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Abstract. Let r and w be a fixed positive numbers, w < r. In a bold
drawing of a graph, every vertex is represented by a disk of radius r,
and every edge by a narrow rectangle of width w. We solve a problem of
van Kreveld [K09] by showing that every graph admits a bold drawing
in which the region occupied by the union of the disks and rectangles
representing the vertices and edges does not contain any disk of radius
r other than the ones representing the vertices.

1 Introduction

In this note, we adopt a “realistic” view of graph drawing, proposed by Marc
van Kreveld [K09]. Let G be a graph with vertices v1, . . . , vn, represented by
points in the plane, and let the edges be drawn as possibly crossing straight-
line segments. Now fix two positive numbers r and w, w < 2r, and replace each
vertex by a disk of radius r centered at vi, and each edge vivj by a rectangle such
that its midsegment is vivj and its width, the length of its side perpendicular
to vivj , is w. We call the union D of these disks and rectangles a bold drawing
of G. A bold drawing is said to be unambiguous if it satisfies the following two
conditions.

1. No two disks representing vertices of G intersect.
2. The set D contains no disk of radius r other than the disks representing its

vertices.

The first condition is equivalent to saying that 2r is smaller than the minimum
distance between two points vi and vj . It follows from the second condition that
a bold drawing of a graph which has at least one edge can be unambiguous only
if w < 2r. It was shown in [K09] that if w > r, then the maximum degree of
the vertices of all graphs that admit an unambiguous bold drawing is bounded
from above by a constant depending only on w and r. On the other hand, van
Kreveld proved that for w < r, any star consisting of a central vertex connected
to an arbitrary number of other vertices admits an unambiguous bold drawing.
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He also raised the question whether there exists a fixed pair of values w, r with
w < r such that with these parameters every finite graph admits an unambiguous
bold drawing. The aim of this note is to answer this question in the affirmative
in the following strong sense.

Theorem 1. Let w and r be any positive constants with w < r. Then, for
every positive integer n, the complete graph Kn admits an unambiguous bold
drawing, in which the vertices are represented by disks of radius r and the edges
by rectangles of width w.

In the next statement, we describe our construction in full detail.
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Fig. 1. Construction for Theorem 2

Theorem 2. Let w and r be any positive constants with w < r. Let C be a circle
of radius 1 around the origin, and let vi (1 ≤ i ≤ n) denote the intersection point
of C and the ray obtained from the positive x-axis by a counterclockwise rotation
through angle δi, where δ = min(1

2 , 1 − w
r ).

For every n, there exists a sufficiently small ε = ε(n) > 0 such that replacing
each vi by a disk of radius εr centered at vi and each edge vivj by a rectangle of
width εw with midsegment vivj, the union of these disks and rectangles contains
no disk of radius εr other than the ones representing the vertices.

Theorem 2 immediately implies Theorem 1. Indeed, if we choose ε(n) > 0 so
small that in addition to the property in Theorem 2, it satisfies the inequality
2εr < min1≤i<j≤n |vivj | = |vn−1vn|, and we blow up the drawing described in
Theorem 2 by a factor of 1/ε, then we obtain a bold drawing of Kn that meets
both requirements for unambiguity stated above.

In [K09], van Kreveld listed seven properties that a “good” bold drawing of a
graph G must satisfy. These include the two conditions for unambiguous draw-
ings stated above, so that every good bold drawing of G is also unambiguous. It
is easy to see that if we choose the constant ε(n) small enough, then our drawing
of Kn will also meet the five additional properties formulated in [K09].

Before turning to the proof, we would like to argue that in some sense we are
“forced” to consider constructions of the type described in Theorem 2. We say
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that a set of points in the plane is in general position if no three of them are
collinear. According to the Erdős-Szekeres theorem [ES35], for any integer K,
every sufficiently large set of points in general position in the plane contains K
elements that form the vertex set of a convex K-gon. This readily implies, that
for any K there exists N(K) such that any set of N(K) points in general position
has K elements that lie on a convex curve whose total turning angle is small. By
rotating the coordinate axes if necessary, the coordinates of these points can be
written as (xi, f(xi)), where x1 < x2 < . . . < xK and f(x) is a smooth convex
function whose derivative is bounded by a small constant. Let γ =

√
5+1
2 ≈ 1.618,

the golden ratio. Color the triples (i, j, k), 1 ≤ i < j < k ≤ K, with red, blue, or
green, according to whether xk−xj

xj−xi
is at most γ−1, belongs to the interval (γ−1, γ),

or is at least γ, respectively. According to Ramsey’s theorem [R30, GRS90],
for every n ≥ 4 we can choose K = K(n) so large that there is a sequence
1 ≤ i1 < i2 < . . . < in ≤ K with the property that all triples determined by its
members are of the same color. It is easy to check that there exists no sequence
of length 4 such that all of its triples are blue. Therefore, we can assume that all
triples determined by the sequence 1 ≤ i1 < i2 < . . . < in ≤ K are red or all of
them are green. In the first case the distances xi+1 − xi decrease, in the second
one increase at least exponentially fast, as i grows (1 ≤ i ≤ n). Summarizing:
for every n ≥ 4, there is an integer N with the property that from any set of N
points in general position in the plane we can select a sequence of length n which
lies on an arc of a convex curve with small total turning angle and the distances
between its consecutive elements decrease at least exponentially. (We can reverse
the numbering of the elements, if necessary.) Suppose now that KN admits an
unambiguous bold drawing. Applying the last statement to the centers of the
disks representing the vertices, we obtain an unambiguous bold subdrawing of
a complete graph Kn such that the centers of the disks representing its vertices
lie on a convex curve and the distances between them are fast decreasing. Our
construction in Theorem 2 is motivated by this observation.

The proof of Theorem 2 is somewhat subtle. In Sect. 2, we introduce some
definitions that simplify the presentation and we state two easy but useful lem-
mas that can be proved by direct computation. The heart of the proof lies in
Lemma 5, stated and established in Sect. 3. After this preparation, the proof of
Theorem 2 presented in Sect. 4 is rather straightforward.

Several graph drawing programs for straight-line drawing offer the option to
draw the vertices and the edges bold (see, for example, NEATO [N04]). Some
algorithmic aspects of bold drawing were addressed in [K09]. In particular, given
a drawing of a graph G with possibly crossing straight-line edges, van Kreveld
applied a line segment intersection algorithm [CE92], [CS89], [M88] to find the
smallest w for which, if we draw the edges as closed rectangles of width w,
we find three edges, not all incident to the same vertex, such that the corre-
sponding rectangles have a point in common. Duncan, Efrat, Kobourov, and
Wenk [DEKW06] presented an efficient algorithm to determine the largest w,
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for a given planar embedding of a graph G, such that G admits an equivalent
drawing in which the edges are represented by nonoverlapping, not necessarily
straight bold curves of width w.

2 Terminology and Two Preliminary Lemmas

In the rest of this note, w and r are fixed positive numbers with w < r. Through-
out the next two sections, we also fix the parameter ε > 0, which will be varied
only in Sect. 4, in the proof of Theorem 2.

First, we introduce some notation and terminology. Let v be a point of the
plane, and let R1, . . . , Rs be a set of infinite rays (half-lines) emanating from v,
listed in clockwise order. Assume that all rays Ri point into the same half-plane
bounded by a line passing through v. Replace v by a closed disk of radius εr
centered at v, and replace each Ri by a closed one-way infinite half-strip of width
εw with Ri as its mid-ray. The union of the disk and these half-strips is called
a palm and is denoted by P = P (v, R1, . . . , Rs). The point v is said to be the
apex of the palm, the half-strips are said to be its fingers, and the largest angle
between the rays defining two (not necessarily consecutive) fingers is the angle
of the palm.

If we go far enough from v, the fingers start to bifurcate. For any two consecu-
tive fingers corresponding to the rays Ri and Ri+1, we define the distance from v
at which they bifurcate, as the maximum radius of a disk centered at v with the
property that its intersection with the complement of the union of the fingers
(half-strips) is connected. Analogously, for any two (two-way infinite) strips S
and S′ such that their midlines cross at a point v, we define the distance from v
at which they bifurcate as the maximum radius of a disk centered at v with the
property that its intersection with the complement of S ∪ S′ has at most two
connected components.

The following two simple statements can be established by straightforward
trigonometric calculations.

v

α/2

εw

εw

α/2
εw

εw

εw

2 sin
α

2

Fig. 2. For Lemma 3
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Lemma 3. Let S and S′ be two strips of width εw such that their midlines cross
at a point v and the angle between them is α ≤ π

2 . Then

1. S ∪ S′ contains no disk of radius εw;
2. S and S′ bifurcate at distance εw

2 sin α
2

from v;
3. any two consecutive fingers of a palm such that the angle between the rays

defining them is α ≤ π/2 bifurcate at distance εw
2 sin α

2
from the apex.

Lemma 4. Let P = P (v, R1, . . . , Rs) be a palm as above, and assume that its
angle is smaller than 2 arcsin 1

4 < π
6 . Let P ⊃ P denote the union of the disk

of radius εr centered at v and the convex hull of the union of the first and last
fingers, corresponding to R1 and Rs.

Then P contains no disk of radius εr that intersects the disk of radius εr
centered at its apex v. Hence, the same is true for P .

εw
2

εr − εw
2

α/2

sin
α

2
=

εr − εw

2
2εr

≥ 1

4

(w < r)

εw

2

εr εr

Fig. 3. For Lemma 4

3 The Main Lemma

As in the previous section, w, r, and ε are fixed positive constants, w < r.
The main component of the proof of Theorem 2 is the following lemma, which
guarantees that if the angles between the consecutive fingers of a palm P decrease
sufficiently fast, then P cannot contain a disk of radius εr. The proof of this fact
requires some detailed calculations, but heuristically it is clear that in this case
only the first two fingers play an important role, and the situation is similar to
the setting of Lemma 3, part 1.

Lemma 5. Let δ = min(1
2 , 1 − w

r ), and let P = P (v, R1, . . . , Rs) be a palm of
angle α < δ1/2. Let αi denote the angle between Ri and Ri+1, and assume that
for every i (1 ≤ i < s) we have αi+1

αi
≤ δ .

Then P contains no disk of radius εr.
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Fig. 4. For Lemma 5

Proof. If the fingers corresponding to Ri and Ri+1 bifurcate at distance di from
v, then they share a boundary point pi with |vpi| = di (1 ≤ i < s). These points
are called points of bifurcation. It follows from the condition in Lemma 5 about
the ratios αi+1/αi that d1 < d2 < d3 < . . . is a fast increasing sequence. If P
has at most 2 fingers, then Lemma 5 is true by Lemma 3, part 1. Therefore, we
can assume that s, the number of fingers, is at least 3 and that we have already
proved the lemma for all palms with fewer than s fingers.

Suppose that |vp1| = d1 = min1≤i<s di ≤ εr. Then P is the union of two
palms P (v, R1) and P (v, R2, . . . , Rs), each having fewer than s fingers, so that
any disk of radius εr other than the one centered at v must belong to one of
them. Thus, in this case we are done, by induction. From now on assume that
p1 and hence all other points pi lie outside of the disk of radius εr centered at
v. Note that the part of the ray vpi beyond the point pi does not belong to P .
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In fact, it lies in an infinite open cone Ci, symmetric about vpi, which belongs
to the complement of P . By rotating the coordinate system if necessary, we can
assume without loss of generality that Rs is parallel to the positive x-axis, so
that all other rays R1, . . . , Rs−1 point into the positive quadrant x, y ≥ 0. Then
it makes sense to talk about the lower and the upper boundary of a finger. The
cone Ci is bounded by two half-lines: one belongs to the lower boundary of the
finger corresponding to Ri and the other to the upper boundary of the finger
corresponding to Ri+1.

Suppose for contradiction that P contains a disk D of radius at least εr, other
than the disk of radius εr centered at v. It follows from Lemma 4 that D cannot
intersect the disk of radius εr centered at v. We also know that D must have a
point that belongs only to the first finger, but not to the second one, otherwise
we can remove the first finger and obtain a contradiction using the induction
hypothesis.

Let P be the same as in Lemma 4, and let P ′ ⊃ P denote the region obtained
from P by deleting all points that belong to the infinite cone C1 with apex p1.
Let D′ be a disk of maximum radius in P ′ with the property that it has a point
that belongs to the first finger of P , but not to the interior of the second one.
Let q′ and r′ denote the center and the radius of D′. By our assumption, we
have that r′ ≥ εr, and it follows from Lemma 4 that D′ does not intersect the
disk of radius εr centered at v.

It is easy to verify that

1. p1 lies on the boundary of D′;
2. D′ is tangent to the lower (horizontal) boundary half-line of P ;
3. D′ is tangent either to the upper boundary half-line of the second finger or

to the upper boundary half-line of P .

Indeed, it follows from the maximality of D′ that D′ is “fixed” by the boundary
of P ′. One point cannot fix a disk. The same is true for two points, one lying
on the lower, one on the upper boundary half-line of P . In other words, if D′ is
tangent to the lower and to the upper boundary half-lines of P , by maximality,
it must also touch the boundary of the cone Ci. Suppose first that D′ is tangent
to the upper boundary half-line of P and to the upper boundary half-line of C1.
If condition 1 is not satisfied, that is, D′ touches a point of the upper boundary
half-line of C1 other than p1, then D′ must lie entirely in the first finger, and
its radius cannot exceed εw/2 < εr, which is impossible. Therefore, condition 1
is satisfied and, unless D′ also satisfies condition 2, D′ can be enlarged without
violating the requirements.

Suppose next that D′ is not tangent to the upper boundary half-line of P .
Then D′ must be tangent to the lower boundary half-line of P and to the lower
boundary half-line of C1. Moreover, the point at which D′ touches the lower
boundary half-line of C1 must be p1, otherwise D′ cannot have a point that
belongs to the first finger of P , but not to the interior of the second one. If D′

has such a point strictly above the upper boundary of the second finger then it
could be slightly enlarged without violating the conditions. Indeed, q′ belongs to
the locus of all points equidistant from p1 and the (horizontal) supporting line
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of the lower boundary half-line of P , which is a parabola Π with a vertical axis
of symmetry. If q′ is on the left side of this parabola, then we can enlarge the
radius of D′ by moving q′ along Π slightly to the left, if it is on the right side
of Π , then by moving it slightly to the right. Therefore, we can conclude that
D′ must be tangent to the upper boundary of the second finger at point p1, and
condition 3 holds.

Now we can easily complete the proof of Lemma 5.
If conditions 1, 2, and the first option in condition 3 hold, then consider the

triangle vp1q
′. Using that δ ≤ 1/2, we obtain

∠vp1q
′ =

π

2
− α1

2
≤ π

2
− δα1

2(1 − δ)

<
π

2
− α1

2
(δ + δ2 + . . . + δs−2)

≤ π

2
− α2 + α3 + . . . + αs−1

2
= ∠vq′p1 .

This yields that |vq′| < |vp1|. As was used above, the angle α1 between R1 and
R2 is larger than α2 + . . . + αs−1, the angle between R2 and Rs. Therefore, the
fingers corresponding to R2 and Rs bifurcate at a point p′ which is farther away
from v than p1 is. This implies that |vq′| < |vp1| < |vp′|. The points v, q′, and p′

are collinear, so that it follows from the last inequality that q′ lies in the interior
of the second finger. Since r′ = |q′p1| is equal to the distance of q′ from the upper
boundary half-line of the second finger, we obtain that r′ < εw < εr, which is a
contradiction.

In the other case, when conditions 1, 2, and the second option in condition 3
hold, just like in the first case, we have |vq′| < |vp1|. (In fact, it is easy to argue
that the part of the parabola Π which lies below the line vp1 and to the left of
the line through p1 perpendicular to Rs is entirely contained in the interior of
the circle through p1 centered at v. The point q′ belongs to this arc.)

Let v0 denote the intersection point of the supporting lines of the upper bound-
ary ray of the first finger (that corresponds to R1) and the lower boundary ray
of the last finger (that corresponds to Rs). The points v0, v, and q′ are collinear.
Using the notation α = α1 + . . . + αs−1, we have

r′ = |v0q
′| sin α

2
= (|v0v| + |vq′|) sin

α

2
< (|v0v| + |vp1|) sin

α

2

≤
(

εw

2 sin α
2

+
εw

2 sin α1
2

)
sin

α

2
=

εw

2

(
1 +

sin α
2

sin α1
2

)
.

Here we used Lemma 3, part 2 to estimate |vp1|.
In view of the assumption on the angles between consecutive fingers, we have

that

α = α1 + α2 + . . . + αs−1 = α1(1 + δ + . . . + δs−2) <
α1

1 − δ
.
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Hence, the above upper bound on r′ can be rewritten as

r′ <
εw

2

(
1 +

sin α1
2(1−δ)

sin α1
2

)
<

εw

2

(
1 +

α1
2(1−δ)

sin α1
2

)
.

Using the Taylor series of the sinx function, it is easy to verify that, given any
δ, 0 < δ < 1, the inequality sin α1

2 > α1
2(1+δ) holds for all α1 ≤ δ1/2. By the

assumptions in the lemma, this condition is satisfied, so that we have

r′ <
εw

2

(
1 +

1 + δ

1 − δ

)
=

εw

1 − δ
.

By our choice of δ, we have δ ≤ 1 − w
r . That is,

r′ <
εw

1 − δ
≤ εr ,

the desired contradiction. �

4 The Proof of Theorem 2

In the previous two sections, apart from n, w, and r, we also fixed the constant
ε > 0. In the proof of Theorem 2 presented in this section, we keep n, w, and r
fixed, but we will vary ε.

Let S(ε) denote the union of the disks of radius εr representing the vertices
vi (1 ≤ i ≤ n) and the rectangles of width εw representing the edges vivj (1 ≤
i < j ≤ n).

For a given vi, consider the rectangles representing the edges incident to vi

and extend them to one-way infinite half-strips pointing away from vi. More
precisely, for any j �= i, let Ri,j denote the ray −−→vivj emanating from vi and
pointing to the direction of vj . Let Fi,j(ε) be the half-strip of width εw, the
mid-ray of which is Ri,j . The union of the disk of radius εr centered at vi and
the sets Fi,j(ε) for all j �= i is denoted by Pi(ε). Any two distinct half-strips
Fi,j(ε) and Fi,j′ (ε) bifurcate at a certain distance from vi. Let �i(ε) denote the
maximum of these

(
n−1

2

)
distances plus εr.

Let us fix a small ε > 0 such that the following three conditions are satisfied.

1. No three rectangles representing distinct edges, not all of which are incident
to the same vertex, have a point in common.

2. Any rectangle representing an edge vjvk is disjoint from any disk of radius
�i(ε) centered at vi, for all i �= j, k.

3. For every pair i �= j, the disk of radius �i(ε) centered at vi is disjoint from
the disk of radius �j(ε) centered at vj .

It follows from the second condition that no rectangle representing an edge vjvk

can intersect any disk representing a vertex vi with i �= j, k. The last condition
implies that the disk of radius �i(ε) centered at vi cannot contain any disk of
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Fig. 5. For Proof of Theorem 2

radius εr representing a vertex vj with j �= i. If three edges share an interior
point, then the first condition cannot be satisfied. However, it is easy to argue
that in our case this cannot occur.

From now on ε will be fixed, so that in notation we can drop the parameter
ε. In particular, instead of S(ε), �i(ε), and Pi(ε), we will write S, �i, and Pi.

Suppose for contradiction that the set S contains a disk D of radius εr which
is not one of the disks representing the vertices. Where can such a disk D lie? The
only possibility is that for some i (1 ≤ i ≤ n), it lies in the part of S contained in
the disk of radius �i centered at vi. Otherwise, by the conditions listed above, D
would be contained in the union of two strips of width w, contradicting part 1 of
Lemma 3. Observe that the part of S contained in the disk of radius �i centered
at vi is exactly the same as the part of Pi contained in the disk of radius �i

centered at vi. Therefore, to finish the proof of Theorem 2, it is sufficient to
show that no set Pi contains a disk of radius εr (1 ≤ i ≤ n).

To see this, notice that for every i 1 ≤ i ≤ n, the set Pi can be written as the
union of at most two palms of angle smaller than δ (see the beginning of Sect. 2).
We have P1 = P (v1, R1,2, R1,3, . . . , R1,n), Pn = P (vn, Rn,1, Rn,2, . . . , Rn,n−1),
and

Pi = P (vi, Ri,1, Ri,2, . . . , Ri,i−1) ∪ P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) ,

for every i, 1 < i < j,. If i �= 1, n, then the smallest angle between a finger
of P (vi, Ri,1, Ri,2, . . . , Ri,i−1) and a finger of P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) is the
angle between Ri,1 and Ri,n, which is equal to π− δ−δn

2 > π− δ
2 . It follows from

here that the fingers corresponding to Ri,1 and Ri,n bifurcate within the disk of
radius εr centered at vi. This, in turn, implies that any disk D of radius εr which
lies in Pi and is different from the disk representing vi is entirely contained in
one of the two palms comprising Pi. Applying Lemma 5 to this palm, we obtain
the desired contradiction. The only thing that remains to be checked is that the
conditions of the lemma about the angles α and αi are satisfied.
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The maximum angle of the palms of the form P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n)
and P (vi, Ri,1, Ri,2, . . . , Ri,i−1), for 1 ≤ i ≤ n, is the angle of
P (vn, Rn,1, Rn,2, . . . , Rn,n−1), which is equal to

∠v1vnvn−1 =
∠v10vn−1

2
=

δ − δn−1

2
<

δ

2
,

so that the condition on the angle of the palm is satisfied. (Here 0 denotes the
origin, the center of the circle containing all points vi.) As for the condition on
the angles αi, we have that the angle between two consecutive rays Ri,t and
Ri,t+1 is equal to

∠vt0vt+1

2
=

δt − δt+1

2
=

1 − δ

2
δt .

Analogously, the angle between Ri,t+1 and Ri,t+2 is equal to 1−δ
2 δt+1. Hence, all

ratios αs

αs+1
are equal to δ, and the conditions of Lemma 5 are satisfied.

This completes the proof of Theorem 2. �
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