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Abstract. The monotone crossing number of G is defined as the small-
est number of crossing points in a drawing of G in the plane, where every
edge is represented by an x-monotone curve, that is, by a connected con-
tinuous arc with the property that every vertical line intersects it in at
most one point. It is shown that this parameter can be strictly larger
than the classical crossing number cr(G), but it is bounded from above
by 2cr2(G). This is in sharp contrast with the behavior of the rectilinear
crossing number, which cannot be bounded from above by any function
of cr(G).
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1 Introduction

Let G = (V (G), E(G)) be a graph with no loops and multiple edges, and let V (G)
and E(G) denote its vertex set and edge set. A drawing of G is an embedding of
G in the plane, where each vertex v ∈ V (G) is mapped to a point and each edge
uv ∈ E(G) is mapped into a simple continuous arc connecting the images of its
endpoints, but not passing through the image of any other vertex of G. The arcs
representing the edges of G are allowed to cross, but we assume for simplicity
that any two arcs have finitely many points in common and no three arcs pass
through the same point. A common interior point p of two arcs is said to be a
crossing if in a small neighborhood of p one arc passes through one side of the
other arc to the other side. If it leads to no confusion, the vertices and their
images, as well as the edges and the arcs representing them, will be denoted by
the same symbols.

In the special case where G is a complete bipartite graph, the problem of
minimizing the number of crossings in a drawing of G was first studied by Turán
[17]. The question became known as the brick factory problem. It was generalized
to all graphs by Erdős and Guy [3]. In two previous papers [10], [11], the authors
of the present note pointed out some inconsistencies between various definitions
of crossing numbers implicitly used in early publications on the subject. To
distinguish between these notions, they introduced some new terminology and
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notation. The crossing number of G, denoted by cr(G), is the smallest num-
ber of crossings in a drawing of G in the plane. The pairwise crossing number,
pair-cr(G), is the smallest number of crossing pairs of edges in a drawing of G.
If two edges cross several times, they still count as a single crossing pair, so that
we have pair-cr(G) ≤ cr(G) for every graph G. It is one of the most tantalizing
open problems in this area to decide whether these two parameters coincide or at
least cr(G) = O(pair-cr(G)) holds for all graphs G. It was shown in [10] that
cr(G) = O(pair-cr2(G)), which was successively improved in [19], [15], and
[16] to cr(G) = O(pair-cr7/4(G)/ log3/2 pair-cr(G)). It is not easy to make
any conjecture in this respect or even to experiment with concrete graphs. The
computation of cr(G) and pair-cr(G) are both NP-hard problems [7], [6], [10].

On the other hand, there is another natural parameter that can be much larger
than the above two crossing numbers. lin-cr(G), the rectilinear crossing number
of G, is the smallest number of crossings in a rectilinear drawing of G, that is, in
a drawing where every edge is represented by a straight-line segment. We have
cr(G) ≤ lin-cr(G). Bienstock and Dean [1] constructed a series of graphs with
crossing number 4, whose rectilinear crossing numbers are arbitrarily large.

An x-monotone curve is a connected, continuous arc with the property that
every straight-line parallel to the y-axis intersects it in at most one point. A
drawing of G is called x-monotone (or monotone, for short) if every edge of G
is represented by an x-monotone curve. We define mon-cr(G), the monotone
crossing number of G, as the smallest number of crossings in a monotone drawing
of G. Obviously, every rectilinear drawing of G, in which no two vertices share
the same x-coordinate, is a monotone drawing. Therefore, we have

cr(G) ≤ mon-cr(G) ≤ lin-cr(G),

for every graph G.
Monotone drawings and rectilinear drawings share many interesting proper-

ties. In particular, it was shown in [12] that every crossing-free monotone drawing
of a (planar) graph G can be “stretched” without changing the x-coordinates of
the vertices. In other words, there is a crossing-free rectilinear drawing of G, iso-
morphic to the original one, in which the vertices have the same x-coordinates.
Another example, for drawings with many crossings, is related to Conway’s fa-
mous thrackle conjecture [20], which says that if a graph can be drawn in the
plane such that any two edges have exactly one common points (either a common
endpoint, or a crossing) then the number of edges cannot exceed the number of
vertices. (The conjecture has been verified for monotone drawings [9].) In sharp
contrast to these analogies, there are no graphs with bounded crossing numbers
that have arbitrarily large monotone crossing numbers. In the present note, we
answer a question of Fulek, Pelsmajer, Schaefer, and Štefankovič [5] by estab-
lishing the following results.

Theorem 1. Every graph G satisfies the inequality

mon-cr(G) < 2cr2(G).
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Theorem 2. There are infinitely many graphs G with arbitrarily large crossing
numbers such that

mon-cr(G) ≥ 7
6
cr(G) − 6.

The proof of Theorem 1 is algorithmic. It is based on a recursive procedure to
redraw a plane graph without changing its combinatorial structure so that in
the resulting drawing any pair of vertices of the same cell can be connected by
an x-monotone curve. See Theorem 2.2. One of the key ideas of the construc-
tion proving Theorem 2, the use of “weighted” edges or repeated paths, goes
back to the paper of Bienstock and Dean [1] mentioned above. This idea was
further developed and applied to related problems by Pelsmajer, Schaefer, and
Štefankovič [13] and by Tóth [15].

2 Proof of Theorem 1

Two crossing-free (plane) drawings of a planar graph are said to be isomorphic
if there is a homeomorphism of the plane which maps one to the other. In
particular, it takes the unbounded cell of the first drawing to the unbounded cell
of the second.

Definition 2.1. Let D be a crossing-free drawing of a planar graph G, and let
v ∈ V (G). We say that D is v-spinal if

1. D is a monotone drawing;
2. v is the leftmost vertex;
3. any two vertices belonging to the same (bounded or unbounded) cell C can

be connected by an x-monotone curve that lies in the interior of C (with the
exception of its endpoints);

4. every vertical ray starting at a boundary vertex of the unbounded cell C0

and pointing downwards lies in the interior of C0 (with the exception of its
endpoint).

Theorem 1 is an easy corollary of the following result.

Theorem 2.2. For any crossing-free drawing D of a planar graph and for any
vertex v of the unbounded cell, there is a v-spinal drawing isomorphic to D.

It follows from the result of [12] mentioned in the introduction that every v-
spinal drawing can be “stretched” without changing the x-coordinates of the
vertices. That is, we can assume without loss of generality that the drawing
whose existence is guaranteed by Theorem 2.2 is rectilinear. However, in the
recursive argument proving Theorem 2.2, we will not need this fact. It will be
sufficient to assume that the edges are represented by x-monotone polygonal
paths, so that in a small neighborhood of their endpoints it will make sense to
talk about the slopes of these paths.
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Fig. 1. A plane drawing and a v-spinal drawing

Before turning to the proof of Theorem 2.2, we show how Theorem 2.2 implies
Theorem 1.

Proof of Theorem 1 (using Theorem 2.2). Let G be any graph, and let D be a
drawing of G with cr(G) crossings. Let G′ ⊆ G denote the subgraph consisting
of all vertices of G and all edges not crossed by any other edge in this drawing.
Clearly, G′ is a planar graph. Let D′ stand for the corresponding crossing-free
subdrawing of D.

Let v be a vertex of the unbounded cell. By Theorem 2.2, there is a v-spinal
drawing D′′ of G′, isomorphic to D′. Consider now an edge v1v2 ∈ E(G) \
E(G′). In D, this edge was represented by a curve that, with the exception
of its endpoints, lied in the interior of a single cell C′ in the subdrawing D′.
Let C′′ denote the cell in D′′, which corresponds to C′. In view of condition 3
in Definition 2.1, the points representing v1 and v2 can be connected by an x-
monotone curve within the cell C′′. Let us choose such an x-monotone connecting
curve for each edge in E(G) \ E(G′), so that the total number of crossings
between them is as small as possible. Observe that any two such curves can
cross at most once, otherwise by swapping their sections between two consecutive
crossing points and slightly separating them, we could reduce the total number
of crossings by 2. During this transformation, both curves remain x-monotone.

Therefore, in the resulting x-monotone drawing of G, the total number of
crossings is at most

(|E(G)|−|E(G′)|
2

)
. This yields that

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)
.

On the other hand, taking into account that every edge in E(G) \E(G′) partic-
ipates in at least one crossing in D, we have

|E(G)| − |E(G′)| ≤ 2cr(G).

Comparing the last two inequalities, the theorem follows. �

Proof of Theorem 2.2. We proceed by induction on the number of vertices of
D. The theorem is obviously true for graphs with one or two vertices. Suppose
now that D has n vertices and that the theorem has already been proved for all
drawings of graphs with fewer than n vertices. Let v be a vertex of the unbounded
cell in D.
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Case 1: D is not connected. Suppose for simplicity that it has two connected
components, D1 and D2; the other cases can be treated analogously. Assume
without loss of generality that v ∈ D1.

Subcase 1.1: D2 has a vertex v′ that belongs to the unbounded cell in D. Take
a v-spinal drawing isomorphic to D1, and place a v′-spinal drawing isomorphic
D2 completely to the right of it, so that every vertex of the latter has a larger
x-coordinate than any vertex of the former. The resulting drawing meets the
requirements.

Subcase 1.2: D2 does not have a vertex that belongs to the boundary of the
unbounded cell in D. Let C denote the cell in D1 that contains D2, and fix
a vertex w of C. Let v′ be a vertex of the unbounded cell in D2. Take a v-
spinal drawing isomorphic to D1, and place a very small copy of a v′-spinal
drawing isomorphic to D2 in the cell C′ of D1 that corresponds to C, in a small
neighborhood of the vertex that corresponds to w.

The resulting drawing D obviously satisfies conditions 1, 2, and 4 in Definition
2.1. As for condition 3, we have to verify only that any two vertices, v1 and v2,
that belong to the union of the boundary of C′ and the outer boundary of the
small v′-spinal drawing isomorphic to D2 can be connected by an x-monotone
curve that does not cross D. This readily follows by the induction hypothesis,
unless v1 belongs to the boundary of C′ and v2 belongs to the outer boundary of
the small drawing isomorphic to D2. In the latter case, move slightly downward
from v2 and then closely follow the x-monotone curve connecting w to v1.

Case 2: D has a cut vertex v′. Suppose that D = D1∪D2, where the only point
that D1 and D2 have in common is v′. Assume without loss of generality that v
is a vertex of D1. Note that v and v′ may be identical.

Let C denote the cell in D1 that contains D2. In particular, v′ is a vertex of
C. In D2, the vertex v′ belongs to the unbounded cell.

Take a v-spinal drawing isomorphic to D1, and fix a very short non-vertical
segment s, which is incident to the point p(v′) representing v′ and which lies
in the cell C′ that corresponds to C. In the special case where v′ = v and C′

is the unbounded cell, make sure that the x-coordinates of the points of s are
larger than the x-coordinate of p(v′). In addition, take a very small v′-spinal
drawing isomorphic to D2 such that the point representing v′ coincides with
p(v′). Applying a suitable orientation preserving linear transformation to this
second drawing, it can be achieved that it becomes very “flat” and small, and
lies in a very small neighborhood of the segment s, within C′. Putting these two
drawings together, the resulting drawing meets the requirements.

Note that, if the x-coordinates of the points of s are smaller than the x-
coordinate of p(v′), then the above linear transformation reverses the order of
the x-coordinates in the v′-spinal drawing isomorphic to D2. In order to preserve
the combinatorial structure of the cell decomposition, we have to make sure that
we use a linear transformation that preserves the orientation of the plane.
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Fig. 2. Case 2. D has a cut vertex v′

Case 3: D is 2-connected. We need the following well known result.

Lemma 2.3. ([2], Proposition 3.1.2) For every 2-connected graph other than
a cycle, there exists a path whose internal vertices have degree two, such that
removing all edges and all internal vertices of this path, the remaining graph is
still 2-connected.

Let D be a drawing of a cycle with vertices v = v1, v2, . . . , vn, in counterclockwise
order. Then the rectilinear drawing induced by the points p(vi) = (i, i2) is v-
spinal and isomorphic to D.

If D is not a cycle, then, according to the lemma, it can be obtained from a
2-connected drawing D0, by adding a path P between two vertices, u and w, of
D0), which, with the exception of its endpoints, lies in the interior of a cell C.
We distinguish two subcases.

Subcase 3.1: v is a vertex of D0. Take a v-spinal drawing isomorphic to D0. Let
C′ denote the cell that corresponds to C in this drawing. The vertices u and w
belong to the boundary of this cell. Therefore, by condition 3 in Definition 2.1,
u and w can be connected by an x-monotone curve within C′. Put all internal
vertices of P along this curve, very close to u. The resulting drawing meets the
requirements.

Subcase 3.2: v is an internal vertex of P . Since v is a vertex of the unbounded
cell in D, the cell C in D0 that contains P , must be the unbounded cell.

Let P = uu1 · · ·umvw1w2 · · ·wkw. Assume without loss of generality that in
D the unbounded cell lies on the left-hand side of P , as we traverse it from u to
w. Take a u-spinal drawing D1 isomorphic to D0. Place v to the left and w1 to
the right of all vertices of D0.

Connect u and v by an x-monotone curve in D1, and place the vertices u1, . . . , um

on this curve, in this order. Then connect v to w1 by an x-monotone curve
running above all previously drawn vertices and edges. Finally, connect w1 to
w by an x-monotone curve which does not cross any previously drawn edges,
and place the vertices w2, . . . , wk on this curve, in this order, very close to w1.
Adding these three curves that represent P to D1, we obtain a v-spinal drawing
isomorphic to D, as required. �
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Fig. 3. Case 3. D is two-connected

3 Proof of Theorem 2

Throughout this section, let k be a fixed positive integer. We construct a graph
Gk with cr(Gk) = 6k + 6 and mon-cr(G) = 7k + 6, as follows.

First, we define an auxiliary graph on the vertex set V (H) = {u, w, v1, . . . , v9}
such that each of its edges is red, blue, or black. Let w be connected to every
element of v1, . . . , v9 by a red edge. Let v1, . . . , v9 form a red cycle, in this order.
Finally, let H have three blue edges, uv2, uv5, and uv8, and three black edges,
v1v6, v7v3, v4v9. See Figure 4. Let H ′ be a colored graph isomorphic to H with
V (H ′) = {u′, w′, v′1, . . . , v

′
9} and V (H ′) ∩ V (H) = ∅.

wu
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Fig. 4. Graph H

Let Hk denote the graph obtained from H by substituting each of its red
edges by 10k paths of length two and each of its blue edges by k paths of length
two such that the middle vertices of these paths are disjoint from one another
and from all previously listed vertices. We will refer to these paths as red paths
and blue paths, respectively. Let H ′

k denote the graph with V (H ′
k) ∩ V (Hk) = ∅

which can be obtained from H ′ in exactly the same way as Hk was constructed
from H .

Finally, connect u to u′ by a red edge, and replace this edge by 10k vertex
disjoint red paths of length two, as above. Denote the resulting graph by Gk.
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We start with the following simple observation.

Claim 3.1. cr(Gk) ≤ 6k + 6 and mon-cr(Gk) ≤ 7k + 6.

Proof. A drawing of Gk with 6k + 6 crossings and a monotone drawing with
7k + 6 crossings are depicted on Figure 5, and Figure 6, respectively. The thick
edges and the dotted edges represent bundles consisting of 10k red paths and
k blue paths, respectively. The paths representing the same colored edge run
very close to one another and do not cross. The only difference between the two
drawings is that in the first one v4v9 crosses uv2, while in the second it crosses
uv5 and uv8. �
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Fig. 5. A cr-optimal drawing of G
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Fig. 6. Left: a mon-cr-optimal drawing of G. Right: the drawing of H , from the left.

A drawing of a graph G is called cr-optimal if the number of crossings in
it is cr(G). Analogously, a mon-cr-optimal drawing is a monotone drawing in
which the number of crossings is mon-cr(G).
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Claim 3.2. Each of the graphs Gk, Hk, and H ′
k has a cr-optimal drawing and

a mon-cr-optimal drawing satisfying the the following conditions. (i) The red
paths substituting the same red edge run very close to one another and do not
cross any edge. (ii) The blue paths substituting the same blue edge run very close
to one another, do not cross one another, and cross exactly the same edges.

Proof. Let G stand for one of the graphs Gk, Hk, or H ′
k. Let P1, . . . , Pm (m =

10k or k) denote the paths substituting the same red or blue edge. Consider a cr-
optimal or a mon-cr-optimal drawing of G. Suppose without loss of generality
that among all Pis the path P1 participates in the smallest number of crossings.
Redraw P2, . . . , Pm so that they run “parallel” to P1 and very close to it. Clearly,
this transformation does not increase the total number of crossings, so that the
resulting drawing remains optimal.

Suppose that P1, . . . , Pm (m = 10k) are red paths that substitute the same
red edge and run parallel to one another. If any of them crosses an edge, then all
of them do. This alone creates a total of at least 10k crossings, which contradicts
the assumption the drawing was optimal. �

Claim 3.3. cr(Hk) = mon-cr(Hk) = 3k +3. Consequently, we have cr(Gk) =
6k + 6.

Proof. The right part of Figure 6 shows a monotone drawing of H . From this one
can easily construct a monotone drawing of H ′

k with 3k+3 crossings. Therefore,
we have cr(Hk) ≤ mon-cr(Hk) = mon-cr(H ′

k) ≤ 3k + 3. As before, the thick
and the dotted edges represent bundles of 10k parallel red paths and bundles of
k parallel blue paths.

Consider a cr-optimal drawing of Hk which satisfies the conditions in Claim
3.2. Replace now the red paths substituting the same red edge by a single red
edge running along any one of those paths. The red cycle C = v1v2 · · · v9 divides
the rest of the plane into a bounded and an unbounded region. All points that
belong to the bounded (unbounded) region are said to be inside (outside) of C.
Assume without loss of generality that the vertex w lies inside of C. Since no
red edge is allowed to cross any other edge, the edges v3v7, v1v6, and v4v9, as
well as the vertex u with all edges incident to it, must lie outside of C. Thus,
the edges v3v7, v1v6, and v4v9 are pairwise crossing. Moreover, the path v2uv5

must cross the edges v3v7 and v4v9, and the path v2uv8 must cross the edge
v1v6. This already guarantees the existence of 3k + 3 crossings, so that we have
cr(Hk) = mon-cr(Hk) = 3k + 3. �

To complete the proof of Theorem 2, it remains to verify the following.

Claim 3.4. mon-cr(Gk) ≥ 7k + 6.

Proof. Fix a mon-cr-optimal drawing of Gk, satisfying the conditions in Claim
3.2. As in the proof of Claim 3.3, replace every bundle of red paths substituting
the same red edge by a single red edge. Let C and C′ denote the red cycles
induced by the vertices v1, v2, . . . , v9 and v′1, v

′
2, . . . , v

′
9. Both of them divide the

plane into a bounded and an unbounded region, so that it makes sense to say
that a point is inside or outside of C or C′.
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By Claim 3.2, in the original drawing of Gk, the red edges cannot cross any
other edge. Suppose that a blue edge belonging to Hk ⊂ Gk crosses an edge be-
longing to H ′

k ⊂ Gk. Then the number of crossings is at least k+mon-cr(Hk)+
mon-cr(H ′

k) = 7k +6, and we are done. Thus, we can assume that in the draw-
ing of Gk, the blue edges of Hk do not cross any edge of H ′

k, and analogously,
the blue edges of H ′

k do not cross any edge of Hk.
Let v be the vertex of Gk with the smallest x-coordinate, and suppose without

loss of generality that v ∈ V (H ′
k). Consider now separately the drawing of Hk

and the induced cell decomposition. By definition, v lies in the unbounded cell.
Observe, that if we remove edges v′1v

′
6, v′7v

′
3, v′4v

′
9 from H ′

k, that is, if we keep
only the red and blue edges, we still have a connected graph. The red and blue
edges of H ′

k cannot cross any edge of Hk. Hence, all vertices of H ′
k must lie in

the unbounded cell of the cell decomposition induced by Hk.
The vertices u and u′ are connected by a red edge in Gk. Hence, u must lie

on the boundary of the unbounded cell of the cell decomposition induced by Hk.
In particular, u is outside of the cycle C. Since w is connected to each edge of
C by a red edge, u and w lie on different sides of C. Thus, w must be inside of
C. Therefore, the edges v3v7, v1v6, v4v9, as well as the vertex u together with
all edges incident to it, must lie outside of C. Consequently, the edges v3v7,
v1v6, v4v9 must be pairwise crossing. The edges v3v7, v1v6, v4v9 together with C
divide the plane into eight cells, one of which is unbounded, and u must belong
to this cell Γ .

Let vi be the vertex of C with the smallest x-coordinate. Since v3v7, v1v6,
v4v9 are represented by monotone curves, vi has to lie on the boundary of the
unbounded cell Γ . We can assume without loss of generality that 1 ≤ i ≤ 3. (If
this is not the case, we can add 3 or 6 to all indices modulo 9.) So, vi is on the
boundary of the unbounded cell, and u is in the unbounded cell. Using the fact
that the edges v1v2 and v2v3 do not cross any other edge, we can conclude that
v1, v2, and v3 all lie on the boundary of the unbounded cell Γ . See Figure 6. Since
we started with a mon-cr-optimal drawing, the edge uv2 does not cross v4v9.
The path v2uv5 crosses v4v9, so that uv5 must cross v4v9. Analogously, v2uv8

crosses v4v9, so that uv8 crosses v4v9. Moreover, the path v2uv5 crosses v3v7, and
v2uv8 crosses v1v6. Recall from the previous paragraph that the edges v3v7, v1v6,
and v4v9 are pairwise crossing. Summarizing, there are at least 4k + 3 crossings
between edges of Hk. By Claim 3.3, mon-cr(H ′

k) ≥ 3k + 3, so that altogether
mon-cr(Gk) ≥ (4k + 3) + (3k + 3) ≥ 7k + 6, as required. �

4 Concluding Remarks

1. Another important parameter of a graph, the odd-crossing number, was intro-
duced implicitly by Tutte [18]. It is defined as the minimum number odd-cr(G)
of all pairs of edges that cross an odd number of times, over all drawings of
G. Clearly, for any graph G, we have odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤
mon-cr(G) ≤ lin-cr(G). Theorem 1 can be strengthened as follows.
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Corollary 4.1. Every graph G satisfies the inequality

mon-cr(G) < 2odd-cr2(G).

Proof. Let D be a drawing of G, in which the number of pairs of edges that
cross an odd number of times is odd-cr(G). Let G′ ⊆ G denote the subgraph
consisting of all vertices of G and all edges that do not cross any other edge an
odd number of times. It was shown in [10] that G has another drawing, D′, in
which the edges belonging to G′ do not participate in any crossing, and hence
they form a plane graph. Every edge in E(G) \ E(G′) is represented by a curve
that lies entirely in a cell of this plane graph. According to our Theorem 2.2,
this plane graph admits a v-spinal (monotone) drawing for some v ∈ V (G). By
definition, we can add to this drawing all edges in E(G) \ E(G′), so that all of
them are represented by monotone curves, and they do not cross any edge of G′.
Among all such monotone drawings of G, consider one that minimizes the total
number of crossings. In this drawing, any two edges cross at most once. Thus,
we have

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)
.

On the other hand, taking into account that every edge in E(G) \E(G′) partic-
ipates in at least one pair of edges in D which cross an odd number of times, we
obtain that

|E(G)| − |E(G′)| ≤ 2odd-cr(G).

Comparing the last two inequalities, the corollary follows. �

In [11], we introduced the following variant of the odd-crossing number. Two
edges of a graph G are called independent if they do not share a vertex. Let
odd-cr−(G) denote the smallest number of pairs of independent edges that
cross an odd number of times, over all drawings of G. That is, we do not count
those pairs of edges that are incident to the same vertex, even if they cross
an odd number of times. Pelsmajer, Schaefer, and Štefankovič [14] managed to
strengthen the result of [10], used in the proof of Corollary 4.1. They established
the following result. Consider a drawing of G in the plane. An edge e ∈ E(G) is
called independently even if it crosses every other edge of G which is indepen-
dent of e an even number of times. Then G has another drawing in which no
independently even edge crosses any edge. Plugging this result into the above
proof, we obtain the following strengthening of Corollary 4.1.

Corollary 4.1’. Every graph G satisfies the inequality

mon-cr(G) ≤ 2odd-cr2
−(G).

2. As mentioned in the Introduction, Tóth [16] proved that every graph G sat-
isfies the inequality

cr(G) = O(pair-cr7/4(G)/ log3/2 pair-cr(G)).
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Restricting the notion of pair-crossing number to monotone drawings, we obtain
another closely related graph parameter. The monotone pair-crossing number
of G, mon-pair-cr(G), is defined as the smallest number of crossing pairs of
edges over all monotone drawings of G. Obviously, we have that odd-cr(G) ≤
pair-cr(G) ≤ mon-pair-cr(G), for any graph G. Valtr [19] proved that every
graph G satisfies the inequality mon-cr(G) = O(mon-pair-cr4/3(G)).
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