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Abstract. In this paper we study the page number of upward planar directed
acyclic graphs. We prove that: (1) the page number of any n-vertex upward planar
triangulation G whose every maximal 4-connected component has page number
k is at most min{O(k log n), O(2k)}; (2) every upward planar triangulation G
with o( n

log n
) diameter has o(n) page number; and (3) every upward planar trian-

gulation has a vertex ordering with o(n) page number if and only if every upward
planar triangulation whose maximum degree is O(

√
n) does.

1 Introduction

A k-page book embedding of a graph G=(V, E) is a total ordering σ of V and a parti-
tion of E into subsets E1, E2, . . . , Ek, called pages, such that no two edges (u, v) and
(w, z) with u <σw <σv <σz belong to the same set Ei. The page number of G is the
minimum k such that G admits a k-page book embedding.

Book embeddings (first introduced by Kainen [15] and by Ollmann [19]) find ap-
plications in several contexts, such as VLSI design, fault-tolerant processing, sorting
networks, and parallel matrix multiplication (see, e.g., [4,11,20,21]). Henceforth, they
have been widely studied from a theoretical point of view; namely, the literature is
rich of combinatorial and algorithmic contributions on the page number of various
classes of graphs (see, e.g., [2,7,8,9,10,17,18]). We remark here a famous result of Yan-
nakakis [22] stating that any planar graph has page number at most four.

Heath et al. [13,14] extended the notions of book embedding and page number to
directed acyclic graphs (DAGs for short) in a very natural way: Given a DAG G=(V, E),
book embedding and page number of G are defined as for undirected graphs, except that
the total ordering of V is now required to be a linear extension of the partial order of V
induced by E. That is, if G contains an edge from a vertex u to a vertex v, then u <σv
in any feasible total ordering σ of V . The authors of [13,14] showed that DAGs with
page number equal to one can be characterized and recognized efficiently; however,
they proved that, in general, determining the page number of a DAG is NP-complete.
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The main problem raised by Heath et al. and studied in, e.g., [1,6,12,13,14], is
whether every upward planar DAG admits a book embedding in few pages. An up-
ward planar DAG is a DAG that admits a drawing which is simultaneously upward,
i.e., each edge is represented by a curve monotonically increasing in the y-direction,
and planar, i.e., no two edges cross. Upward planar DAGs are the natural counterpart
of planar graphs in the context of directed graphs. Notice that there exist DAGs which
admit a planar non-upward embedding and that require Ω(|V |) pages in any book em-
bedding [12,14]. No upper bound better than the trivial O(|V |) and no lower bound
better than the trivial Ω(1) are known for the page number of upward planar DAGs. It
is however known that directed trees have page number one [14], that unicyclic DAGs
have page number two [14], and that series-parallel DAGs have page number two [1,6].

In this paper we study the page number of upward planar DAGs. Before stating our
results we need some background.

First, it is known that every upward planar DAG G can be augmented to an upward
planar triangulation G′ [5]. That is, edges can be added to G so that the resulting graph
G′ is still an upward planar DAG and every face of G′ is delimited by a 3-cycle. Thus, in
order to establish tight bounds on the page number of upward planar DAGs, it suffices
to look at upward planar triangulations, as the page number of a subgraph G of a graph
G′ is at most the page number of G′. In the following, unless otherwise specified, all
the considered graphs are upward planar triangulations.

Second, consider a total ordering σ of V . A twist is a set of pairwise crossing edges,
i.e., a set {(u1, v1), (u2, v2), . . . , (uk, vk)} of edges such that u1 <σu2 <σ· · · <σuk <σ

v1 <σv2 <σ· · · <σvk. It is straightforward that the page number of a graph G is lower
bounded by the minimum over all vertex orderings σ of the maximum size of a twist
in σ. Moreover, a function of the maximum size of a twist in a vertex ordering upper
bounds the page number of an n-vertex graph G, as stated in the following two lemmata.

Lemma 1. [3] Let σ be a vertex ordering of an n-vertex graph G. Suppose that the
maximum twist of σ has size k. Then G admits a book embedding with vertex ordering
σ and with O(k log n) pages.

Lemma 2. [16] Let σ be a vertex ordering of an n-vertex graph G. Suppose that the
maximum twist of σ has size k. Then G admits a book embedding with vertex ordering
σ and with O(2k) pages.

Thus, in order to get upper bounds for the page number of a graph, it often suffices to
construct vertex orderings with small maximum twist size.

In this paper we consider the relationship between the page number of an n-vertex
upward planar triangulation G and three important graph parameters of G: The connec-
tivity, the diameter, and the degree. We show the following results. (i) In Sect. 3, we
prove that an upward planar triangulation G admits a vertex ordering with maximum
twist size O(f(n)) if and only if every maximal 4-connected component of G does. As
a corollary, upward planar 3-trees have constant page number. (ii) In Sect. 4, we prove
that every upward planar triangulation G has a vertex ordering whose maximum twist
size is a function of the diameter of G, that is, of the length of the longest directed path
in G. As a corollary, every upward planar triangulation whose diameter is o(n/ log n)
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admits a book embedding in o(n) pages. (iii) In Sect. 5, we show that every upward
planar triangulation has a vertex ordering with o(n) page number if and only if every
upward planar triangulation whose maximum degree is O(

√
n) does.

2 Definitions

A directed graph is a graph with direction on the edges. The underlying graph of a
directed graph G is the undirected graph obtained from G by removing the directions
on its edges. We denote by (u, v) an edge directed from a vertex u, which is called the
origin of (u, v), to a vertex v, which is called the destination of (u, v); edge (u, v) is
incoming v and outgoing u. A source (resp. sink) is a vertex with no incoming edge
(resp. with no outgoing edge). A directed cycle is a directed graph whose underlying
graph is a cycle and containing no source and no sink. A directed acyclic graph (DAG
for short) is a directed graph containing no directed cycle. A directed path is a directed
graph whose underlying graph is a path and containing exactly one source and one sink.
The diameter of a directed graph is the number of vertices in its longest directed path.

A drawing of a directed graph is a mapping of each vertex to a point in the plane and
of each edge to a Jordan curve between its end-points. A drawing is upward if each edge
(u, v) is a curve monotonically increasing in the y-direction and it is planar if no two
edges intersect except, possibly, at common end-points. A drawing is upward planar if
it is both upward and planar. An upward planar graph is a graph that admits an upward
planar drawing. A planar drawing of a graph partitions the plane into connected regions,
called faces. The unbounded face is the outer face, all the other faces are internal faces.
Two upward planar drawings of an upward planar DAG are equivalent if they determine
the same clockwise ordering of the edges around each vertex. An embedding of an
upward planar DAG is an equivalence class of upward planar drawings. An embedded
upward planar graph is an upward planar DAG together with an embedding.

An upward planar triangulation is an upward planar graph whose underlying graph
is a maximal planar graph. Consider any two upward planar drawings Γ1 and Γ2 of an
upward planar triangulation G. Then, either Γ1 and Γ2 are equivalent, or the clockwise
ordering of the edges around each vertex in Γ1 is exactly the opposite of the one in Γ2.
The outer face of an upward planar drawing Γ of an upward planar triangulation G is
delimited by a cycle composed of three edges (u, v), (u, z), and (v, z). Then, u, v, and
z are called bottom vertex, middle vertex, and top vertex of Γ , respectively. Consider
the two embeddings E1 and E2 of an upward planar triangulation G. Then, the bottom,
middle, and top vertex of E1 coincide with the bottom, middle, and top vertex of E2,
respectively. Hence such vertices are simply called the bottom vertex of G, the middle
vertex of G, and the top vertex of G, respectively.

A total vertex ordering σ of a DAG G is upward if G has no edge (u, v) such
that v<σu. The upward vertex orderings are all and only the vertex orderings that
are feasible for a book embedding of a DAG. We say that an upward vertex order-
ing σ induces a twist of size k if G contains edges (u1, v1), . . . , (uk, vk) such that
u1<σ. . . <σuk<σv1<σ. . . , vk. The maximum twist size of an upward vertex ordering
σ is the maximum number of edges in a twist induced by σ. Two edges (u1, v1) and
(u2, v2) are nested in σ if u1<σu2<σv2<σ v1. Two edges (u1, v1) and (u2, v2) cross
in σ if u1<σu2<σv1<σ v2.
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An undirected graph is k-connected if the removal of any k − 1 vertices leaves the
graph connected. A directed graph is k-connected if its underlying graph is. A maximal
k-connected component of a graph G is a subgraph G′ of G such that G′ is k-connected
and no subgraph G′′ of G with G′ ⊂ G′′ is k-connected. A separating triangle C in a
graph G is a 3-cycle such that the removal of the vertices of C from G disconnects G.
A separating triangle C in a graph G is maximal if G has no separating triangle C′ such
that C is internal to C′.

The degree of a vertex is the number of edges incident to it. The degree of a graph is
the maximum among the degrees of its vertices. A DAG is Hamiltonian if it contains a
directed path passing through all its vertices. An Hamiltonian DAG G has exactly one
upward total vertex ordering. Moreover, if G is upward planar, then it has page number
at most 2. A plane 3-tree is a maximal plane graph that can be constructed as follows.
Let G3 be a 3-cycle embedded in the plane. A plane 3-tree with n vertices is a plane
graph that can be constructed from a plane graph Gn−1 with n− 1 vertices by inserting
a vertex inside an internal face of Gn−1 and by connecting such a vertex to the three
vertices incident to the face. A planar 3-tree is a planar graph that can be embedded
as a plane 3-tree. An upward plane 3-tree is an upward planar DAG whose underlying
graph is a plane 3-tree.

3 Page Number and Connectivity

In this section we study the relationship between the page number of an upward pla-
nar DAG and the page number of its maximal 4-connected components. We prove the
following:

Theorem 1. Let f(n) be any function such that f(n) ∈ Ω(1) and f(n) ∈ O(n).
Consider any n-vertex upward planar triangulation G and suppose that every maximal
4-connected component of G has an upward vertex ordering with maximum twist size at
most f(n). Then G has an upward vertex ordering with maximum twist size O(f(n)).

First, we define a rooted tree T = (V ′, E′), whose nodes correspond to subgraphs of
G=(V, E), which reflects the structure of separating triangles in G. Tree T is recur-
sively defined as follows (see Fig. 1(a)). The root r of T corresponds to G′(r) = G.
Suppose that a node a of T corresponds to a subgraph G′(a) of G. If G′(a) contains
no separating triangle, then a is a leaf of T . Otherwise, consider every maximal sepa-
rating triangle (u, v, z) of G′(a); then, insert a node b in T as a child of a, such that
G′(b) is the subgraph of G′(a) induced by the vertices internal to or on the border of
cycle (u, v, z). For each node a ∈ T , denote as V ′(a) and E′(a) the vertex set and the
edge set of G′(a). Further, for each node a ∈ T , let G(a) = (V (a), E(a)) denote the
subgraph of G′(a) induced by all the vertices which are not internal to any separating
triangle of G′(a). Note that G(a) is 4-connected for every a ∈ V ′.

We now define a total ordering o(V ) of V and we later prove that the maximum
twist size of o(V ) is O(f(n)). Ordering o(V ) is constructed by induction on T . In the
base case a is a leaf; then let o(V ′(a)) be any total ordering of V ′(a) such that the
maximum twist size of o(V ′(a)) is f(n). Such an ordering exists by hypothesis, since
G′(a) is 4-connected. In the inductive case, let a1, . . . , am be the children of a in T ,
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Fig. 1. (a) Tree T capturing the structure of the separating triangles in G. (b) Graph G′(a); the
thick edges belong to M0.

where total orderings o(V ′(a1)), . . . , o(V ′(am)) of V ′(a1), . . . , V ′(am), respectively,
have already been computed. Compute a total ordering o(V (a)) of V (a) such that the
maximum twist size of o(V (a)) is f(n). Again, such an ordering exists by hypothesis,
since G(a) is 4-connected. Next, we merge o(V ′(a1)), . . . , o(V ′(am)) with o(V (a)). In
order to do this, we define the operation of merging an ordering V2 into an ordering V1,
that takes as input two total vertex orderings o(V1) and o(V2) such that V1 and V2 share a
single vertex v, and outputs a single total vertex ordering o(V1∪V2) of V1∪V2 such that
o(V1 ∪ V2) coincides with o(Vi) when restricted to the vertices in Vi, for i = 1, 2, and
such that every vertex of V1 that precedes v in o(V1) (resp. follows v in o(V1)) precedes
all the vertices of V2 in o(V ) (resp. follows all the vertices of V2 in o(V )). Denote
by b(H), by m(H), and by t(H) the bottom vertex, the middle vertex, and the top
vertex of an upward triangulation H , respectively. Then, ordering o(V ′(a)) is defined as
follows: Let o1 = o(V (a)) and let oi+1 be the ordering obtained by merging o(V ′(ai))\
{b(G′(ai)), t(G′(ai))} into oi, for i = 1, . . . , m; then o(V ′(a)) = om+1. Observe that
o(V ′(a)) is an upward vertex ordering because o(V (a)), o(V ′(a1)), . . . , o(V ′(am)) are
and because of the definition of the merging operation.

We now prove that the size of the maximum twist induced by o(V ) is O(f(n)). Let
M = {e1=(u1, v1), . . . , ek=(uk, vk)} denote any maximal twist induced by o(V ). We
have the following:

Claim 1. Let a be a node of T . Let a1 and a2 be two distinct children of a. There is
no pair of distinct edges (ui, vi), (uj , vj) in M such that (ui, vi) ∈ E′(a1), (uj , vj) ∈
E′(a2), and {ui, vi, uj , vj} ∩ V (a) = ∅.

Proof: Let (u1, v1, z1) and (u2, v2, z2) be the separating triangles of G′(a) that delimit
the outer faces of G′(a1) and G′(a2), where vi is the middle vertex of G′(ai), for
i = 1, 2. If v1 �= v2, then, by the construction of o(V ), all internal vertices of G′(a1)
precede all internal vertices of G′(a2) or vice versa, thus ei and ej do not both belong to
M . Otherwise, v1 = v2. Then, again by the construction of o(V ), ei and ej are nested,
thus they do not both belong to M . �
Let r be the root of T . We assume that G is “minimal”, that is, we assume that there
exists no child a of r such that all the edges in M belong to G′(a). Indeed, if such a child
exists, graph G=G′(r) can be replaced by G′(a), and the bound on the size of M can
be achieved by arguing on G′(a) rather than on G′(r). Denote by Mi, with i = 0, 1, 2,
the subset of M that contains all the edges having i endpoints in V (r). Observe that
|M | = |M0| + |M1| + |M2|, hence it suffices to prove that |Mi| ∈ O(f(n)), for
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i = 0, 1, 2, in order to prove the theorem. By hypothesis and since G(r) is 4-connected,
we have |M2| ≤ f(n). We now deal with the edges in M1.

Claim 2. |M1| ∈ O(f(n)).

Proof: First, we argue that M1 contains at most one edge e such that an end-vertex of
e is the middle vertex of an upward planar triangulation G′(a), for some child a of r.
Indeed, by the vertex ordering’s construction, any two such edges, say ea and eb, are
either incident to the same vertex or are such that both end-vertices of ea come before
both end-vertices of eb in o(V ′(a)). Thus, it is enough to bound the number of edges
in M1 whose end-vertex in V (r) is the bottom vertex or the top vertex of an upward
planar triangulation G′(a), where a is a child of r.

Let M b
1 (resp. M t

1) be the subset of the edges in M1 whose end-vertex in V (r) is the
bottom vertex (resp. the top vertex) of an upward planar triangulation G′(a), where a
is a child of r. Observe, that by the above observation, |M | ≤ |M b

1 | + |M t
1| + 1. In the

following we bound |M b
1 | (the bound for |M t

1| can be obtained analogously).
Consider any edge (u, v) ∈ M b

1 , where u ∈ V (r). We define a corresponding edge
of (u, v) in G(r) as follows. Let au,v be the child of r such that G′(au,v) contains
edge (u, v). Further, denote by mu,v the middle vertex of G′(au,v). Then, (u, mu,v)
is the corresponding edge of (u, v) in G(r). Observe that edge (u, mu,v) exists and
belongs to E(r). Now consider the multi-set Eb

1 of the corresponding edges, that is
Eb

1 = {(u, mu,v)|(u, v) ∈ M b
1}. First, we have that, for each vertex w in V (r), there

exist at most two edges (z, w) in Eb
1, since each vertex in V (r) is the middle vertex

of at most two upward planar triangulations G′(ai), where ai is a child of r, and since
G′(ai) has at most one edge in M b

1 . If there exist two edges (z1, w) and (z2, w) in Eb
1,

then remove one of them. Then, after such deletions, |Eb
1| ≥ |M b

1 |/2.
Next, we prove that each vertex in V (r) is an end-vertex of at most two edges in Eb

1.
Namely, consider any two edges (u1, v1) and (u2, v2) in Eb

1. Then, v1 �= v2 because
of the deletions performed on Eb

1, and u1 �= u2 as otherwise the corresponding edges
in M b

1 would share a vertex, contradicting the assumption that M is a twist; thus, each
vertex in V (r) is the source of at most one edge in Eb

1 and the sink of at most one edge
in Eb

1. Since the degree of graph (V (r), Eb
1) is two, there exists a subset E∗ of Eb

1 such
that the degree of graph (V (r), E∗) is one and |E∗| ≥ |Eb

1|/3.
Finally, we have that every two edges in E∗ cross. Namely, if they do not, then by the

vertex ordering’s construction the corresponding edges in M b
1 would not cross either,

thus contradicting the assumption that M is a twist.
Since E∗ ⊆ E(r) and the maximum size of a twist of edges in E(r) is f(n), given

that G(r) is 4-connected, it follows that E∗ ≤ f(n). Using |E∗| ≥ |Eb
1|/3 and |Eb

1| ≥
|M b

1 |/2, we get |M b
1 | ≤ 6f(n). Such an inequality, together with the analogous bound

|M t
1| ≤ 6f(n) and with |M | ≤ |M b

1 | + |M t
1| + 1, proves the theorem. �

We now proceed by bounding the size of M0.

Claim 3. |M0| ∈ O(f(n)).

Proof: By Claim 1, all the edges in M0 belong to a graph G′(a), for a certain descendant
a of r. Let us choose a so that the length of the path from a to r is maximized. Let w
be the middle vertex of the separating triangle (u, v, w) delimiting G′(a). Let a′ denote
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the child of r which is an ancestor of a or that coincides with a. Let w′ be the middle
vertex of the separating triangle (u′, v′, w′) delimiting G′(a′).

For any edge (y, z) ∈ M0, we have that (y, z) “nests around w′”, that is, y precedes
w′ and w′ precedes z in o(V ). Indeed, if both y and z precede w′ in o(V ) (or if they
both follow w′ in o(V )), then only the edges in G′(a′) can possibly cross (y, z), by the
construction of o(V ), thus contradicting the minimality of r.

If w �= w′, then |M0| ≤ 3, since only the edges incident to u, v and w can belong
to M0. Otherwise we have w′ = w (see Fig. 1(b)). Consider graph G′(a); partition the
edges in M0 into two subsets, namely M ′

0 contains all the edges of M0 having at least
one end-vertex in V (a) and M ′′

0 contains all the edges of M0 having no end-vertex in
V (a). By definition of a and by Claim 1, |M ′

0| > 0, as otherwise there would exist a
child of a containing all the edges of M0. However, by Claim 2 applied to G′(a) and by
the hypothesis of the theorem, we have |M ′

0| ∈ O(f(n)). Moreover, every edge in M ′′
0

is in a separating triangle of G′(a) having w as middle vertex; however, any such edge
is nested inside any edge of M ′

0; thus, since |M ′
0| > 0, we have |M ′′

0 | = 0 and hence
|M0| ∈ O(f(n)), which concludes the proof. �

Since |Mi| ∈ O(f(n)), for i = 0, 1, 2, it follows that |M | ∈ O(f(n)), thus proving
Theorem 1. By Lemmata 1 and 2, we have the following:

Corollary 1. If every n-vertex upward planar 4-connected triangulation has o( n
log n )

page number, then every n-vertex upward planar triangulation has o(n) page number.

Corollary 2. Every upward planar 3-tree has O(1) page number.

4 Page Number and Diameter

In this section we study the relationship between the page number of an upward pla-
nar DAG and its diameter D. We show that upward planar DAGs with small diameter
have sub-linear page number. Notice that such a result pairs the observation that graphs
with diameter n − o(n) have sub-linear page number as well, given that upward planar
Hamiltonian DAGs have page number two. We have the following:

Theorem 2. Every n-vertex upward planar triangulation whose diameter is at most D
admits an upward vertex ordering whose maximum twist size t(n) is a function satisfy-
ing t(n) ≤ aD + t(n

2 ) + b, for some constants a and b.

We will prove the statement for a family of upward planar DAGs that is strictly larger
than the family of upward planar triangulations. Namely, we call upward cactus an
embedded upward planar DAG G having exactly one source s(G) and such that ev-
ery internal face is delimited by a 3-cycle. See Fig. 2. Observe that an upward planar
triangulation is an upward cactus.

Consider an upward cactus G. We call monotone path any directed path
P = (u1, . . . , uk) from s(G) to a sink of G. Consider an upward planar drawing Γ of
G in which uk is the vertex with highest y-coordinate. Observe that such a drawing Γ
always exists because G is an upward cactus. Then, we define the left side of P as the
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s(G)

left side of P

right side of P

Fig. 2. An upward cactus G. The thick edges represent a monotone path P

subgraph of G induced by all the vertices which are to the left of the Jordan curve rep-
resenting P in Γ . The right side of P is defined analogously. Observe that the vertices
of P , the vertices of the left side of P , and the vertices of the right side of P form a
partition of the vertices of G. We have the following:

Claim 4. In every n-vertex upward cactus there exists a monotone path P such that
both the left side of P and the right side of P have less than n

2 vertices.

We now prove the statement of the theorem for every n-vertex upward cactus G with
diameter at most D. The proof is by induction on n. If n ≤ 3, then in any upward vertex
ordering of G the maximum twist size is 1, hence t(3) ≤ b, for any b ≥ 1, thus proving
the base case.

Suppose that n > 3. By Claim 4, there exists a monotone path P in G such that both
the left side of P and the right side of P have less than n

2 vertices. We now associate
each vertex in the left side of P and each vertex in the right side of P to a vertex of
P . Namely, we associate a vertex v in the left side of P to the vertex ui of P such that
there exists a directed path from ui to v and such that, for every j > i, there exists no
directed path from uj to v. Observe that, for every vertex v in the left side of P , there
exists a directed path from s(G) to v, since G has a unique source, hence v is associated
to exactly one vertex of P . Then, we call left bag of ui the set of vertices in the left side
of P which are associated to ui, for each i = 1, . . . , k. Vertices in the right side of P
are associated to vertices of P analogously, thus analogously defining the right bag of
ui, for each i = 1, . . . , k. We have the following:

Claim 5. The subgraph GL
i of G induced by the left bag of ui and by ui is an upward

cactus, for every i = 1, . . . , k.

An analogous claim holds for the subgraph GR
i of G induced by the right bag of ui and

by ui.
Next, we construct an upward vertex ordering of G. This is done as follows. First,

inductively construct an upward vertex ordering σL
i of GL

i and an upward vertex order-
ing σR

i of GR
i , for i = 1, . . . , k, such that the maximum twist size of each of σR

i and
σL

i is t(n
2 ). This is possible since GL

i and GR
i are upward cacti, by Claim 5, and they

have less than n
2 vertices, by Claim 4. Observe that ui is the first vertex both in σL

i and
in σR

i , given that it is the only source of both GL
i and GR

i . Then, denote by σi the vertex
ordering of GL

i ∪ GR
i which is obtained by concatenating σL

i and σR
i \ {ui}. Finally a

vertex ordering σ of G is obtained by concatenating σ1, σ2, . . . , σk.
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Claim 6. σ is an upward vertex ordering.

Next, we prove that the maximum twist size t(n) of σ is at most aD + t(n
2 ) + b, for

some constants a and b.
First, observe that the edges that have both end-vertices in P create twists of size at

most two, since the graph induced by the vertices of P is upward planar Hamiltonian.
Second, we discuss the size of a twist composed of intra-bag edges, which are edges

whose both end-vertices are associated to the same vertex of P . Consider any edge eL
i

of GL
i and any edge eR

i of GR
i . Such edges do not cross. Namely, if such edges are

both incident to ui, then they do not cross by definition. If eR
i is not incident to ui, then

both end-vertices of eR
i come after both end-vertices of eL

i , by construction, hence such
edges do not cross. Moreover, if eR

i is incident to ui and eL
i is not, then eL

i is nested
inside eR

i , by construction, hence such edges do not cross. It follows that the maximum
size of a twist of intra-bag edges is equal to the maximum twist size of σ restricted
to the vertices in Ga

i for some a ∈ {L, R} and some 1 ≤ i ≤ k. By Claim 5, graph
Ga

i is an upward cactus. Moreover, by Claim 4, Ga
i has at most n

2 vertices, hence the
maximum size of a twist of intra-bag edges is at most t(n

2 ).
Third, we discuss the maximum size of a twist composed of inter-bag edges, which

are edges whose end-vertices are associated to distinct vertices of P . We show that the
maximum size of a twist composed of inter-bag edges in the left side of P is 2D. An
analogous proof shows that the maximum size of a twist composed of inter-bag edges
in the right side of P is also 2D.

Consider any two inter-bag edges (w1, w2) and (w3, w4) in the left side of P . Sup-
pose that (w1, w2) and (w3, w4) cross in σ. Denote by uj1 , uj2 , uj3 , and uj4 , such
that uj1 < uj2 and uj3 < uj4 , the vertices of P vertices w1, w2, w3, and w4 have
been assigned to, respectively. The following claim asserts that any two inter-bag edges
(w1, w2) and (w3, w4) that cross in σ either have their sources assigned to the same
vertex of P , or have their destinations assigned to the same vertex of P , or the source
of one of them and the destination of the other of them are assigned to the same vertex
of P .

Claim 7. At least one of the following holds: j1 = j3 < j2, j4, or j1 < j2 = j3 < j4,
or j3 < j4 = j1 < j2, or j1, j3 < j2 = j4.

Hence, if there are more than 2D inter-bag edges pairwise crossing in the left side of
P , then either there are more than D inter-bag edges pairwise crossing in the left side
of P such that the origins of such edges have all been assigned to the same vertex of
P , or there are more than D inter-bag edges pairwise crossing in the left side of P such
that the destinations of such edges have all been assigned to the same vertex of P . In
the following, we discuss such two cases.

Claim 8. Suppose that G contains inter-bag edges (v1, w1), (v2, w2), . . . , (vk, wk) in
the left side of P , where v1 <σ v2 <σ · · · <σ vk <σ w1 <σ w2 <σ · · · <σ wk and
where all the vertices wi have been assigned to the same vertex ul of P , for i = 1, . . . , k,
or all the vertices vi have been assigned to the same vertex ul of P , for i = 1, . . . , k.
Then, there exists a directed path starting at ul and passing through w1, w2, . . . , wk .
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Since by hypothesis any directed path contains at most D vertices, then, by Claim 8,
the maximum size of a twist of inter-bag edges sharing their destinations in the left side
of P is at most D and the maximum size of a twist of inter-bag edges sharing their
origins in the left side of P is at most D. Hence, by Claim 7, the maximum size of a
twist of inter-bag edges in the left side of P is at most 2D and the maximum size of a
twist of inter-bag edges is at most 4D. Since every edge of G is either an edge having
both end-vertices in P , or is an intra-bag edge, or is an inter-bag edge, it follows that
the maximum size of a twist in σ is t(n) = 2 + t(n

2 ) + 4D, thus proving Theorem 2.
By Lemma 1, we have the following:

Corollary 3. Every n-vertex upward planar triangulation whose diameter is o( n
log n )

has o(n) page number.

5 Page Number and Degree

In this section we discuss the relationship between the page number of a graph and its
degree. We prove the following theorem.

Theorem 3. Let f(n) be any function such that f(n) ∈ Ω(
√

n) and f(n) ∈ O(n).
Suppose that every n-vertex upward planar triangulation whose degree is O(f(n))
admits a book embedding with O(g(n)) pages, for some function g(n) ∈ Ω(1) and
g(n) ∈ O(n). Then, every n-vertex upward planar triangulation admits a book embed-
ding with O(g(n) + n

f(n) ) pages.

Consider any n-vertex upward planar triangulation G. We transform G into an O(n)-
vertex upward planar triangulation G′ with degree O(f(n)) as follows. Fix any constant
c > 0 and denote by u1, . . . , uk any ordering of the vertices of G whose degree is
greater than cf(n).

For i = 1, . . . , k, consider vertex ui. Suppose that ui is an internal vertex of G,
the case in which ui is an external vertex being analogous. Since it is an upward pla-
nar triangulation, G has exactly two faces (v1, v2, ui) and (v3, v4, ui) incident to ui

such that edges (v1, ui) and (v4, ui) are incoming ui and such that edges (ui, v2) and
(ui, v3) are outgoing ui. Assume, w.l.o.g., that (v1, ui), (ui, v2), (ui, v3), and (v4, ui)
appear in this clockwise order around ui. Denote by w1 = v2, w2, . . . , wx−1, wx =
v3, w

′
1 = v4, w

′
2, . . . , w

′
y−1, w

′
y = v1 the clockwise order of the neighbors of ui

(see Fig. 3(a)). Remove ui and its incident edges from G. Let M = � x
f(n)−1
 and

N = � y
f(n)−1
. Insert M + N + 2 vertices z1, . . . , zM+N+2 in G inside the cy-

cle of the neighbors of ui. Insert an edge from zj to zj+1, for j = 1, . . . , M , in-
sert an edge from zj+1 to zj , for j = M + 1, . . . , M + N + 1, and insert edges
from zM+2 to z1, . . . , zM and from zM+3, . . . , zM+N+2 to z1. Insert edges from v1

to z1, from z1 to v2, from v4 to zM+2, and from zM+2 to v3. Insert edges from zj

to w(j−2)(f(n)−1)+1, w(j−2)(f(n)−1)+2, . . . , w(j−1)(f(n)−1), for j = 2, . . . , M + 1; in-
sert edges from w′

(j−2)(f(n)−1)+1, w
′
(j−2)(f(n)−1)+2, . . . , w

′
(j−1)(f(n)−1) to zM+j , for

j = 3, . . . , N + 2. See Fig. 3(b).
It is easy to see that the triangulation G′ obtained from G after all vertices u1, . . . , uk

have been considered is upward planar. We have the following.
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(a) (b)

Fig. 3. (a) Neighbors of a high-degree vertex ui. (b) Replacing ui with lower-degree vertices,
assuming f(n) = 3.

Claim 9. G′ has O(n) vertices and O(f(n)) degree. Moreover, for every upward vertex
ordering σ′ of G′, there exists an upward vertex ordering σ of G such that σ and σ′

restricted to the vertices that are both in G and in G′ coincide.

We now describe how to compute a book embedding of G in O(g(n) + n
f(n) ) pages.

First, construct the upward planar triangulation G′ as above. Second, construct a book
embedding of G′ into O(g(n)) pages. Such a book embedding exists by hypothesis,
since G′ has O(n) vertices and O(f(n)) degree (by Claim 9). Denote by σ′ the total
ordering of the vertices of G′ in the constructed book embedding. Construct any total
ordering σ of the vertices of G such that σ and σ′ restricted to the vertices that are both
in G and in G′ coincide. Such an ordering exists (and can be easily constructed) by
Claim 9. The edges of G can be assigned to pages as follows: O(g(n)) pages suffice
to accommodate all the edges that are both in G and in G′; moreover, one page can be
used to accommodate all the edges incident to vertex ui, for i = 1, . . . , k ∈ O( n

f(n)). It
follows that G has a book embedding in O(g(n)+ n

f(n) ) pages, thus proving Theorem 3.

Corollary 4. Every n-vertex upward planar triangulation has o(n) page number if and
only if every n-vertex upward planar triangulation with degree O(

√
n) has o(n) page

number.

6 Conclusions

In this paper we studied the relationship between the page number of an upward planar
triangulation G and three important parameters of G: The connectivity, the diameter,
and the degree. It would be interesting, in our opinion, to understand whether the state-
ments of Theorems 1 and 2 can be referred to the page number rather than to the max-
imum twist size. That is: (1) Is it true that any upward planar triangulation G has page
number O(k) if and only if every maximal 4-connected subgraph of G has page number
O(k)? (2) Is it true that any n-vertex upward planar triangulation G with diameter D
has page number p(n) satisfying p(n) = p(n

2 ) + aD + b, for some constants a and b?
Determining whether every n-vertex upward planar DAG has o(n) page number and

whether there exist upward planar DAGs with ω(1) page number remain among the
most important problems in the theory of linear graph layouts.
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