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Abstract. We analyzed a light-field super-resolution problem in which,
with a given set of multi-view images with a low resolution, the 3-D scene
is reconstructed with a higher resolution using super-resolution (SR) re-
construction. The arrangement of the multi-view cameras is important
because it determines the quality of the reconstruction. To simplify the
analysis, we considered a situation in which a plane is located at a certain
depth and a texture on that plane is super-resolved. We formulated the
SR reconstruction process in the frequency domain, where the camera
arrangement can be independently expressed as a matrix in the image
formation model. We then evaluated the condition number of the matrix
to quantify the quality of the SR reconstruction. We clarified that when
the cameras are arranged in a regular grid, there exist singular depths in
which the SR reconstruction becomes ill-posed. We also determined that
this singularity can be avoided if the arrangement is randomly perturbed.

Keywords: multi-view cameras, super-resolution, camera arrangement,
condition number.

1 Introduction

The reconstruction of a 3-D scene from multi-view images is a challenging prob-
lem and currently the focus of active research. To improve the quality of re-
construction, recent methods [3,4,9] use the framework of super-resolution (SR)
reconstruction, which is a process of restoring an underlying high-resolution
(HR) image from multiple low-resolution (LR) images. The quality of SR recon-
struction is determined by the number, the point spread function (PSF), and
the arrangement of cameras. The last factor, which has rarely been discussed, is
the main focus of this paper.

The arrangement of the cameras determines disparities (pixel shifts) between
the camera images given a certain depth. These disparities affect the stability
of the SR reconstruction; for example, the SR reconstruction is ill-posed if all
the disparities are integers. Therefore, the cameras should be arranged in such
a way to avoid this ill-posed situation and improve the well-posedness of the SR
reconstruction.

The purpose of this study is to analyze the relation between the arrangement
of cameras and the well-posedness of an SR reconstruction. A general framework
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Fig. 1. Framework of LFSR

in which a high-resolution 3-D scene is reconstructed from multi-view images
with a lower resolution is referred to as light-field super-resolution (LFSR). To
simplify the analysis, we consider a situation in which a target plane is located
at a certain depth and a texture on that plane is super-resolved, as illustrated in
Fig. 1. Although we only consider a single plane at a certain depth, our analysis
is applicable to general scenes with multiple objects placed at various depths
because the target plane can be placed at an arbitrary depth. Our theoretical
model is constructed in the frequency domain, where the camera arrangements
are independently expressed as a matrix in the image formation model of the
SR reconstruction. The condition number of that matrix is used to measure the
well-posedness of the SR reconstruction. We determined that when the cameras
are placed on a regular grid, some depths are singular, meaning that the SR
reconstruction at these depths is ill-posed. Singular depths can be avoided by
randomly perturbing the cameras, which is a key finding in our study.

This paper is organized as follows. Section 2 introduces related works. We
formulate the SR reconstruction process in Sect. 3, followed by some descrip-
tions of the condition number in Sect. 4. In Sect. 5, we evaluate specific camera
arrangements based on our theory. Section 6 concludes the paper.

2 Related Works

SR reconstruction generally consists of two steps [5]: the registration of LR
images and the reconstruction of an HR image from the registered LR images.
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In this paper, we assume that registration has been done in advance and hence
we focus on the reconstruction step.

The numerical performance of SR reconstruction is mainly affected by three
factors: the number of LR images, subpixel shifts between LR images, and the
PSF of LR images. The first and second factors are closely related; if we have
a greater number of images, we are more likely to have more varied subpixel
shifts, resulting in more stable SR reconstruction. However, SR reconstruction
is ill-posed if all the pixel shifts are integers, no matter how many images are
available.

The pixel-shifts factor has been analyzed in several other works. Robinson
et al. [6] evaluated the numerical performance of SR reconstruction using the
Cramér-Rao lower bound and demonstrated that reconstruction quality is
maximized when the sampling points of the LR images are evenly distributed.
Champagnat et al. [2] used Monte Carlo simulations to analyze the quality of
SR reconstruction when fractional parts of shifts are distributed uniformly in
0–1 pixel. They found that the reconstruction quality with random pixel shifts
is moderate on average and comparable to that of optimal pixel shifts. In this
study, we also analyzed the pixel shifts, but they were bounded by the cam-
era arrangement and the depth of the scene in our problem. We used Monte
Carlo simulations to analyze the arrangement of the cameras because analytical
optimization is difficult for our problem.

The PSF factor is also studied using the condition number, which is widely
used in linear algebra to measure the well-posedness of linear equations. Baker et
al. [1] analyzed box-shaped PSFs and discovered a relation between the condition
number and the magnification ratio. Tanaka et al. [8] derived condition numbers
for general space-invariant PSFs assuming that an infinite number of LR images
are available. Inspired by these works, we also used the condition number as a
measure of the well-posedness of the SR reconstruction, although we focused on
the arrangement of cameras rather than the PSF.

3 Formulation of Super-Resolution Reconstruction

We formulated an SR reconstruction in the frequency domain. Our formulation
is equivalent to [7], although some parameters were rearranged to fit to our
problem.

3.1 Configuration

See Fig. 2 for the configuration. Let (x, y, z) be the spatial coordinate. We assume
that K cameras that capture LR images are placed on the camera plane at
z = 0. The position of the k-th camera is denoted as (xk, yk, 0). We also assume
that all the cameras have the same focal length, pixel size, and PSF. A target
plane is placed at z = zd in parallel to the camera plane. The goal of the SR
reconstruction is to obtain a texture on the target plane with a resolution higher
than the input LR images. We assume that the magnification ratio is 2, but our
analysis can easily be extended to more general cases.
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Fig. 2. Configuration analyzed in this study

Let (u, v) be the image coordinate on the target plane. The texture on it is
denoted by h(u, v) as a continuous 2-D signal. The HR image, which we want to
synthesize by SR reconstruction, is denoted by gH(u, v). The LR image captured
by the k-th camera is denoted as gL,k(u, v). Both gH(u, v) and gL,k(u, v) are the
discrete signals sampled from h(u, v). The pixel pitches are written as Δ and
Δ/2 for the LR and HR images, respectively.

3.2 Image Formation Model

The k-th LR image gL,k(u, v) is generated by sampling the light-rays on the
focal plane. This process is equivalent to sampling the continuous texture on the
target plane z = zd with intervals Δd(zd), where Δd(zd) is defined as

Δd(zd) =
zd

f
Δ, (1)

where f is the focal length of the cameras, as shown in Fig. 2. Note that Δd(zd)
depends on the depth of the target plane zd. To simplify the notations, we
abbreviate Δd(zd) as Δd in this section.

Using Δd, the k-th LR image gL,k(u, v) is defined as

gL,k(u, v) = (h(u, v) ∗ bL(u, v)) δΔd
(u − xk, v − yk) + nk(u, v), (2)

where ∗ denotes convolution, bL(u, v) is a camera PSF, and nk(u, v) is the ob-
servation noise. δΔ′(u, v) represents the sampling grid that is defined as

δΔ′(u, v) =
∑

(m,n)∈Z

δ(u − mΔ′, v − nΔ′), (3)

where δ(u, v) is the Dirac delta function.
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Since the resolution of the HR image is double that of the LR images, the
sampling interval of the HR image is Δd/2. Therefore, the HR image gH(u, v),
whose origin is set to (u, v) = (0, 0), is defined as

gH(u, v) = (h(u, v) ∗ bH(u, v)) δΔd/2 (u, v) , (4)

where bH(u, v) denotes a PSF of the HR image.

3.3 Super-Resolution in the Frequency Domain

Assume that the underlying continuous image h(u, v) is band-limited within
(−2π/Δd, 2π/Δd). In other words, the sampling interval of the HR image satis-
fies the Nyquist condition. This situation is illustrated in Fig. 3(a). The circular
region in the figure represents the spectral support of the underlying continu-
ous image ĥ(û, v̂), where ˆdenotes the frequency-domain representation of the
corresponding symbol.

Here, we want to obtain the Fourier transform of (4) and (2). First, we obtain
the Fourier transform of (3) as

δ̂Δ′(û, v̂) =
4π2

Δ′
∑

{m,n}∈Z

δ

(
û − 2mπ

Δ′ , v̂ − 2nπ

Δ′

)
. (5)

This equation represents a spectral replication in the frequency domain caused
by discretization. For the case of the HR image, where Δ′ = Δd/2, the repeating
cycle is (4π/Δd, 4π/Δd), as shown in Fig. 3(b). Since the original signal ĥ(û, v̂)
is band-limited within (−2π/Δd, 2π/Δd), no overlapping occurs in the frequency
domain. Consequently, for the frequency û, v̂ ∈ (−2π/Δd, 2π/Δd), ĝH(û, v̂) can
be written as

ĝH(û, v̂) =
16π2

Δ2
d

ĥ(û, v̂)b̂H(û, v̂). (6)

Meanwhile, for the case of the LR image, where Δ′ = Δd, the repeating cycle is
(2π/Δd, 2π/Δd). As shown in Fig. 3(c), four spectral components overlap in the
range û, v̂ ∈ (0, 2π/Δd). Therefore, for this range, ĝL,k(û, v̂) is described as
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ĝk(û, v̂) =
4π2

Δ2
d

ĥ (û, v̂) b̂L(û, v̂) ∗
∑

m,n∈{0,1}
δ

(
û − 2mπ

Δd
, v̂ − 2nπ

Δd

)
e−j(xkû+ykv̂)

+n̂(û, v̂). (7)

Using (6), we obtain

ĝk(û, v̂) =
1
4

ĝH (û, v̂)
b̂L(û, v̂)
b̂H(û, v̂)

∗
∑

m,n∈{0,1}
δ

(
û − 2mπ

Δd
, v̂ − 2nπ

Δd

)
e−j(xkû+ykv̂)

+ n̂(û, v̂). (8)

Equation (8) can be rearranged into a linear equation:

ĝL = Ŵ ĝH + n̂, (9)

where ĝL represents the spectra of all LR images and ĝH represents the four
overlapping components of the HR image:

ĝL =

⎛

⎜⎜⎜⎝

ĝL,1(û, v̂)
ĝL,2(û, v̂)

...
ĝL,K(û, v̂)

⎞

⎟⎟⎟⎠ , ĝH =

⎛

⎜⎜⎝

ĝH(û , v̂ )
ĝH(û − 2π

Δd
, v̂ )

ĝH(û , v̂ − 2π
Δd

)
ĝH(û − 2π

Δd
, v̂ − 2π

Δd
)

⎞

⎟⎟⎠ . (10)

Ŵ represents the image formation model, expressed as

Ŵ = M̂B̂ , (11)

where M̂ =

⎛

⎜⎜⎜⎝

1 e−2jπx1/Δd e−2jπy1/Δd e−2jπ(x1+y1)/Δd

1 e−2jπx2/Δd e−2jπy2/Δd e−2jπ(x2+y2)/Δd

...
...

...
...

1 e−2jπxK/Δd e−2jπyK/Δd e−2jπ(xK+yK)/Δd

⎞

⎟⎟⎟⎠ , (12)

B̂ = diag

⎛

⎜⎜⎜⎝

b̂L(û, v̂ ) /b̂H(û, v̂ )
b̂L(û − 2π

Δd
, v̂ ) /b̂H(û − 2π

Δd
, v̂ )

b̂L(û, v̂ − 2π
Δd

) /b̂H(û, v̂ − 2π
Δd

)
b̂L(û − 2π

Δd
, v̂ − 2π

Δd
) /b̂H(û − 2π

Δd
, v̂ − 2π

Δd
)

⎞

⎟⎟⎟⎠ . (13)

M̂ is a K × 4 matrix and represents the camera arrangement. The k-th row of
M̂ corresponds to the position of the k-th camera. We refer to this matrix as a
camera arrangement matrix. B̂ is a 4 × 4 matrix and represents the PSF. We
call this matrix a PSF matrix. n̂ represents the observation noises.

n̂ =

⎛

⎜⎜⎜⎝

n̂1(û, v̂)
n̂2(û, v̂)

...
n̂K(û, v̂)

⎞

⎟⎟⎟⎠ . (14)

The SR reconstruction is formulated as the problem of estimating ĝH given Ŵ
and ĝL in (9), where Ŵ determines the well-posedness.
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4 Condition Number of the SR Reconstruction

Given a coefficient matrix of a linear equation, the condition number of the
matrix determines the stability of the solution. When the condition number is
low, the linear equation is well-posed and is robust to noises. In contrast, if the
number is high, the system is ill-posed and is sensitive to noises. The linear
system is singular when the condition number is infinite.

The condition number of Ŵ is defined as

cond(Ŵ) = ‖ Ŵ ‖ · ‖ Ŵ+ ‖ =

√
λmax(Ŵ∗Ŵ)
λmin(Ŵ∗Ŵ)

, (15)

where ‖ · ‖ denotes operator norm, ∗ denotes conjugate transpose, + denotes
Moore-Penrose pseudoinverse, and λmax(Ŵ∗Ŵ) and λmin(Ŵ∗Ŵ) are the max-
imum and minimum eigenvalues of Ŵ∗Ŵ, respectively.

The condition number gives the upper bound of the relative errors as

‖ ê ‖2

‖ ĝH ‖2
≤ cond(Ŵ)

‖ n̂ ‖2

‖ ĝL ‖2
, (16)

where ê is the estimation error of ĝH . This equation shows that the condition
number can be used to estimate the reconstruction quality.

A key feature of our formulation is that Ŵ is expressed as the product of M̂
and B̂, as shown in (11). This enables us to evaluate the camera arrangement
by using the condition number of M̂ separately from the PSFs represented by
B̂. The condition number of Ŵ is upper-bounded by the condition numbers of
M̂ and B̂ as

cond(Ŵ) = ‖ M̂B̂ ‖ · ‖ (M̂B̂)+ ‖
≤

(
‖ M̂ ‖ · ‖ B̂ ‖

)(
‖ M̂+ ‖ · ‖ B̂−1 ‖

)

=
(
‖ M̂ ‖ · ‖ M̂+ ‖

)(
‖ B̂ ‖ · ‖ B̂−1 ‖

)

= cond(M̂) · cond(B̂) (17)

using sub-multiplicativity of the operator norm. We also use the inverse condition
number for convenience.

5 Analyses of Camera Arrangements

In this section, we analyze some specific camera arrangements using the condition
number. In subsection 5.1, we analyze regular grid arrangements and show that
the condition number becomes infinite at periodic depths. In subsection 5.2, we
analyze grid-and-perturbation arrangements using Monte Carlo simulation.
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5.1 Analysis on Regular Grid Arrangement

Assume that four cameras are placed on a 2 × 2 regular grid. Let the camera
positions be (±A/2,±A/2, 0), where the distance between the cameras is A, as
illustrated in Fig. 4.

Using (12), the camera arrangement matrix M̂ is written as

M̂ =

⎛

⎜⎜⎝

1 e−jπA/Δd e−jπA/Δd e−2jπA/Δd

1 e−jπA/Δd ejπA/Δd 1
1 ejπA/Δd e−jπA/Δd 1
1 ejπA/Δd ejπA/Δd e2jπA/Δd

⎞

⎟⎟⎠ , (18)

whose condition number (see appendix for derivation) is

cond(M̂) =
1 +

∣∣∣cosπ A
Δd(zd)

∣∣∣

1 −
∣∣∣cosπ A

Δd(zd)

∣∣∣
. (19)

We also analyzed a case in which 16 cameras were arranged on a 4 × 4 regular
grid. The condition number of M̂ (see appendix for derivation) is

cond(M̂) =
1 +

∣∣∣cos 2πA
Δd(zd) cos πA

Δd(zd)

∣∣∣

1 −
∣∣∣cos 2πA

Δd(zd) cos πA
Δd(zd)

∣∣∣
. (20)

Figure 5 shows the inverse condition number of the camera arrangement matrix
for the regular grid arrangement of 4 cameras and 16 cameras. The horizontal
axis represents the value of A/Δd(zd). Note that A/Δd(zd) is inversely pro-
portional to the depth of the target plane zd and corresponds to the disparity
between the input LR images.

As shown in the figure, the inverse condition number takes zero at periodic
depths where A/Δd(zd) is an integer. When the target plane is located at these
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Fig. 6. An example of grid-and-perturbation arrangements of 4 cameras

depths, the sampling points of all input cameras coincide with each other. We
refer to these depths as singular depths. It should be noted that the singular
depths exist regardless of the number of cameras as long as they are arranged
in regular grids.

It is obvious that the inverse condition number takes the maximum value at
periodic depths, where the disparity is a half-integer in the case of the 2×2 grid
and a quarter-integer in the case of the 4 × 4 grid. These depths, where the SR
reconstruction is the most stable, are referred to as the best depths.

To summarize, when the cameras are arranged in a regular grid, SR recon-
struction becomes ill-posed at some depths yet well-posed at other depths. This
situation is undesirable in terms of reconstructing an entire 3-D scene.

5.2 Analysis on Grid-and-Perturbation Arrangement

The periodic structure of the condition number along A/Δd comes from the regu-
larity of the camera arrangement. Thereby, randomizing the camera arrangement
should decrease the periodicity and might be helpful to avoid the singular depth
problem. In this subsection, we analyze a case where the camera arrangement is
randomly perturbed from the regular grid.

For this case, analytical derivation of the condition number is difficult, so
we used Monte Carlo simulations. We randomly generated many camera ar-
rangements and numerically computed the condition numbers of the camera
arrangement matrices M̂.

Monte Carlo Simulations. The number of cameras was set to either 4 or
16. The cameras were shifted from the 2 × 2 or 4 × 4 regular grid arrange-
ments, as shown in Fig. 6. The shift of the k-th camera is denoted as (ζk, ηk, 0),
where ζk and ηk were independently sampled from the uniform distribution over
(−rA, rA). r > 0 is the parameter that defines the range of the distribution and
was used to control the randomness of the camera arrangement.

We exponentially varied r from 10−10 to 1 and generated 1000 shifts for each r
value. We then numerically computed the condition number of each arrangement
for the range of 0 < A/Δd(zd) ≤ 10.
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(a) Varying r (b) Varying the number of cameras

Fig. 7. Inverse condition number of a grid-and-perturbation arrangement

Relation between Depth and Condition Number. For each r value, we
computed the geometric average of the inverse condition numbers over 1000
arrangements. The results with r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 are shown
in Fig. 7(a). Note that the horizontal axis is A/Δd(zd). When we set r > 0, the
inverse condition number became higher than zero for the depths where they were
singular with the original regular grid arrangement. As r increased, the inverse
condition number also increased at these depths. For instance, when A/Δd(zd) =
2, the inverse condition numbers for r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 were
10−4.5, 10−2.5, and 10−1.5, respectively. Meanwhile, as r increased, the inverse
condition number decreased at best depths. For instance, when A/Δd(zd) = 3.5,
the inverse condition numbers for r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 were 1,
10−0.5, and 10−1, respectively. This tendency indicates that there is a trade-off
between the improvement at the singular depths and the decline at the best
depths. Randomizing the arrangement is likely to flatten the performance of the
inverse condition number over the depths. This trade-off is discussed in more
detail in the next subsection.

We also analyzed the relation between the number of cameras and the inverse
condition number. Figure 7(b) shows the results when the number of cameras was
4 or 16 and r = 6.3 × 10−3 or 0.1. The grid-and-perturbation arrangement was
effective for both 4 and 16 cameras. As a whole, the inverse condition numbers
with 16 cameras were larger than those with 4 cameras.

Relation between Randomness and Overall Image Quality. As men-
tioned above, randomizing the camera arrangements raised the inverse condi-
tion numbers at singular depths, but lowered them at best depths. Therefore,
we introduced a new measure, referred to as overall image quality, which is the
geometric average of the inverse condition numbers over the range of the entire
3-D scene. The range was set to 0 < A/Δd(zd) ≤ 5 in this experiment. Note that
the overall image quality is zero for regular grid arrangements, since there are
singular depths.
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We tested 1000 random arrangements for each r. Figure 8 shows the relation
between the randomness parameter r and the overall image quality. The maxi-
mum, average, and minimum values of the overall image quality are plotted in
this figure. Note that the vertical axis is logarithmic.

The average and minimum values are not plotted on the left side of the graph
because their values were zero due to the machine precision. This indicates that
when r is very small and the arrangement is very close to the regular grid
arrangement, some depths become nearly singular. Therefore, r should not be
very small.

When the number of the cameras was four, the overall image quality gradually
increased when r < 10−3 but gradually decreased when r > 10−3. Improvements
around the singular depth and degradation around the best depths seem to have
balanced around r = 10−3. When the number of the cameras was 16, the overall
image quality monotonically increased in the range of 10−10 ≤ r ≤ 1. This result
indicates that randomizing the camera arrangement is more effective when more
cameras are used.

The difference between the maximum and minimum overall image quality
became bigger as r increased. This tendency indicates that a very large r should
be avoided to control the overall image quality. It should also be noted that the
worst overall image quality is still more than zero when r > 10−8. Therefore,
we can expect the overall image quality to improve by randomizing the camera
arrangement even in a worst-case scenario.

6 Conclusion

In this paper, we considered the arrangement of multi-view cameras for light-field
super-resolution. We formulated an SR reconstruction in the frequency domain
and derived the relation between the camera arrangement and the stability of
the SR reconstruction using the condition number. Based on this relation, we
showed that the singular depths, where the reconstruction becomes ill-posed,
periodically appear in the case of regular grid arrangements. We also revealed
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that randomizing the camera arrangement can prevent the singular depths and
improve the stability of the SR reconstruction for the entire 3-D scene. Our future
work is to verify the correctness of our theoretical analysis by experiments. We
also plan to analyze more general camera arrangements.
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Appendix: The Condition Number of Regular Grid
Arrangements

See Fig. 9 for the configuration.

A. 2 × 2 Cameras

Here, we derive (19). First, we compute M̂∗M̂, which is written as

M̂∗M̂ = 4

⎛

⎜⎜⎝

1 α α α2

α 1 α2 α
α α2 1 α
α2 α α 1

⎞

⎟⎟⎠ , (21)
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Fig. 9. Configuration. The triangles and circles represents the positions of the cameras
in 2 × 2 and 4 × 4 regular grid arrangements, respectively.

where

α =
ejπA/Δd + e−jπA/Δd

2
(22)

= cos
πA

Δd
. (23)

By analytically solving the eigenequation of M̂∗M̂, we obtain

λ = 4(1 ± |α|)2, 4(1 − |α|2). (24)

Note that λ = 4(1 − |α|2) is a double root.
Since 0 ≤ |α| ≤ 1, these eigenvalues satisfy the relation

4(1 − |α|)2 ≤ 4(1 − |α|2) ≤ 4(1 + |α|)2. (25)

The left equality holds when |α| = 0, 1, and the right equality hold when |α| = 0.
Using (25), the maximum and minimum eigenvalues are

λmax(M̂∗M̂) = 4(1 + |α|)2, (26)

λmin(M̂∗M̂) = 4(1 − |α|)2. (27)

By substituting (23), (26), (27) into (15), we obtain (19).
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B. 4 × 4 Cameras

We derive (20). Similar to the previous derivation, we compute eigenvalues of
M̂∗M̂. In this case, M̂∗M̂ becomes

M̂∗M̂ = 16

⎛

⎜⎜⎝

1 α α α2

α 1 α2 α
α α2 1 α
α2 α α 1

⎞

⎟⎟⎠ , (28)

where

α =
e3jπA/Δd + ejπA/Δd + e−jπA/Δd + e−3jπA/Δd

4

= cos
2πA

Δd
cos

πA

Δd
. (29)

The form of M̂∗M̂ is the same as (21) except for the value of α and multiplication
by a constant value, Therefore, the maximum and minimum eigenvalues are
similary computed as

λmax(M̂∗M̂) = 16(1 + |α|)2, (30)

λmin(M̂∗M̂) = 16(1 − |α|)2. (31)

By substituting (29), (30), (31) into (15), we obtain (20).
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