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Abstract. A drawing of a graph is a monotone drawing if for every pair of ver-
tices u and v, there is a path drawn from u to v that is monotone in some direction.
In this paper we investigate planar monotone drawings in the fixed embedding
setting, i.e., a planar embedding of the graph is given as part of the input that
must be preserved by the drawing algorithm. In this setting we prove that every
planar graph on n vertices admits a planar monotone drawing with at most two
bends per edge and with at most 4n − 10 bends in total; such a drawing can
be computed in linear time and requires polynomial area. We also show that two
bends per edge are sometimes necessary on a linear number of edges of the graph.
Furthermore, we investigate subclasses of planar graphs that can be realized as
embedding-preserving monotone drawings with straight-line edges, and we show
that biconnected embedded planar graphs and outerplane graphs always admit
such drawings, which can be computed in linear time.

1 Introduction

A drawing of a graph is a monotone drawing if for every pair of vertices u and v, there is
a path drawn from u to v that is monotone in some direction. In other words, a drawing
is monotone if, for any given direction d (e.g., from left to right) and for each pair of
vertices u and v, there exists a suitable rotation of the drawing for which a path from u
to v becomes monotone in the direction d.

Monotone drawings have been recently introduced [1] as a new visualization para-
digm, which is well motivated by human subject experiments by Huang and Eades [8]
who showed that the “geodesic tendency” (paths follow a given direction) is important
in comprehending the underlying graph. Monotone drawings are related to well-studied
drawing conventions, such as upward drawings [5,7], greedy drawings [2,9,10], and the
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geometric problem of finding monotone trajectories between two given points in the
plane avoiding convex obstacles [3].

Planar monotone drawings with straight-line edges form a natural setting and it is
known that biconnected planar graphs and trees always admit such drawings, for some
combinatorial embedding of the graph [1]. However, the question whether a simply
connected planar graph always admits a planar monotone drawing or not is still open.

On the other hand, in the fixed embedding setting (i.e., the planar embedding of the
graph is given as part of the input and the drawing algorithm is not allowed to alter it)
it is known [1] that there exist simply connected planar embedded graphs that admit no
straight-line monotone drawings.

In this paper we study planar monotone drawings of graphs in the fixed embed-
ding setting, answering the natural question whether monotone drawings with a given
constant number of bends per edge can always be computed, and identifying some sub-
classes of planar graphs that always admit planar monotone drawings with straight-line
edges. Our contributions are summarized below:

– We prove that every n-vertex planar embedded graph has an embedding-preserving
monotone drawing with curve complexity 2, that is, the maximum number of bends
along an edge is 2, and with at most 4n− 10 bends in total. Such a drawing can be
computed in linear time and has polynomial area.

– We show that our bound on the curve complexity is tight, by describing an infinite
family of embedded planar graphs that require two bends on a linear number of
edges in any embedding-preserving monotone drawing.

– We investigate what subfamilies of embedded planar graphs can be realized as
embedding-preserving monotone drawings with straight-line edges. We prove that
biconnected embedded planar graphs and outerplane graphs always admit such a
drawing, which can be computed in linear time.

The paper is structured as follows. Basic definitions and results are given in Section 2.
An algorithm for computing embedding-preserving monotone drawings of general em-
bedded planar graphs with at most two bends per edge is described in Section 3. Al-
gorithms for computing straight-line monotone drawings of meaningful subfamilies of
embedded planar graphs are given in Section 4. Concluding remarks and open questions
are presented in Section 5. For space reasons some proofs are sketched or omitted.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing (see, e.g., [5]). Let G be
a planar graph and let φ be a planar embedding of G. The embedding φ defines the
set of internal faces and the outer face of G. For every vertex v of G, the embedding
φ also defines the circular clockwise order of the edges incident to v. Graph G along
with an embedding φ is called an embedded planar graph, and is denoted by Gφ. Any
subgraph of Gφ obtained by removing some edges from Gφ is a subgraph that preserves
the planar embedding φ. A drawing of Gφ is a planar drawing of G with embedding φ.

A subdivision of a graph G is obtained by replacing each edge of G with a path. A
k-subdivision of G is such that any path replacing an edge of G has at most k inter-
nal vertices. A graph G is connected if every pair of vertices is connected by a path
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and is biconnected (resp. triconnected) if removing any vertex (resp. any two vertices)
leaves G connected. In order to handle the decomposition of a biconnected graph into
its triconnected components, we use the well-known SPQR-tree data structure [6].

A monotone drawing Γ of a planar graph G (of an embedded planar graph Gφ) is
a drawing of G (of Gφ) such that for every pair of vertices u and v there exists a path
from u to v in Γ that is monotone in some direction.

A monotone drawing of any tree T can be constructed in polynomial area by using
Algorithm DFS-based [1], which relies on the concept of the Stern-Brocot tree [11,4]
SB, an infinite tree whose nodes are in bijective mapping with the irreducible posi-
tive rational numbers. Algorithm DFS-based assigns to the edges of the tree T slopes
1
1 , 2

1 , . . . , n−1
1 (which are the first n−1 elements of the rightmost path of SB) according

to a DFS-visit of T . Polynomial area is ensured by the following property of SB.

Property 1. [4,11] The sum of the numerators of the elements of the i-th level of SB
is 3i−1 and the sum of the denominators of the elements of the i-th level of SB is 3i−1.

The following property is also satisfied by any monotone drawing Γ of a tree T .

Property 2. [1] Any drawing Γ ′ of T such that the slopes of each edge e ∈ T in Γ ′ is
the same as the slope of e in Γ is monotone. Also, the slopes of any two leaf-edges e′

and e′′ of T in Γ are such that e′ and e′′ diverge, that is, the elongations of e′ and e′′ do
not cross each other.

3 Monotone Drawings with Bends of Embedded Planar Graphs

In this section we study monotone drawings of embedded planar graphs. We remark
that it is still unknown whether every planar graph admits a straight-line monotone
drawing in the variable embedding setting, while it is known that straight-line monotone
drawings do not always exist if the embedding of the graph is fixed [1]. We therefore
investigate monotone drawings with bends along some edges, and we show that two
bends per edge are always sufficient and sometimes necessary for the existence of a
monotone drawing in the fixed embedding setting.

We need some preliminary definitions. An upright spanning tree T of an embedded
planar graph Gφ is a rooted ordered spanning tree of Gφ such that: (i) T preserves the
planar embedding of Gφ; (ii) the root of T is a vertex r of the outer face of Gφ; (iii)
there exists a planar drawing of Gφ that contains an upward drawing of T such that no
edge goes below r. Fig. 1(b) and (c) show two different ordered spanning trees of the
embedded planar graph of Fig. 1(a): The first one is an upright spanning tree, while the
second is not. Given an embedded planar graph Gφ, an upright spanning tree T of Gφ

can be computed as follows. Construct any planar straight-line drawing Γ of Gφ. Orient
the edges of Gφ in Γ according to the upward direction. Let r be a vertex on the outer
face of Gφ with the smallest y-coordinate in Γ . Then, compute any spanning tree T of
Gφ rooted at r such that the left-to-right order of the children of r in T is consistent
with the left-to-right order of the neighbors of r in Γ and the left-to-right order of the
children of each vertex w in T is consistent with the clockwise order of the neighbors
of w in Gφ, computed starting from the edge connecting w to its parent in T .
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Fig. 1. (a) A drawing Γ of an embedded planar graph Gφ. (b) An upright spanning tree of Gφ.
(c) A spanning tree of Gφ that is not upright.

Let T be an upright spanning tree of Gφ. The rgbb-coloring of Gφ with respect to T
is a coloring of the edges of Gφ with four colors (red, green, blue, and black) such that:
An edge is colored black if it belongs to T ; an edge is colored green if it connects two
leaves of T ; an edge is colored red if it connects a leaf to an internal vertex of T ; an
edge is colored blue if it connects two internal vertices of T .

We denote by C(Gφ, T ) the rgbb-coloring of Gφ with respect to T . We prove the
following lemma.

Lemma 1. Let Gφ be an embedded planar graph with n vertices, let T be an upright
spanning tree of Gφ, and let C(Gφ, T ) be the rgbb-coloring of Gφ with respect to T .
Then we can compute a monotone drawing Γ of Gφ such that each black or green edge
of C(Gφ, T ) is drawn as a straight-line segment, each red edge has 1 bend, and each
blue edge has 2 bends. The running time of the algorithm is O(n) and the drawing Γ
has O(n) × O(n2) area.

Proof. First, starting from Gφ and T , construct a graph G′
φ and an upright spanning

tree T ′ of G′
φ such that: (i) G′

φ is a 2-subdivision of Gφ, (ii) T is a subtree of T ′, and
(iii) all the edges of G′

φ that are not in T ′ connect two leaves of T ′. Fig. 2(a) and (b)
show a graph Gφ with an upright spanning tree T and the corresponding graph G′

φ with
its upright spanning tree T ′ satisfying (i)–(iii). Then, the monotone drawing of Gφ with
curve complexity 2 is constructed by first computing a straight-line monotone drawing
of G′

φ and then replacing each subdivision vertex with a bend; see Fig. 2(c).
Graphs G′

φ and T ′ are constructed as follows. Initialize G′
φ = Gφ and T ′ = T .

Subdivide each red edge (s, t) of G′
φ with a vertex k and add edge (t, k) to T ′, where

t is the internal vertex of T ′. Subdivide each blue edge (s, t) of G′
φ twice, with two

vertices k and z, and add edges (s, k) and (t, z) to T ′.
The straight-line monotone drawing of G′

φ is computed in two steps. First, with
Algorithm DFS-based [1], we construct a straight-line monotone drawing of T ′, and
then we add the remaining (non-tree) edges as straight-line segments, which results in
using two segments for red edges and three segments for blue edges.

To argue the monotonicity for non-tree edges, recall that, by Property 2, it is possible
to elongate the edges of T ′ without affecting monotonicity and planarity.
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Fig. 2. (a) A graph Gφ with an upright spanning tree T rooted at vertex b. Solid edges belong to
T , while dashed edges do not. Blue edges are thicker than red edges, which are thicker than black
edges. (b) The corresponding graph G′

φ with its upright spanning tree T ′. Solid edges belong
to T ′, while dashed edges do not. Subdivision vertices are drawn as squares. (c) A straight-line
monotone drawing of G′

φ that corresponds to a monotone drawing of Gφ with bent edges.

Further, as Algorithm DFS-based assigns slopes 1
1 , 2

1 , . . . , n−1
1 to the edges of T ′,

the elongation of each leaf-edge (u, v) intersects each vertical line x = k, where k is
any integer value greater than the x-coordinate of u, at an integer grid point. Moreover,
as by Property 2 the leaf-edge elongations diverge, such intersections appear in the
same order on each vertical line x = k′, where k′ is any integer value greater than the
x-coordinate of every internal vertex of T ′; see Fig. 3(a).

Another key observation is that the graph GL induced by the leaves of T ′ is outer-
planar and can be augmented, by adding dummy edges, to a biconnected outerplanar
graph in which each internal face is a 3-cycle in such a way that the order of the vertices
on the outer face is the same as the left-to-right order of the leaves of T ′; see Fig. 3(b).

The vertices of GL are assigned to levels in such a way that the end-vertices of each
edge of GL are either on the same level or on adjacent levels, as follows. The first and
the last vertex in the left-to-right order of the leaves of T ′ have level 1. Note that, these
two vertices are adjacent, as GL is a biconnected outerplanar graph and the order of the
vertices on its outer face is the same as the left-to-right order of the leaves of T ′. Then,
starting from this edge, consider any edge (u, v) on the outer face of the graph induced
by the vertices whose level has been already assigned and consider the unique vertex
w that is connected to both u and v, and whose level has not been assigned yet, if any.
Note that, either u and v have the same level i or one of them has level i and the other
has level i + 1. In both cases, assign level i + 1 to w, as shown in Fig. 3(b) and (c).

Let l be the number of levels of GL. Then, place all the vertices at level i, with
i = 1, . . . , l, on a vertical line x = k + l − i + 1, where k is the x-coordinate of the
rightmost internal vertex of T ′. This placement, together with the fact that each such
vertical line intersects the elongations of all the leaf-edges in the same order, ensures
the planarity of the straight-line drawing of GL. Further, as the order of the vertices on
the outer face of GL is the same as the left-to-right order of the leaves of T ′, the edges
of T ′ do not cross any edge of GL, hence ensuring the planarity of G′

φ; see Fig. 3(c).
The drawing of G′

φ is monotone because between any two vertices there exists a
monotone path composed only of edges of T ′, while edges not in T ′ do not affect the
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Fig. 3. For readability, the drawings in (a) and (c) are rotated to 90◦ and the grid unit distances in
(c) are not uniform. (a) Leaf-edge elongations have integer intersections with all the vertical lines
in the same order. (b) An augmented graph GL. (c) The drawing of GL (where l = 3).

monotonicity. Hence, monotonicity is maintained when dummy edges are removed.
Note that, any monotone path traversing a leaf-edge of T ′ has the corresponding leaf
as an end-vertex. If the leaf is a subdivision vertex of any non-black edge, it does not
belong to Gφ. Hence, all the monotone paths in Gφ are composed only of edges of T ,
whose drawing is monotone since it is a subtree of T ′. Therefore, the drawing of Gφ is
monotone, each red edge has one bend, and each blue edge has two bends.

In order to compute the area of the obtained drawing, recall that Algorithm DFS-
based [1] produces a drawing of T ′ in O(n)×O(n2) area. Since the number of vertical
lines added to host the drawing of GL is equal to the number l of levels assigned to the
vertices of GL, and since l is bounded by the number of leaves, which is O(n), the area
of the whole drawing is still O(n) × O(n2).

It is easy to see that the drawing can be computed in O(n) time, by considering the
individual steps. The computation of the three necessary graphs, T , G′

φ and T ′, can
be performed in linear time. Also, the slopes of the edges of T ′ can be computed in
linear time with Algorithm DFS-based [1] by constructing the Stern-Brocot tree and by
performing a rightmost DFS visit of it. Further, graph GL can be augmented in linear
time. Finally, the assignment of levels to the vertices of GL is also performed in linear
time, as each vertex is considered just once and its level is assigned only based on the
levels of its two neighbors. This concludes the proof of Lemma 1. ��
Note that, according to Lemma 1 there always exists a monotone drawing Γ of Gφ

with curve complexity 2 and at most 4n − 10 bends in total, as Gφ has at most 3n − 6
edges and every spanning tree of Gφ has n− 1 edges. Using the algorithm described in
Lemma 1, Γ has at most 2(3n−6−n+1) = 4n−10 edges in total, and this upper bound
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Fig. 4. (a) A graph Gφ with 3n vertices that does not admit any embedding-preserving straight-
line monotone drawing. (b) Edges (vi−1, vi) and (vi, vi+1) can not be drawn as straight-line
segments.

is asymptotically tight, as there exist embedded planar graphs that require a linear total
number of bends in any monotone drawing. Namely, we first prove in Lemma 2 that
there exist embedded planar graphs requiring at least one bend on some edges. Then,
based on this lemma, we prove in Lemma 3 that there exist infinitely many embedded
planar graphs whose monotone drawings require two bends on a linear number of edges.

Lemma 2. For every n ≥ 3 there exists an embedded planar graph Gφ with 3n vertices
and 3n edges that does not admit any straight-line monotone drawing.

Sketch of Proof: We describe an embedded planar graph Gφ that does not admit any
straight-line monotone drawing (refer to Fig. 4(a)). Gφ consists of a simple cycle C =
v1, . . . , v2n of length 2n and of n vertices u1, u3, . . . , u2n−1 of degree 1, called legs, in-
cident to the vertices v1, v3, . . . , v2n−1 of C with odd indices, respectively. The embed-
ding of Gφ is such that all the legs are inside C, that is, they are inside the unique inter-
nal face of C. As by Property 2 any two consecutive legs (vi−1, ui−1) and (vi+1, ui+1)
diverge in any straight-line monotone drawing, it is not possible to connect vertices vi−1

and vi+1 by drawing edges (vi−1, vi) and (vi, vi+1) as straight-line segments. Refer to
Fig. 4(b). �

The next lemma shows that there are infinitely many embedded planar graphs that re-
quire two bends per edge on a linear number of edges in any embedding-preserving
monotone drawing.

Lemma 3. For every odd n ≥ 9 there exists an embedded planar graph Gφ with n
vertices and 3

2 (n− 1) edges such that every monotone drawing of Gφ has at least n−3
6

edges with at least two bends and thus at least n−3
3 bends in total.

Sketch of Proof: Refer to Fig. 5. Consider an odd integer n ≥ 9. We construct Gφ it-
eratively. Let G1

φ be a triangle graph. Graph Gi
φ is constructed from Gi−1

φ as follows.

Initialize Gi
φ = Gi−1

φ . Let (u, v, w) be a triangular internal face of Gi
φ. Add 6 new ver-

tices u1, u2, v1, v2, w1, w2 and 9 new edges (u, u1), (u, u2), (u1, u2), (v, v1), (v, v2),
(v1, v2), (w, w1), (w, w2), (w1, w2) to Gi

φ in such a way that all the new vertices are
inside (u, v, w). Note that the n-vertex graph Gi

φ is planar and has 3
2 (n−1) edges. Any

monotone drawing of Gφ has at least n−3
6 edges with at least two bends. �
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Fig. 5. (a) An example of a graph Gφ with n = 15 vertices, that coincides with a graph G3
φ

constructed from G2
φ by adding vertices u1, u2, v1, v2, w1, w2 inside triangular face u, v, w. (b)

A subgraph Gt
φ of Gφ induced by a triangle (u, v, w) and all the vertices inside it. (c) A subdi-

vision (white circles) of the subgraph Gh
φ (solid edges) of Gt

φ induced by u, v, w, u1, v1, w1. By
Lemma 2, this subdivision does not admit any straight-line monotone drawing.

Lemma 1 and Lemma 3 together provide a tight bound on the curve complexity of
monotone drawings in the fixed embedding setting. The next theorem summarizes the
main contribution of this section.

Theorem 1. Every embedded planar graph with n vertices admits a monotone drawing
with curve complexity 2, at most 4n− 10 bends in total, and O(n)×O(n2) area; such
a drawing can be computed in O(n) time. Also, there exist infinitely many embedded
planar graphs any monotone drawing of which requires two bends on Ω(n) edges.

4 Monotone Drawings with Straight-Line Edges

In this section we prove that there exist meaningful subfamilies of embedded planar
graphs that can be realized as straight-line monotone drawings. In particular, we prove
that both the class of outerplane graphs and the class of embedded planar biconnected
graphs have this property.

4.1 Outerplane Graphs

An embedded planar graph Gφ is an outerplane graph if all its vertices are on the outer
face. We prove the following result.

Theorem 2. Every outerplane graph admits a straight-line monotone drawing. Also,
there exists an algorithm that computes such a drawing in O(n) time and O(n)×O(n2)
area.

Proof. Let T be an upright spanning tree of Gφ obtained by performing a “rightmost
DFS” visit of Gφ; see Fig. 6(a). Consider a decomposition of Gφ into its maximal
biconnected components. Observe that, for each maximal biconnected component B
that is connected to the root of T through a cut-vertex v, T contains all the edges of
B except for the internal chords (dashed edges in Fig. 6(a)) and for the leftmost edge
incident to v (dotted edges in Fig. 6(a)).
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Fig. 6. (a) An outerplane graph Gφ and the upright spanning tree T of Gφ obtained by performing
a “rightmost DFS” visit. Edges of T are represented as solid segments. (b) A strictly convex
drawing of a maximal biconnected component B of Gφ.

A straight-line monotone drawing of Gφ is constructed by first computing a straight-
line monotone drawing of T , with Algorithm DFS-based [1], and then reinserting the
edges not in T as straight-line segments. In order to reinsert such edges, for each maxi-
mal biconnected component B, consider the path p = (v, v1, . . . , vk) that is composed
of the edges belonging both to B and to T .

According to Algorithm DFS-based [1] the slopes of the edges of p are all positive
and increasing with respect to the distance from v in p. Hence, path p is drawn in T
as a polygonal line that is convex on the left side, that is, the straight-line segment
connecting any two non-consecutive vertices of p completely lies to the left of p; see
Fig. 6(b). Thus, reinserting edge (v, vk) as the straight-line segment between v and vk

determines that (v, vk) is the leftmost edge of B incident to v in the drawing and that
the boundary of B, that is, the cycle composed of the edges of p plus (v, vk), delimits a
strictly-convex region f .

We show that f does not contain any other vertex of T . Namely, the vertex vk+1 such
that edge (v, vk+1) follows (v, v1) in the counter-clockwise order of the edges around v
in T lies outside f . This is due to the fact that, according to Algorithm DFS-based, the
slope of (v, vk+1) is greater than the slope of (vk−1, vk) which in turn is greater than
the slope of (v, vk); see Fig. 6(b).

Hence, f is an empty strictly-convex region, and the chords of B can be reinserted
as straight-line segments while maintaining planarity.

The area of the drawing is the same as the area of T computed by Algorithm DFS-
based, namely O(n) × O(n2). The drawing can be computed in O(n) time. Namely,
drawing T by using Algorithm DFS-based takes O(n) time [1], and the same holds for
reinserting missing edges. ��

4.2 Biconnected Graphs

It is known [1] that straight-line monotone drawings of biconnected planar graphs in the
variable embedding setting can always be computed. This result is obtained by means
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of an algorithm that exploits SPQR-trees and that preserves any given embedding, as
long as the graph contains no parallel component whose poles are connected by an
edge. However, this algorithm can be easily modified in order to compute monotone
drawings with curve complexity 1 of every embedded biconnected planar graph, as the
edges connecting the poles of a parallel component could be placed in their correct
position by adding a bend, when necessary.

In this section we prove that in fact we can compute a monotone drawing of every
embedded biconnected planar graph with no bends at all.

pW (μ) pE(μ)

pS(μ)

pN(μ)

βμ
αμ

βμ αμ

pE(μ)

pS(μ) = p′S(μ) = p′′S(μ)

pN(μ) = p′N(μ) = p′′N(μ)

βμ
αμ

p′W (μ)p′′W (μ) p′E(μ)
=

pW (μ)

p′′E(μ)
=

(a) (b)

Fig. 7. (a) A boomerang. (b) A diamond

As for the variable-embedding setting case [1], our algorithm relies on a bottom-up
visit of the SPQR-tree of the biconnected graph G in which at each step a drawing of the
pertinent graph of the currently considered node μ is constructed inside a boomerang
boom(μ), that is, a quadrilateral composed of points pN (μ), pE(μ), pS(μ), and pW (μ)
such that pW (μ) is inside triangle �(pN (μ), pS(μ), pE(μ)) and 2αμ + βμ < π

2 , where

αμ = ̂pW (μ)pS(μ)pE(μ) = ̂pW (μ)pN (μ)pE(μ) and βμ = ̂pW (μ)pS(μ)pN (μ) =
̂pW (μ)pN (μ)pS(μ); see Fig. 7(a).

In order to cope with the fixed-embedding setting, we introduce a new shape, called
diamond and denoted by diam(μ), that is a convex quadrilateral (pN (μ), pE(μ), pS(μ),
pW (μ)) composed of two boomerangs boom′(μ) = (p′N (μ), p′E(μ), p′S(μ), p′W (μ))
and boom′′(μ) = (p′′N (μ), p′′E(μ), p′′S(μ), p′′W (μ)) such that pN(μ) = p′N(μ) = p′′N(μ),
pS(μ) = p′S(μ) = p′′S(μ), pE(μ) = p′E(μ) and pW (μ) = p′′E(μ); see Fig. 7(b).

A diamond is used for any P -node μ having an edge e between its poles. Namely,
one of the two boomerangs composing the diamond contains the child components of
μ that come before e in the ordering of the components around the poles, while the
other boomerang contains the other components. Note that, since P -nodes might be
contained into diamonds, the algorithm for drawing S- and R-nodes inside their own
boomerangs has to be adapted to deal with this case. We have the following.

Theorem 3. Every biconnected embedded planar graph admits a straight-line mono-
tone drawing, which can be computed in linear time.
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5 Conclusions and Open Problems

In this paper we studied monotone drawings of graphs in the fixed embedding setting.
Since not all embedded planar graphs admit an embedding-preserving monotone draw-
ing with straight-line edges, we focused on computing embedding-preserving monotone
drawings with low curve complexity. We proved that curve complexity 2 always suf-
fices and that this bound is worst-case optimal. Furthermore, we described algorithms
for computing straight-line monotone drawings for meaningful subfamilies of embed-
ded planar graphs. All the algorithms presented in this paper can be performed in linear
time and most of them produce drawings which require polynomial area.

The results in this paper naturally give rise to several interesting open problems;
some of them are listed below.

Existential Questions

Problem 1. Finding meaningful subfamilies of embedded planar graphs (other than out-
erplane graphs and embedded biconnected graphs) that admit monotone drawings with
curve complexity smaller than 2.

Problem 2. Is it possible to characterize the embedded planar graphs that admit mono-
tone drawings with curve complexity smaller than 2?

Complexity Questions

Problem 3. Given an embedded planar graph Gφ and an integer k ∈ {0, 1}, what is the
complexity of deciding whether Gφ admits a monotone drawing with curve complex-
ity k?

Problem 4. Given a graph G and an integer k ∈ {0, 1}, what is the complexity of
deciding whether there exists an embedding φ such that Gφ admits a monotone drawing
with curve complexity k?

Problem 5. Given a graph G and an integer k ∈ {0, 1}, what is the complexity of de-
ciding whether there exists an embedding φ such that Gφ does not admit any monotone
drawing with curve complexity k?

Notice that, although Problems 3-5 are related, there is no evidence that answering one
of them implies an answer for any other.

Algorithmic Questions

Problem 6. Is there any algorithm that computes monotone drawings of embedded bi-
connected planar graphs in polynomial area?

Problem 7. Is there any algorithm that computes monotone drawings of outerplane
graphs in subcubic area?
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