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Abstract. We show that every cubic graph can be drawn in the plane
with straight-line edges using only the four basic slopes, {0, π/4, π/2, 3π/4}.
We also prove that four slopes have this property if and only if we can
draw K4 with them.

1 Introduction

A straight-line drawing of a graph represents the vertices by distinct points in the
plane and represents the edges by the line-segments between the corresponding
pairs of points, such that no edge passes through a vertex. If it leads to no confu-
sion, in notation and terminology we make no distinction between a vertex and
the corresponding point, and between an edge and the corresponding segment.
The slope of an edge in a straight-line drawing is the slope of the corresponding
segment. Wade and Chu [29] defined the slope number, sl(G), of a graph G as
the smallest number s with the property that G has a straight-line drawing with
edges of at most s distinct slopes.

Obviously, if G has a vertex of degree d, then its slope number is at least
�d/2�. Dujmović et al. [12] asked if the slope number of a graph with bounded
maximum degree d could be arbitrarily large. Pach and Pálvölgyi [28] and Barát,
Matoušek, Wood [7] (independently) showed with a counting argument that the
answer is yes for d ≥ 5.

In [21], it was shown that cubic (3-regular) graphs could be drawn with
five slopes. The major result from which this was concluded was that subcubic
graphs1 can be drawn with the four basic slopes, the slopes {0, π/4, π/2, 3π/4},
corresponding to the vertical, horizontal and the two diagonal directions.

This was improved in [26] to show that connected cubic graphs can be drawn
with four slopes2 while disconnected cubic graphs required five slopes.
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It was shown by Max Engelstein [15] that 3-connected cubic graphs with a
Hamiltonian cycle can be drawn with the four basic slopes.

We improve all these results by the following

Theorem 1. Every cubic graph has a straight-line drawing with only the four
basic slopes.

(a) Petersen graph (b) K3,3

Fig. 1. The Petersen graph and K3,3 with the four basic slopes

This is the first result about cubic graphs that uses a nice, fixed set of slopes
instead of an unpredictable set, possibly containing slopes that are not rational
multiples of π. Also, since K4 requires at least 4 slopes, this settles the question
of determining the minimum number of slopes required for cubic graphs. In the
last section we also prove

Theorem 2. Call a set of slopes good if every cubic graph has a straight-line
drawing with them. Then the following statements are equivalent for a set S of
four slopes.

1. S is good.
2. S is an affine image of the four basic slopes.
3. We can draw K4 with S.

The problem whether the slope number of graphs with maximum degree four is
unbounded or not remains an interesting open problem.

There are many other related graph parameters. The thickness of a graph G
is defined as the smallest number of planar subgraphs it can be decomposed into
[27]. It is one of the several widely known graph parameters that measures how
far G is from being planar. The geometric thickness of G, defined as the smallest
number of crossing-free subgraphs of a straight-line drawing of G whose union is
G, is another similar notion [19]. It follows directly from the definitions that the
thickness of any graph is at most as large as its geometric thickness, which, in
turn, cannot exceed its slope number. For many interesting results about these
parameters, consult [10], [12], [13], [14], [16], [17].

A variation of the problem arises if (a) two vertices in a drawing have an edge
between them if and only if the slope between them belongs to a certain set S
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and, (b) vertices may lie in the interior of a non-adjacent edge. This violates the
condition stated before that an edge cannot pass through vertices other than its
end points. For instance, Kn can be drawn with one slope. The smallest number
of slopes that can be used to represent a graph in such a way is called the slope
parameter of the graph. Under these set of conditions, Ambrus et al. [4] prove
that the slope parameter of subcubic outerplanar graphs is at most 3. It was
shown in Keszegh et al. [22] that the slope parameter of every cubic graph is
at most seven. If only the four basic slopes are used, then the graphs drawn
with the above conditions are called queens graphs and Ambrus and Barát [3]
characterize certain graphs as queens graphs. Graph theoretic properties of some
specific queens graphs can be found in Bell and Stevens [8].

Another variation for planar graphs is to demand a planar drawing. The planar
slope number of a planar graph is the smallest number of distinct slopes with
the property that the graph has a straight-line drawing with non-crossing edges
using only these slopes. Dujmović, Eppstein, Suderman and Wood [11] raised
the question whether there exists a function f with the property that the planar
slope number of every planar graph with maximum degree d can be bounded
from above by f(d). Jelinek et al. [18] have shown that the answer is yes for
outerplanar graphs, that is, for planar graphs that can be drawn so that all of
their vertices lie on the outer face. Eventually the question was answered in [20]
where it was proved that any bounded degree planar graph has a bounded planar
slope number.

Finally we would mention a slightly related problem. Didimo et al. [9] studied
drawings of graphs where edges can only cross each other in a right angle. Such a
drawing is called an RAC (right angle crossing) drawing. They showed that every
graph has an RAC drawing if every edge is a polygonal line with at most three
bends (i.e. it consists of at most four segments). They also gave upper bounds
for the maximum number of edges if less bends are allowed. Later Arikushi et
al. [6] showed that such graphs can have at most O(n) edges. Angelini et al. [5]
proved that every cubic graph admits an RAC drawing with at most one bend.
It remained an open problem whether every cubic graph has an RAC drawing
with straight-line segments. If besides orthogonal crossings, we also allow two
edges to cross at 45◦, then it is a straightforward corollary of Theorem 1 that
every cubic graph admits such a drawing with straight-line segments.

In Section 2 we give the proof of the Theorem 1, while in Section 3 we prove
Theorem 2 and discuss open problems.

2 Proof of Theorem 1

We start with some definitions we will use throughout the section. Then we prove
in Corollary 1 that every cubic graph with many vertices contains a special cut.
Finally in Lemma 4 we show how to use this and Theorem 3 to obtain a drawing
with the four basic slopes.
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2.1 Definitions and Subcubic Theorem

Throughout the paper log always denotes log2, the logarithm in base 2. We recall
that the girth of a graph is the length of its shortest cycle.

Fig. 2. The Heawood graph drawn with the four basic slopes

Definition 1. Define a supercycle as a connected graph where every degree is
at least two and not all are two. Note that a minimal supercycle will look like a
“θ” or like a “dumbbell”.

We recall that a cut is a partition of the vertices into two sets. We say that an
edge is in the cut if its ends are in different subsets of the partition. We also call
the edges in the cut the cut-edges. The size of a cut is the number of cut-edges
in it.

Definition 2. We say that a cut is an M -cut if the cut-edges form a matching,
in other words, if their ends are pairwise different vertices. We also say that an
M -cut is suitable if after deleting the cut-edges, the graph has two components,
both of which are supercycles.

For any two points p1 = (x1, y1) and p2 = (x2, y2), we say that p2 is to the North
of p1 if x2 = x1 and y2 > y1 . Analogously, we say that p2 is to the Northwest of
p1 if x2 + y2 = x1 + y1 and y2 > y1.

We will give the exact statement of the theorem of [21] about subcubic graphs
here since it will be used in this proof.

Theorem 3 ([21]). Let G be a connected graph that is not a cycle and whose
every vertex has degree at most three. Suppose that G has at least one vertex of
degree at most two and denote by v1, . . . , vm the vertices of degree at most two
(m ≥ 1).

Then, for any sequence x1, . . . , xm of real numbers, linearly independent over
the rationals, G has a straight-line drawing with the following properties:
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(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m)
(2) The slope of every edge is 0, π/2, π/4, or −π/4
(3) No vertex is to the North of any vertex of degree two.
(4) No vertex is to the North or to the Northwest of any vertex of degree one.

The proof of the theorem about subcubic graphs in [21] was incorrect. It used
induction but during the proof the statement was also used for disconnected
graphs. This can be a problem, since when drawing two components, it might
happen that a degree three vertex of one component has to be above a degree
two vertex of the other component. However, the proof can be easily fixed to hold
for disconnected graphs as well and the theorem is true. For this, one can make
the statement stronger, by saying that also for every graph one can select any
sequence xm+1, . . . , xn of real numbers that satisfy that x1, . . . , xm, xm+1, . . . , xn

are linearly independent over the rationals, such that the x-coordinates of all the
vertices are a linear combination with rational coefficients of x1, . . . , xn. This
way we can ensure that different components do not interfere. For details see
the soon-to-appear errata or [24].

Note that Theorem 3 proves the result of Theorem 1 for subcubic graphs.
Another minor observation is that we may assume that the graph is connected.
Since we use the basic four slopes, if we can draw the components of a discon-
nected graph, then we just place them far apart in the plane so that no two
drawings intersect. So we will assume for the rest of the section that the graph
is cubic and connected.

2.2 Preliminaries

The results in this subsection are also interesting independent of the current
problem we deal with. First we bound from above the girth of a cubic graph
with its number of vertices. Our bound easily follows from the Moore bound, but
as that bounds the inverse of our function, here we include a short proof for
completeness.

Lemma 1. Every connected cubic graph on n vertices contains a cycle of length
at most 2�log(n

3 + 1)�.

v

Fig. 3. Finding a cycle in the BFS tree using that the left child of v already occurred
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Proof. Start at any vertex of G and conduct a breadth first search (BFS) of G
until a vertex repeats in the BFS tree. We note here that by iterations we will
(for the rest of the subsection) mean the number of levels of the BFS tree. Since
G is cubic, after k iterations, the number of vertices visited will be 1 + 3 + 6 +
12 + . . . + 3 · 2k−2 = 1 + 3(2k−1 − 1). And since G has n vertices, some vertex
must repeat after k = �log(n

3 + 1)� + 1 iterations. Tracing back along the two
paths obtained for the vertex that reoccurs, we find a cycle of length at most
2�log(n

3 + 1)�. ��
Lemma 2. Every connected cubic graph on n vertices with girth g contains a
supercycle with at most 2�log(n+1

g )� + g − 1 vertices.

Proof. Contract the vertices of a length g cycle, obtaining a multigraph G′ with
n−g+1 vertices, that is almost 3-regular, except for one vertex of degree g, from
which we start a BFS. It is easy to see that the number of vertices visited after k
iterations is at most 1+g+2g+4g+ . . .+g ·2k−2 = g(2k−1−1)+1. And since G′

has n− g+1 vertices, some vertex must repeat after k = �log(n−g+1
g +1)�+1 =

�log(n+1
g )� + 1 iterations. Tracing back along the two paths obtained for the

vertex that reoccurs, we find a cycle (or two vertices connected by two edges) of
length at most 2�log(n+1

g )� in G′. This implies that in G we have a supercycle
with at most 2�log(n+1

g )� + g − 1 vertices. ��
Lemma 3. Every connected cubic graph on n > 2s−2 vertices with a supercycle
with s vertices contains a suitable M -cut of size at most s − 2.

Proof. The supercycle with s vertices, A, has at least two vertices of degree 3.
The size of the (A, G − A) cut is thus at most s − 2. This cut need not be an
M -cut because the edges may have a common neighbor in G−A. To repair this,
we will now add, iteratively, the common neighbors of edges in the cut to A,
until no edges have a common neighbor in G − A. Note that in any iteration,
if a vertex, v, adjacent to exactly two cut-edges was chosen, then the size of A
increases by 1 and the size of the cut decreases by 1 (since, these two cut-edges
will get added to A along with v, but since the graph is cubic, the third edge
from v will become a part of the cut-edges). If a vertex adjacent to three cut-
edges was chosen, then the size of A increases by 1 while the number of cut-edges
decreases by 3. From this we can see that the maximum number of vertices that
could have been added to A during this process is s − 3. Now there are three
conditions to check.

The first condition is that this process returns a non-empty second component.
This cannot occur if

(n − s) − (s − 3) > 0

or,
n > 2s − 3.

The second condition is that the second component should not be a collection
of disjoint cycles. For this we note that it is enough to check that at every stage,
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the number of cut-edges is strictly smaller than the number of vertices in G−A.
But since in the above iterations, the number of cut-edges decreases by a number
greater than or equal to the decrease in the size of G − A, it is enough to check
that before the iterations, the number of cut-edges is strictly smaller than the
number of vertices in G − A. This is the condition

n − s > s − 2

or,
n > 2s − 2.

Note that if this inequality holds then the non-emptiness condition will also hold.
Finally, we need to check that both components are connected. A is always

connected but G − A need not be. Pick a component in G − A that has more
vertices than the number of cut-edges adjacent to it. Since the number of cut-
edges is strictly smaller than number of vertices in G − A, there must be one
such component, say B, in G−A. We add every other component of G−A to A.
Note that the size of the cut only decreases with this step. Since B is connected
and has more vertices than the number of cut-edges, B cannot be a cycle. ��
Corollary 1. Every connected cubic graph on n ≥ 18 vertices contains a suit-
able M -cut.

Proof. Using the first two lemmas, we have a supercycle with s ≤ 2�log(n+1
g )�+

g − 1 vertices where 3 ≤ g ≤ 2�log(n
3 + 1)�. Then using the last lemma, we have

an M -cut with both partitions being a supercycle if n > 2s − 2. So all we need
to check is that n is indeed big enough. Note that

s ≤ 2 log(
n + 1

g
) + g + 1 = 2 log(n + 1) + g − 2 log g + 1 ≤

≤ 2 log(n + 1) + 2 log(
n

3
+ 1) − 2 log(2 log(

n

3
+ 1)) + 1

where the last inequality follows from the fact that x − 2 logx is increasing
for x ≥ 2/ loge 2 ≈ 2.88. So we can bound the right hand side from above by
4 log(n + 1) + 1. Now we need that

n > 2(4 log(n + 1) + 1) − 2 = 8 log(n + 1)

which holds if n ≥ 44.
The statement can be checked for 18 ≤ n ≤ 42 with code that can be found

in the Appendix of the full version [25]. It outputs for a given value of n, the g
for which 2s− 2 is maximum and this maximum value. Based on the output we
can see that for n ≥ 18, this value is smaller. ��
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x1

x2

x3

xm−1

xm−xm

−xm−1

−x3

−x2

−x1

Rotated and translated

Fig. 4. The x-coordinates of the degree 2 vertices is suitably chosen and one component
is rotated and translated to make the M -cut vertical

2.3 Proof

Lemma 4. Let G be a connected cubic graph with a suitable M -cut. Then, G
can be drawn with the four basic slopes.

Proof. The proof follows rather straightforwardly from Theorem 3. Note that
the two components are subcubic graphs and we can choose the x-coordinates
of the vertices of the M -cut (since they are the vertices with degree two in the
components). If we picked coordinates x1, x2, . . . , xm in one component, then for
the neighbors of these vertices in the other component we pick the x-coordinates
−x1,−x2, . . . ,−xm. We now rotate the second component by π and place it very
high above the other component so that the drawings of the components do not
intersect and align them so that the edges of the M -cut will be vertical (slope
π/2). Also, since Theorem 3 guarantees that degree two vertices have no other
vertices on the vertical line above them, hence the drawing we obtain above is a
valid representation of G with the basic slopes. ��

By combining Lemma 1 and Lemma 4, we can see that Theorem 1 is true for
all cubic graphs with n ≥ 18. For smaller graphs, we give below some lemmas
which help reduce the number of graphs we have to check. The lemmas below
also occur in different papers and we give references where required.

Lemma 5. A connected cubic graph with a cut vertex can be drawn with the
four basic slopes.

Proof. We observe that if the cubic graph has a cut vertex then it must also
have a bridge. This bridge would be the suitable M -cut for using the previous
Lemma 4, since neither of the components can be disconnected or cycles. ��
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Lemma 6. A connected cubic graph with a 2-vertex disconnecting set can be
drawn with the four basic slopes.

Proof. If a cubic graph has a 2-vertex disconnecting set, then it must have a cut
of size two with non-adjacent edges. Again the two components we obtain must
be connected (or the graph has a bridge) and cannot be cycles. Thus we can
apply Lemma 4 again to get the required drawing. ��
The following theorem was proved by Engelstein [15].

Lemma 7. Every 3-connected cubic graph with a Hamiltonian cycle can be
drawn in the plane with the four basic slopes.

Note that combining the last three lemmas, we even get

Corollary 2. Every cubic graph with a Hamiltonian cycle can be drawn in the
plane with the four basic slopes.

The graphs which now need to be checked satisfy the following conditions:

1. the number of vertices is at most 16
2. the graph is 3-connected
3. the graph does not have a Hamiltonian cycle.

Fig. 5. The Tietze’s graph drawn with the four basic slopes

Note that if the number of vertices is at most 16, then it follows from Lemma
1 that the girth is at most 6. Luckily there are several lists available of cubic
graphs with a given number of vertices, n and a given girth, g.

If g = 6, then there are only two graphs with at most 16 vertices (see [1],
[23]), both containing a Hamiltonian cycle.

If g = 5 and n = 16, then Lemma 2 gives a supercycle with at most 8 vertices,
so using Lemma 3 we are done.

If g = 5 and n = 14, then there are only nine graphs (see [1], [23]), all
containing a Hamiltonian cycle.

If g ≤ 4 and n = 16, then Lemma 2 gives a supercycle with at most 8 vertices,
so using Lemma 3 we are done.
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If g ≤ 4 and n = 14, then Lemma 2 gives a supercycle with at most 7 vertices,
so using Lemma 3 we are done.

Finally, all graphs with at most 12 vertices are either not 3-connected or
contain a Hamiltonian cycle, except for the Petersen graph and Tietze’s Graph
(see [2]). For the drawing of these two graphs, see the respective Figures.

3 Which Four Slopes? and Other Concluding Questions

After establishing Theorem 1 the question arises whether we could have used
any other four slopes. Call a set of slopes good if every cubic graph has a straight-
line drawing with them. In this section we prove Theorem 2 that claims that the
following statements are equivalent for a set S of four slopes.

1. S is good.
2. S is an affine image of the four basic slopes.
3. We can draw K4 with S.

Proof. Since affine transformation keeps incidences, any set that is the affine
image of the four basic slopes is good.

On the other hand, if a set S = {s1, s2, s3, s4} is good, then K4 has a straight-
line drawing with S. Since we do not allow a vertex to be in the interior of an
edge, the four vertices must be in general position. This implies that two incident
edges cannot have the same slope. Therefore there are two slopes, without loss
of generality s1 and s2, such that we have two edges of each slope. These four
edges must form a cycle of length four, which means that the vertices are the
vertices of a parallelogram. But in this case there is an affine transformation
that takes the parallelogram to a square. This transformation also takes S into
the four basic slopes. ��
Note that a similar reasoning shows that no matter how many slopes we take,
their set need not be good, because we cannot even draw K4 with them unless
they satisfy some correlation. The above proofs use the four basic slopes only in
a few places (for rotation invariance and to start induction). Thus we make the
following conjecture.

Conjecture 1. There is a (not necessarily connected, finite) graph such that a
set of slopes is good if and only if this graph has a straight-line drawing with
them.

This finite graph would be the disjoint union of K4, maybe the Petersen graph
and other small graphs. We could not even rule out the possibility that K4 (or
maybe another, connected graph) is alone sufficient. Note that we can define a
partial order on the graphs this way. Let G < H if any set of slopes that can be
used to draw H can also be used to draw G. This way of course G ⊂ H ⇒ G < H
but what else can we say about this poset?

Is it possible to use this new method to prove that the slope parameter of
cubic graphs is also four?

The main question remains to prove or disprove whether the slope number of
graphs with maximum degree four is unbounded.
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