expressed sequence tags (EST-SSRs); PCR amplification, polymorphism evaluation and multiplexing and cross-species assays. Mar Genom 4:83–91

    Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  Google Scholar 

  • Ward NL, Steven B, Penn K, Methé BA, Detrich WH III (2009) Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13:679–685

    Google Scholar 

  • Webb DJ, de Cuevas BA (2007) On the fast response of the Southern Ocean to changes in the zonal wind. Ocean Sci 3:417–427

    Google Scholar 

  • White M, Veit R, North A, Robinson K (1996) Egg-shell morphology of the Antarctic fish, Notothenia rossii Richardson, and the distribution and abundance of pelagic eggs at South Georgia. Antarctic Sci 8:267–271

    Google Scholar 

  • White M (1998) Development, dispersal and recruitment: a paradox for survival among Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. Springer, Milan, pp 53–62

    Google Scholar 

  • White M, North A, Twelves E, Jones S (1982) Early development of Notothenia neglecta from the Scotia Sea, Antarctica. Cybium 6:43–51

    Google Scholar 

  • Williams R, Smolenski A, White R (1994) Mitochondrial DNA variation of (Champsocephalus gunnari) Lonnberg (Pisces: Channichthyidae) stocks on the Kerguelen Plateau, southern Indian Ocean. Antarctic Sci 6:347–352

    Google Scholar 

  • Williams ID, Walsh WJ, Schroeder RE et al (2008) Assessing the importance of fishing impacts on Hawaiian coral reef fish assemblages along regional-scale human population gradients. Env Cons 35:261–272

    Google Scholar 

  • Worm B, Hilborn R, Baum JK et al (2009) Rebuilding global fisheries. Science 325:578–585

    CAS  Google Scholar 

  • Zane L, Marcato S, Bargelloni L, Bortolotto E (2006) Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum. Mol Ecol 15:4499–4511

    CAS  Google Scholar 

  • Zdzitowiecki K, White M (1992) Acanthocephalan infection of inshore fish in two fjords at South Georgia. Antarctic Sci 4:197–203

    Google Scholar 

Download references

Acknowledgments

Funding is acknowledged from the Belgian Federal Agency for Science Policy (BELSPO; programs PELAGANT, PADI and ANTABIF), the Research Foundation Flanders (Belgian network for DNA barcoding; W0.009.11N) and UK NERC AFI 6/16 grant. We thank G. di Prisco for excellent guidance in the preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip A. M. Volckaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volckaert, F.A., Rock, J., Van de Putte, A.P. (2012). Connectivity and Molecular Ecology of Antarctic Fishes. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_5

Download citation

Publish with us

Policies and ethics