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Abstract. This is a survey on methods to construct a three-dimensional
convex polytope with a given combinatorial structure, that is, with the
edges forming a given 3-connected planar graph, focusing on efforts to
achieve small integer coordinates.
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1 Introduction

The graphs formed by the edges of three-dimensional polytopes are characterized
by Steinitz’ seminal theorem from 1916 [13]: they are exactly the planar 3-
connected graphs. For such a graph G with n vertices, I will discuss different
methods of actually constructing a polytope with this structure.

2 Inductive Methods

The original proof of Steinitz transforms G into simpler and simpler graphs
by sequence of elementary operations, until eventually K4, the graph of the
tetrahedron, is obtained. By following this transformation in the reverse
order, one can gradually turn the tetrahedron into a realization of G. The
operations can be carried out with rational coordinates, and after clearing
common denominators, one obtains integer coordinates. However, the required
number of bits of accuracy for each vertex coordinate is exponential. In other
words, the n vertices lie on an integer grid whose size is doubly exponential
in n [9.

A triangulated (or simplicial) polytope, in which every face is a triangle, is
easier to realize on the grid than a general polytope, since each vertex can be
perturbed within some small neighborhood while maintaining the combinatorial
structure of the polytope.

Das and Goodrich [5] showed that triangulated polytopes can be embedded
with coordinates of size O(2P° (")) by performing O(logn) stages of many in-
dependent Steinitz operations in parallel. (An explicit bound on the coordinates
has not been worked out for this method.)
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3 Tutte Embeddings

The Schlegel diagram of a polytope P is obtained by a central projection from a
point O that is outside P but sufficiently close to a face F' of P such that F' is the
only face that F sees. In the Schlegel diagram, F' will appear as the outer face,
and the remaining faces will tile F' without overlap. Thus, the Schlegel diagram
is a plane drawing of the graph G with convex faces (including the outer face).

There are a number of methods that first construct such a plane drawing of G
and then lift it to three dimensions. Convex faces are by no means sufficient to
guarantee that a drawing is a Schlegel diagram. A characterization of Schlegel di-
agrams is provided by the so-called Maxwell-Cremona correspondence, observed
by Maxwell in 1864 [8], which is described below. By a projective transformation,
we can assume that the graph G is drawn in the zy-plane, and the projection
center O is at infinity at the positive z-axis. In other words, the projection is
vertical and consists in projecting away the z-coordinate.

An equilibrium stress assigns a force to every edge such that in every vertex,
the forces cancel. The forces on an edge pull (“positive stress”) or push (“negative
stress”) on both endpoints with the same magnitude, in the direction parallel to
the edge.

Theorem 1 (Maxwell, Whiteley [18]). Let G be a planar 3-connected graph
drawn in the plane without crossings. The following are equivalent:

— G is the vertical projection of a convex polytope.
— There is an equilibrium stress on G which is positive on the interior edges
and negative on the boundary edges.

This theorem is constructive, in the sense that the lifting can be computed in a
straightforward way from the equilibrium stress, and vice versa.

To construct a plane embedding that has an equilibrium stress, one can use
the spider-web approach suggested by Tutte [I5JI6]: after fixing the positions
of the vertices of the outer face in the shape of a convex polygon, we stipulate
that the forces on the interior edges should be not just parallel to, but equal
to the edge vectors. The equilibrium condition amounts now to requiring that
every interior vertex should lie at the barycenter of its neighbors. This leads to
a linear system of equations for the positions of the vertices. After solving this
system, there is equilibrium at the interior vertices. However, equilibrium at the
boundary vertices is only guaranteed when the outer face is a triangle. If this is
not the case, one can realize the polar polytope P*, whose graph G* is the dual
of G, instead: either G or G* must contain a triangle. The calculations for the
polarization operation increase the size of the coordinates, leading to bounds of
O(const”z) [11]. A linear exponent of O(188™) has finally been achieved by Rote,
Rib6 and Schulz [10]: if the outer face is a quadrilateral or a pentagon, one can
choose its shape in an appropriate way, in order to ensure that equilibrium also
holds on the boundary, and polarization is not needed. This last paper establishes
a connection between the size of the coordinates and the number of spanning
trees of G. Due to improved upper bounds on the number of spanning trees of a
planar graph [4], the best bound on the coordinates is currently O(147.71™).
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3.1 Stacked Polytopes

A stacked polytope is obtained by starting with a tetrahedron and repeatedly
gluing a new tetrahedron onto some face. Its graph is a 3-tree: It is obtained from
K, by repeatedly drawing a new vertex into a triangular face and connecting it
to the three triangle vertices.

In a recent first breakthrough on the way towards providing polynomial grid
embeddings for polytopes, Demaine and Schulz [6] (after some more specialized
cases treated by Zickfeld [19]) showed that every stacked polytope with n vertices
can be realized on a polynomial grid of size O(n?) x O(n*) x O(n'®).

Stacked polytopes are a special class of triangulated polytopes, and, due to
their hierarchical structure, they are somewhat easier to handle. Sill, they are
sufficiently varied so that one might hope to extend the techniques to, say, all
triangulated polytopes.

4 Nonlinear Methods

For completeness, I will mention some other construction methods for polytopes,
which, however, don’t lend themselves to achieving integer realizations.

Midscribed Polytopes. An alternative proof of Steinitz’ theorem applies the
Koebe-Andreyev-Thurston Circle Packing Theorem (see for example [12]). This
theorem can be used to produce a polytope whose edges are tangent to a sphere,
that is, they are mid-scribed around the sphere (instead of circumscribed or
inscribed). One can define a converging process that yields such a polytope.
However, the exact mid-scribed realization (which is unique up to Mébius trans-
formations) necessarily boils down to a nonlinear system of equations, and there
are polytopes for which such a realization must have irrational coordinates. It
is conceivable that an “approximately mid-scribed” polytope might be good
enough, at least for triangulated graphs, but this has not been investigated.

The Colin de Verdiére number. Lovész [7] showed that an n x n matrix of rank 3
that arises in the definition of the Colin de Verdiere parameter u(G) of a graph G
(which equals 3 for graphs of polytopes), can be used to construct coordinates
for a polytope realization. However, it is not easy to find this matrix.

5 Lower Bounds

The known lower bounds on a grid embedding of a 3-polytope as disappointingly
weak. A convex n-gon with integral vertices needs an area of £2(n?) in the plane
[12IT4/17). Therefore, realizing a 3-polytope with an (n — 1)-gonal face requires
at least one dimension of size £2(n®/?). Given that only an exponential upper
bound is known, this is very weak. If one is just interested in strictly convex
faces, then a drawing on an O(n?) x O(n?) grid is possible [3]. The true bound
is not known, but in this case the gap to the lower bound 2(n?/?) x 2(n%/?) is
not so big.
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