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Abstract. Effective tools are crucial for visualizing large quantities of
information. While developing these tools, numerous graph drawing prob-
lems emerge. We present solutions for reducing clutter in a radial visual-
ization of a bipartite graph representing the alerts generated by an IDS
protecting a computer network. Our solutions rely essentially on (i) un-
ambiguous edge bundling to reduce the number of edges to display and
(ii) the minimization of the total sum of the edge lengths.
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1 Introduction

Intrusion Detection Systems (IDSs) are important tools for protecting enterprise
networks. Unfortunately, they generate large quantities of information that are
challenging to analyze. Few visualization tools have been proposed to ease the
effort of network defence analysts [1,5]. These tools either do not use any graph
layouts or do not focus on optimizing graph layouts.

Recently, the authors developed a new tool for IDS visualization named Alert-
Wheel [4] that employs a radial overview visualization with a novel form of edge
bundling, and incorporates features for filtering and drilling down on IDS alerts.
IDSs such as SNORT [7] generate alerts when abnormal traffic flows are de-
tected. The information in each alert identifies the category of the malicious
behaviour (e.g., network-scan, web-application-attack, etc.) and the origin of the
flow (the source IP address of the packets, from which an Autonomous System
(AS) Number can be computed). Hence, these alerts can be visualized as the
edges of a bipartite graph, where each node is either the AS node of the source,
or the alert category. (The use of AS rather than IP addresses greatly reduces
the number of source nodes in the bipartite graph.)

AlertWheel relies on a new way of drawing bipartite graphs that is visually
clearer than the status quo (see Fig. 1). The inner circle corresponds to a limited
number (up to 32) of alert categories, and the outer circle corresponds to AS
nodes (see Fig. 5 and 7). In the development of this tool, multiple graph drawing
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Fig. 1. The same bipartite graph shown in different ways. (a) Status-quo approach.
(b) An improved way of drawing edges: each edge starting on an outer node leads to
a circular bundle, and each circular bundle leads to a single inner node. (c) A further
improvement that groups together nodes having the same neighbors.

problems were encountered. The aim of this paper is to present these abstract
problems and the heuristics used to solve them. The companion paper [4] focuses
on the overall tool and its interactive features.

2 Problem Statement

AlertWheel displays a radial visualization of a bipartite graph composed of an in-
ner circle on which there are n interior points i1, · · · , in (representing categories)
and an outer circle on which there are m exterior points o1, · · · , om (representing
AS source nodes). Each edge between an interior and exterior point represents an
observed alert. The positions of the interior points are determined by a central
pie chart (Fig. 5 and 7). The interior points are sorted such that i1 is connected
to the minimum number of exterior points and in is connected to the maximum.

Our objective is to layout the numerous edges connecting the points as effi-
ciently as possible, to ease reading and interpretation. This is done by

– Grouping edges into bundles [6,8];
– Reducing the sum of the edge lengths.

The edge bundling is illustrated in Fig. 1 and 2. Edges are layered on concentric
circles where each concentric circle corresponds to one interior point. Edges can
share either radial or circular segments with other edges, without introducing any
ambiguity. Grouping together nodes with the same neighbors (Fig. 1c) further
reduces clutter, and is very useful for visualizing security alerts. During outbreaks
of very virulent malware, many infected computers may knock at the door of a
given network and generate alerts of the same categories.

In the development of AlertWheel, the following graph drawing problems had
to be addressed:

Problem I. Choose an assignment of concentric circles to interior points.
Problem II. Choose the position of a single exterior point minimizing the

sum of lengths of edges to its neighbors.
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Fig. 2. Edge bundling. (a) Connecting multiple exterior points to one interior point
– e.g., computers from five AS nodes generating alerts of the same category. (b) Con-
necting multiple interior points to one exterior point – e.g., a single AS node generating
alerts of four categories.

Problem III. Choose the positions of all exterior points minimizing the total
sum of the edge lengths.

In the next sections, solutions to these problems are presented. Exact solutions
are only given for the first two problems, and heuristics are given for the last
one. These heuristics are compared with each other and with the non-achievable
lower bound derived from the second problem. Problem III is the core layout
problem in AlertWheel. Efficient solutions to this problem are thus crucial.

3 Related Work

Network defence analysts continuously monitor their computer networks to de-
tect any malicious activities. They have to analyze the data buried in numerous
log files. Without appropriate tools, they cannot manage all this information.

The ultimate goal for security visualization tools is to present the data as
simply as possible. To achieve this ambitious objective, numerous graph drawing
problems have to be addressed [10]. These generally involve optimizing some
aesthetic properties of the graph layout such as the number of edge crossings,
the number of edge bends, etc.

Purchase [9] asserts that minimizing the number of edge crossings in a graph
layout is the most important issue to deal with. Unfortunately, numerous variants
of this problem have been shown to be NP-complete [11,2]. Edge bundling can be
used to mitigate the effects of edge crossings. By merging edges into bundles [6,8],
the number of edge crossings is significantly reduced. In such a case, reducing the
length of the bundled edges remains an important goal. The rest of this paper
addresses this goal.
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4 Assignment of Concentric Circles to Interior Points

Concentric circles are used to layout the edges of the bipartite graph. These are
particularly useful to bundle the edges connected to a given interior point (as
in Fig. 2a). Assume that some set of radii rk, k = 1, . . . , n of concentric circles
has been chosen, for example with equal spacing. The first problem is to find an
optimal assignment of each radius to a unique interior point, i.e., an assignment
minimizing the sum of the edge lengths. Unfortunately, the total length of edges
depends on the assignment of points on the outer circle. Thus, in this section,
we simplify the problem and seek an assignment of radii to interior points that
minimizes the total length of the radial components of the edges.

Let Ek be the subset of exterior points connected to an interior point ik using
the concentric circle with radius rk (as in Fig. 2a) and let ek be its cardinality.
The sum of the radial edge lengths lRk is given by ek(rn+1− rk)+(rk − r0) where
r0 and rn+1 are the radii of the inner and outer circles, respectively.

The following lemma shows that the optimal assignment depends only on the
number of edges using each circle. It can be proved easily by contradiction.

Lemma 1. Suppose that the numbers of edges ek are such that e1 ≤ · · · ≤ en.
If the radii are such that r1 ≤ · · · ≤ rn, then SR =

∑n
k=1 lRk is minimum.

5 Optimally Connecting an Exterior Point to Interior
Ones

The next problem is to find the optimal position of an exterior point to minimize
the sum of its edge lengths. We assume that the assignment of radii is fixed and
given by Lemma 1. This leaves only the circular components to be minimized.
(Note that this heuristic does not guarantee that the total length of edges is
minimized.) Then, the objective can be restated as finding the optimal position
of an exterior point minimizing the total length of the circular components of
its edges, given the assumed assignment of radii to interior points.

Consider an exterior point o connected to k interior points i1, i2, · · · , ik (as
in Fig. 2b). Let l be the line passing through the center c of the circles and the
exterior point o. This line partitions the interior points into three sets: the points
lying above l (A), the points lying below l (B) and the points lying on l (O).

Let Θj be the angle in radians defined by the points o, c and ij , defined s.t.
0 ≤ Θj ≤ π. The sum of the circular edge components is

SC =
∑

ij∈A
Θj · rj +

∑

ij∈B
Θj · rj +

∑

ij∈O
Θj · rj (1)

The following lemma characterizes the optimal solutions minimizing the sum of
the circular edge components for a given exterior point o.

Lemma 2. There is an optimal position for the exterior point o minimizing the
sum of the circular edge components s.t. the line l defined by c and o passes
through an interior point ij between c and o.
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Fig. 3. Optimally positioning an exterior point connected to interior points

Proof. Suppose there is an optimal position for o which does not satisfy the
criteria as in Fig. 3a. (Note that, in this case, there could still be a point in O,
located on the “other side” of o (Fig. 3a).) Let SC be the corresponding sum of
the lengths as given by Eq. 1. W.l.o.g. suppose that

∑
ij∈A rj >

∑
ij∈B rj as in

Fig. 3a. By rotating l counter-clockwise by a small angle ε > 0, the point in O
(if it exists) would be located above l. The sum of lengths would then be

S′ =
∑

ij∈A
(Θj − ε) · rj +

∑

ij∈B
(Θj + ε) · rj +

∑

ij∈O
(Θj − ε) · rj

= SC − ε

⎡

⎣
∑

ij∈A∪O
rj −

∑

ij∈B
rj

⎤

⎦ < SC .

This contradicts the optimality hypothesis of SC .
In the special case

∑
ij∈A rj =

∑
ij∈B rj and O = ∅, the line l can still be

rotated onto either of two interior points (yielding l′ and l′′) without worsening
the sum of lengths (Fig. 3b). ��
This lemma gives a straightforward linear time algorithm to find an optimal so-
lution once the interior points have been fixed and assigned radii. The algorithm
simply has to sweep through the finite number of candidate solutions.

As the point o moves around the circle, the sum of the circular edge lengths
can reach numerous local minima (Fig. 4). Hence, binary search algorithms based
solely on local decisions could lead to non-optimal solutions.

6 Connecting Multiple Exterior Points to Multiple
Interior Points

The last problem to consider is choosing the positions of exterior points mini-
mizing the total sum of the circular edge lengths. This is the core layout problem
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Fig. 4. Multi-modality of the function giving the sum of lengths. (Left) The construc-

tion of an example with 9 points – the radius rk is given by r0+δ+(k−1)× rn+1−r0−2δ

n−1
.

(Right) The corresponding sum of the circular edge lengths.

of the AlertWheel visualization tool. Due to the nature of the problem, the po-
sitions of the interior points are fixed. Hence, changing the positions of exterior
points is the only way to optimize the layout.

Two heuristics are presented to solve this optimization problem. These heuris-
tics are compared with the naive solution of ordering the points on a first-come,
first-served basis. A lower bound can be derived from the algorithm presented
in the previous section. However, this solution may not be achievable since it
allows many exterior points to coincide.

Let us first introduce some notation. Let Ik ⊆ {i1, · · · , in} be the subset of
the interior points connected to the exterior point ok. These points represent the
hyperedge associated with ok. Also, let I = {Ik|1 ≤ k ≤ m} be the set of the
hyperedges to be laid out.

6.1 Heuristic I: The Minimum Perfect Matching

The first heuristic is an algorithm distributing the exterior points evenly on
the outer circle. The eases point labeling in the visualization tool but does not
guarantee that the obtained optimal solution is globally optimal.

The algorithm is based on the minimum perfect matching problem [3]. It
constructs a complete bipartite graph Km,m representing the cost of associating
each hyperedge Ik to each potential layout position. A minimum-weight perfect
matching would give a one-to-one correspondence between the set of hyperedges
and the set of layout positions which minimizes the total sum of the hyperedge
lengths.

A more formal description of this heuristic is presented in Algorithm 1. The
running time of this algorithm is O(m2n + m3) = O(m3), assuming n < m.
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Let I = {Ik|1 ≤ k ≤ m} be the hyperedges associated to the m exterior1

points.
Let P = {pk|1 ≤ k ≤ m} be a set of evenly distributed positions on the outer2

circle.
for i← 1 to m do3

for j ← 1 to m do4

Compute the length wi,j of the hyperedge Ii at the position pj .5

Compute the minimum perfect matching of the complete bipartite graph6

defined by the sets I, P and W = {wi,j |1 ≤ i, j ≤ m}

Algorithm 1. Minimum perfect matching heuristic

In Fig. 5, the performance of this algorithm is compared with the naive al-
gorithm ordering the points on a first-come, first-served basis. As expected, the
heuristic yields a better result on this example than the naive algorithm. A more
thorough comparison is presented in Section 6.3.

Fig. 5. AlertWheel tool: Comparing the naive algorithm (left) and the perfect matching
heuristic (right). In the former case, the sum of the circular edge lengths is 22036 units.
In the latter case, the sum is 17158, or 22% less.

6.2 Heuristic II: The Anchor Algorithm

The second heuristic is based on the idea of finding the optimal position of each
exterior point and placing it as close as possible to this position, which we call an
anchor. Lemma 2 determines the anchors for the exterior points. Based on the
computed anchors, the exterior points are partitioned into sets containing points
competing for the same optimal anchors. Then, the optimal local positioning of
the exterior points around each anchor is determined.
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Unfortunately, this algorithm does not guarantee an optimal solution. If an
exterior point is placed too far from its optimal anchor, it could be better off at
another anchor. Nevertheless, this heuristic yields good results, as we will see.

Let us introduce some notation. Let Cp ⊆ {o1, · · · , om} be the points compet-
ing for the anchor p. To simplify the notation, assume that Cp = {o1, · · · , ot}.
The anchor p and center c determine a line l that divides the interior points into
the points lying above l (A), the points lying below l (B) and the points lying
on l. To simply the argument, we assume that only the anchor point lies on l.
For any exterior point oi ∈ Cp connected to the hyperedge Ii, we define

ai =
∑

ij∈Ii

ij∈A

rj and bi =
∑

ij∈Ii

ij∈B

rj .

Finally, let r∗ be the radius associated with the interior point defining the anchor
p. By Lem. 2, this interior point must be in Ii.

Let A = {oi ∈ Cp|ai ≥ bi} and let B = {oi ∈ Cp|ai < bi}. Now, suppose
that oi ∈ A. As the exterior point oi moves away from the anchor p by an angle
Θ > 0, the total sum of the circular edge lengths increased by

(ai + r∗ − bi)Θ > 0 if oi is moving away clockwise
(bi + r∗ − ai)Θ > 0 if oi is moving away counter − clockwise.

Both expressions must be positive. Otherwise, the point p would not represent
an optimal anchor for oi. This follows from Lem. 2.

The following lemma characterizes the optimal layouts of the exterior points
in A. Intuitively, these points should be moved away from the anchor counter-
clockwise to reduce the impact on the sum of the circular edge lengths.

Lemma 3. Let 0 ≤ i ≤ |A|. There are only two optimal layouts of the exterior
points in A around the anchor p s.t. i points of A move away clockwise.

bi − ai < 0ai − bi > 0

−8−7−643

5

p

Fig. 6. Ordered layout of the exterior points in A for i = 2. The values represent the
values of ai − bi > 0 (on the left of p) and the values of bi − ai < 0 (on the right of p).
The shaded boxes represent the positions of the points in B.



Optimizing the Layout of Bipartite Graphs 211

Proof. W.l.o.g., suppose that A = {o1, · · · , or} is such that the values of ai − bi

are sorted in increasing order. In order to minimize the total sum of the circular
edge lengths, the points must be laid out as follows:

– o1, · · · , oi clockwise w.r.t. the anchor and oi+1, · · · , or counter-clockwise w.r.t.
the anchor – and according to the sorted order;

– o1, · · · , oi clockwise w.r.t. the anchor, oi+1 on the anchor and oi+2, · · · , or

counter-clockwise w.r.t. the anchor – and according to the sorted order.

Let us consider only the simpler alternative since the same argument applies to
both. First, let us prove the optimality of the layout of the points which have
been moved counter-clockwise (i.e., at the right of p in Fig. 6). Suppose there
is an optimal layout which does not respect the increasing order. Let S∗ be
the sum of the circular edge lengths of this optimal solution. Suppose there are
two consecutive points oi∗ and oj∗ counter-clockwise w.r.t. the anchor point s.t.
ai∗ − bi∗ > aj∗ − bj∗ > 0. Thus, oi∗ and oj∗ have been moved counter-clockwise
by an angle of inc × Θ and (inc + 1) × Θ, respectively. The value inc is the
incremental angular difference between adjacent exterior points. The weight of
the these two consecutive points in S∗ is

(bi∗ + r∗ − ai∗) × inc × Θ + (bj∗ + r∗ − aj∗) × (inc + 1) × Θ.

By permuting the two points, a smaller weight can be obtained. This contradicts
the optimality of the solution.

Finally, suppose there is a point oi∗ ∈ B which has been also moved counter-
clockwise (a shaded box in Fig. 6). Since (bi∗ − ai∗) > 0, this point must be
closer to the anchor than any other point in A in any optimal layout. Otherwise,
by permuting these points, a smaller sum of the circular edge lengths would be
obtained. Similar arguments can be used to prove the optimality of the layout
of the points which have been moved clockwise (i.e. at the left of p in Fig. 6).

��
Based on this characterization of the optimal layouts, a more formal description
of this heuristic is presented in Algorithm 2. The running time of this algorithm
is in O(mn + m2).

Figure 7 presents one example showing that the anchor heuristic out performs
the naive algorithm, as expected. A better comparison is presented in Sect. 6.3.

6.3 Empirical Comparison

To perform a more thorough comparison of the proposed heuristics, the differ-
ent algorithms were applied to the same random bipartite graphs, generated as
follows. There are ten points which have been fixed on the inner circle. There
are n points which have to be laid out on the outer circle. These points have to
be connected to the inner points as follow:

– 10% of the exterior nodes have 5 edges.
– 20% of the exterior nodes have 4 edges.
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Find the n anchors p1, · · · , pn determined by the interior points (by Lem. 2).1

for each exterior point oi do2

Find the optimal anchor pji .3

Add oi to the anchor list Cji .4

for each anchor list Cji do5

Find the optimal position of the |Cji | points around pji .6

Let A and B be the set of points as defined in Lem. 37

for i← 0 to |A| do8

for j ← 0 to |B| do9

Find the optimal solutions with i points of A and j points of B10

which have been moved clockwise (by Lem. 3).
Find the optimal solutions among all the solutions in the previous step.11

Algorithm 2. Anchor heuristic

Fig. 7. AlertWheel tool: Comparing the naive algorithm (left) and the anchor heuristic
(right). In the former case, the sum of the circular edge lengths is 22036 units. In the
latter case, the sum is 17184, or 22% less.

– 30% of the exterior nodes have 3 edges.
– 20% of the exterior nodes have 2 edges.
– 20% of the exterior nodes have only one edge.

For each of these exterior points, their connected neighbors are randomly selected
among the ten interior points.

The results of the experiment are presented in Fig. 8. For each number of
nodes, 20 bipartite graphs have been generated. The figure shows the average of
the total sum of circular edge lengths for each algorithm.

The performance of the algorithms can be compared with a theoretical lower
bound. The lower bound is found by finding the optimal position of each exterior
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point (as given by Lem. 2) and allowing exterior points to coincide. Thus, this
lower bound is unachievable in practice. As expected, the anchor heuristic gives
very good results. If the number of competing exterior points for a given anchor
is small, each point should be very close to its optimal solution. This should
yield a solution that is close to the globally optimal solution.

To conclude, it should be mentioned that the anchor heuristic has a disadvan-
tage for the AlertWheel visualization tool. Because the exterior points are non
uniformly distributed on the outer circle, a radial labelling of the nodes has to
be used instead of a circular labelling (as in Fig. 5 and 7).
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Fig. 8. Comparing the performance of the different algorithms on random bipartite
graphs with n = 10, 20, 10, 40 and 50 nodes

7 Conclusions

In addition to the user interaction problems that had to be solved during the
development of AlertWheel, multiple bipartite graph drawing problems also had
to be addressed. In all cases, the naive approaches to laying out the graph with-
out any optimization give poor results. The large quantities of information to
deal with have necessitated finding good heuristics to reduce the clutter in the
drawing of the radial representation of the bipartite graph representing the ob-
served security alerts of an IDS. One of these heuristics gives very good results
which are close the globally optimal solution.
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