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Abstract. This paper introduces a process where fusion features assist
matching scale invariant feature transform (SIFT) image features from
high contrast scenes. FAW defines the order for extracting features: fea-
tures, alignment then weighting. The process uses three quality measures
to select features from a series of differently exposed images and select a
subset of the features in favour of those areas that are defined as well ex-
posed from the different images. The results show an advantage in using
these features over features extracted from the common alternative tech-
niques of exposure fusion and tone mapping which extract the features
as AWF; alignment, weighting then features. This paper also shows that
the process allows for a more robust response when using misaligned or
stereoscopic image sets.

Keywords: feature fusion, SIFT, HDR, LDR, tone mapping, exposure
fusion, stereo.

1 Introduction

Feature matching is a common computer vision application. In high contrast
lighting conditions it can be difficult to extract features in all areas of a scene
with a single exposure image as areas can be over or under exposed. As such, vital
information about a scene can be missed. The problem that this paper solves is
how to best utilise multiple exposure images to match features in scenes with
a large dynamic range. The main contribution of this paper is a feature fusion
process using the scale invariant feature transform (SIFT) within sets of images
taken of the same scene with varied exposures. These features cover a larger
dynamic range in a scene and are extracted in a way which improves match
accuracy when compared to extracting features directly from high dynamic range
image types. FAW defines the recommended order for extracting fusion features;
Features extraction, image Alignment then pixel Weighting. This is opposed to
AWTF, the order for generating tone mapped and exposure fusion images and
extracting featrues from them; Alignment of the images, pixel Weighting and
image merging and then Features extraction.

The concept is based on exposure fusion [14I5] and its purpose is to create
an improved set of features which represent a higher dynamic range then a
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set of features extracted from a single image. A key component is that areas
which contain information unseen in one exposure can utilise the features from a
differently exposed image. The process selects from the best exposed areas of each
exposure image using three different measures given in Sect. 2. This generates
a new set of features which cover a larger dynamic range. This process can be
applied to aligned images, as with exposure fusion, but can also be extended to
misaligned and stereoscopic images as shown in Sect. 3.

1.1 Scale Invariant Feature Transform

The SIFT feature detection algorithm, developed by David Lowe [9/I0], is a four
stage process that extracts highly descriptive features from an image. The fea-
tures are invariant to rotation and robust to changes in scale, illumination, noise
and small changes in viewpoints. The features can be used to indicate if there
is any correspondence between areas. The four stages of the SIFT algorithm are
as follows:

1. Scale-space extrema detection. 2. Feature localisation and selection.
3.0rientation assignment of features. 4. Creation of the descriptor vector.

To match features the Euclidean distance between two feature vectors is used to
find the nearest neighbour. The ratio between the best and second best match
is used to confirm a match.

1.2 High Dynamic Range Images

Dynamic range is the ratio between the brightest and darkest pixels in a scene.
High dynamic range (HDR) images often consist of three 32-bit floating point
numbers [I7], one per channel, whereas low dynamic range (LDR) images use
8-bits per channel. Data outside the range is truncated to the nearest value so
information may be lost. For LDR photography an exposure must be selected to
attempt to capture the most important information within the limited dynamic
range of the camera which is not always possible. In terms of SIFT features, it
has been shown [I2] that extracting the information from the dark and bright
areas as well means that there is a higher likelihood of locating the object of
interest due to the higher number of stable features available.

HDR images are generally generated from multiple bracketed LDR images
of the same scene taken in quick succession at different exposures [IITI]. The
response function of the camera is computed, which maps the pixel value stored
in an image to the radiance in a scene. Using this and a weighting function,
which reduces the contribution of points at the edges of the dynamic range of
the LDR image, a HDR image can be created. The HDR image contains the best
exposed areas displaying high detail from the most appropriate LDR images.

1.3 Tone Mapping

It is impossible to display HDR images on most displays as the dynamic range of
the average monitor is only 2 orders of magnitude [I7]. Tone-mapping has been



FAW for Multi-exposure Fusion Feature Extraction 291

developed to convert a HDR image into an 8-bit LDR format so that they can
be viewed on a conventional display.

Techniques have been proposed for both global and local tone mapping. Global
operators apply a uniform remapping of the pixel intensity values to compress
the dynamic range [2/3[7]. They can be faster than local operators but can fail
to produce a visually pleasing image due to their inability to take account the
varying responses to the algorithm on different parts of an image.

Local tone mapping algorithms [ABISIIRITO2T22] work by reducing the gra-
dient magnitude in the areas of high gradient while preserving the areas of low
gradient. The human visual system is insensitive to absolute brightness but re-
sponds to local contrast, meaning that global differences in brightness can be
reduced so long as the darker parts of the image remain darker and the brighter
parts remain brighter. These methods can preserve more detail but sometimes
result in unrealistic final images.

1.4 Exposure Fusion

Exposure fusion [14J15]19] is a technique for fusing a bracketed exposure sequence
into a high-quality, tone-map like image, without converting to HDR first. Its
advantages over tone mapping include the fact that no HDR image needs to be
computed often making the process faster and simpler. Also the process is more
robust as the exposure values are not needed and a flash can be used with the
camera.

The process uses weighted averages of the images where the weightings are cal-
culated based on certain properties of the image; Contrast, saturation and well-
exposedness (see Sect. 2). These are each weighted, combined and normalised
and then used to calculate a weighted average of the exposure images’ pixels to
create a fusion image.

Multi-resolution fusion [14/15] is a continuation of this technique to reduce the
appearance of seams in the final image. Each of the input images is decomposed
into a Laplacian pyramid and the corresponding weight map is decomposed into
a Gaussian pyramid. The Laplacian pyramid of the fusion image is determined
by the weighted average of the input Laplacian pyramid, where the weights
are given by the corresponding scale in the Gaussian weight map. Finally the
fused output image can be reconstructed from its Laplacian pyramid by using
an inverse transform.

2 Fusion Feature Selection

The process of selecting fusion features utilises the main measures of exposure
fusion [IT415]. A set of images of varying exposures are taken and for each of
these images a set of features are extracted using SIFT as shown in Fig. [
These features are then used to accurately align the images using RANSAC
[20]. The feature locations are also transformed to match the transformation
of the images. For each pixel in the aligned images weightings are generated
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Fig.1. An example of two aligned input images taken at different exposures. The
arrows represent the scale, orientation and position of the SIFT features. The bounding
box in each shows the areas within which SIFT features have been matched between
the images using RANSAC during the alignment process [20].

using some or all of the three measures outlined below. The weightings for each
pixel indicate the exposure image in which each pixel is best exposed. This is
then used to select which features are added to the set of fusion features using
a Gaussian weighting at the scale and radius of the feature. FAW defines this
order; Features extraction, image Alignment and then pixel Weighting. This is
opposed to AWF; Alignment of the images, pixel Weighting and merging the
images and then Features extraction. This is used for matching tone mapping
and exposure fusion images. This process has been briefly outlined previously
by May et al. [12] using only the contrast measure (C').

Contrast Measure C: The gradient magnitude m (x,y) is calculated across
the image, F', for each greyscale pixel location:

m(m,y)z\/(F(JC—Fl,y)—F(Jc—l,y))2+(F(m,y+l)—F(m,y—l))2 (1)

This gives larger values for textured areas and this indicates if an area of the
image is well exposed as over or under exposed areas will have small gradient
values. Using the absolute values returned by a Laplacian filter as suggested by
the Mertens et al. [T4JT5] has been replaced by the gradient magnitude. Using
a zero crossing, second derivative, function to calculate the weighting means
that the edge peaks will return a value of zero. Thus, two edges, one with a
large magnitude and one which is much smaller in magnitude will both have a
value of 0 at their apex and a weighting based on this will weight both pixel
values equally. If they are slightly misaligned then one edge pixel will get the full
weighting in its favour at a point when the other image may have larger edge. A
first derivative function returning the gradient magnitude allows edge gradients
values to be compared and weighted accordingly.

Satuaration Measure S: As an image is exposed for a longer period of time it
becomes desaturated. The less saturated the image, the more washed-out it ap-
pears until finally, when saturation is at zero, the image becomes a monochrome
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or greyscale image. This is used as another measure of how well exposed the
image is. The standard deviation of the three RGB values is calculated at each
pixel to generate this measure.

Well-Exposedness Measure FE: This is a measure to weight the value based
on its closeness to the maximum or minimum pixel values. Well exposed parts of
an image will consist of pixel values close to 0.5 and as values get closer to zero
or one they indicate under and over exposed areas. A Gaussian function is used
to calculate a weighting w for each colour channel intensity 7 independently at
each pixel and the values are multiplied to generate the final weighting F. A o
value of 0.2 is used as suggested by Mertens et al. [14].
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Fig. 2. The normalised weightings generated from the exposure measures for the images
in Fig[l Darker values indicate a higher weighting and indicate the areas from each
image which are better exposed.

A subset of all of the image measures can be used to select a preferred set
of features. If more than one measure is used they are combined by multiplying
and each can be weighted to vary the effect of each measure. For this paper all
three measures are used and weighted equally. Each aligned exposure image will
then have its own set of pixel value weightings. The weighting are normalised to
the range of 0 to 1 for the corresponding pixels in each exposure image as shown
in Fig.

To select the features for the final set the weightings at each feature location
are used. Only the features from the best exposed locations will be preserved.
The selection takes place over the area and scale that the feature was originally
extracted. At each location at the scale of the feature, o is used to calculate an
approximate radius of the feature; 60 [I0]. A Gaussian weighting of that radius
and with a standard deviation corresponding to the scale of the feature o is then
applied to the weights centred on the feature position. The resultant values are
summed across the total feature area and used to select the feature. A feature
is selected if the summed value is greater than that for the same location in all
the other images. The final set of features is shown in Fig.
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Fig. 3. The set of fusion features displayed on a rough exposure fusion image on the
left and on a binary fusion image on the right. The binary image shows which areas
are best exposed in each image and relate to the feature colours used in Fig. [Il The

arrows indicate features selected from image 1 and the turquoise features are
selected from image 2. The blue and green arrows are from the features which match
between the images and have been blended for the final feature set.

2.1 Feature Blending

The image alignment process uses RANSAC [20] to register matched features
and calculate a transform to align the images. The features which are successfully
aligned between images can be merged for the final fusion feature set by averaging
their vectors as they both must be in well exposed areas for them to match. The
alternative is to treat these features like any other and select one based on their
weightings.

2.2 Evaluation

The scenario for testing the feature fusion process is as follows:

A high contrast scene is obtained by using a spotlight in a darkened room or
locating an area of shadow. Two aligned exposures of the scene are captured,
each exposed correctly for the different parts of the scene. A third, target image,
is captured. This is done by taking a picture of the scene after the scene lighting
has been changed by turning on a larger brighter light source (the camera flash
or ceiling light) which allows the whole scene to be captured in a single LDR
exposure. Neither exposure image will match to all of the areas of the target
image but a high dynamic range image created from both images should. This
scenario relates to a real world scenario in which a well-lit target image has been
captured under controlled circumstances and an attempt is being made to locate
an object or scene where the dynamic range is large.

The two exposure images are used to create a tone mapped image using De-
vlin’s ] and Reinhard’s [16] techniques and an exposure fusion [14] image is
also generated as shown in Fig. @l If the exposure images are misaligned they
are aligned first to get the best possible results [20]. A set of SIFT features are
extracted from each resultant HDR representation. These processes represents
the AWF paradigm as they are ordered; alignment, weighting and then features.
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(a) Exposure image 1 (b) Exposure image 2 (c) Target Image
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Fig. 5. Feature matching examples represented by the parallel lines. The number in
brackets gives the number of matches. Note that there are more fusion features matches.

The two exposure images are used to create a set of fusion features. The three
sets of features are matched to the target image using the nearest and second
nearest neighbour technique described by Lowe [10]. All the features from both
LDR exposure images are also matched for comparison as shown in Fig.

2.3 Results

Thirty one aligned exposure pairs were used and Tab. [[lshows the average results
of matching to the target images. They show that fusion features perform better
than the synthetic images generated from exposure fusion and tone mapping in
high contrast scenarios. FAW has an advantage over AWF.

For the aligned image tests Tab. [Il shows that a higher percentage of the
features match from the fusion feature set. The correspondence ratio [13] is 40%

Table 1. The mean results for 31 test exposure image pairs showing the num-
ber of features extracted, the matched features and the correspondence ratio
(number of matches/total features) [13].

Fusion Features Tone Map Exposure Fusion All Features
Total Features 1165 1848 1690 2470
Matched Features 170 138 183 302
Correspondence Ratio 0.14 0.08 0.10 0.12
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greater than for exposure fusion, 75% greater than for tone mapping and 16%
greater than if all the features are matched. The correspondence ratio provides a
good indication of whether the images match well. Using the number of matched
features as an indicator is unreliable as one image may have more matches but
if it has a higher number of total features then there is an increased chance of
false positives.

The results show that the feature set for feature fusion is generally smaller and
there are fewer superfluous features. Exposure fusion generates, on average, 45%
more features but only generates 8% more feature matches therefore the extra
features provide little advantage. Of the 31 test cases the exposure fusion had
the highest correspondence ratio in 23 cases, the tone mapped images in 4 cases
and the exposure fusion images in 3 cases. In 1 case matching was unsuccessful
in matching any features for all three feature types.

3 Stereo Fusion Features

Stereoscopic systems are common in computer vision applications. To utilise
this and extend the dynamic range of such systems it is proposed that the two
cameras have different exposures values (EVs) resulting in a lower quality 3D
reconstruction but increasing the dynamic range for feature matching. This may
be preferable in some circumstances where an increased feature matching range is
desirable over high quality 3D. Stereo fusion features is the process of generating
fusion features from misaligned stereo images of varied exposure.

When using stereo images to create tone maps often, after warping, the images
do not align correctly. This is due to the absence of a homography which will
correctly warp all areas of the image and leads to ghosting and edge effects
which means that features extracted from a synthetic image generated from
these pairs may contain erroneous features. Fig. [fl demonstrates the problem.
Since the fusion feature process doesn’t generate new images or features this
problem is negated.

A compromise can be made between good 3D and good HDR images by
varying the exposure difference and baseline of the stereo images. A stereo pair
with a small baseline will generate a poor 3D representation but will allow the

Fig. 6. A pair of stereo images at 10° and a 2 EV difference, the second is warped to
align with the first. The tone map image generated on the right hand side demonstrates
the ghosting and other artefacts generated by tone mapping stereo images. Selecting
SIFT features directly from the tone map can therefore generate unreliable features.
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images to more easily registered for HDR. A large baseline has the opposite
effect. The exposure difference between the stereo cameras has an effect as a
large difference will make the dynamic range of the features increase but make
it more difficult to match features between the images. This is shown in Fig. [1
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Fig. 7. A graph showing the number of feature that are used to create a set of 3D points
from stereo pairs at various angles and exposures. The exposure axis values represent
the change in EV between the image pair. The data has been generated from 12 pairs
of images, similar to those in Fig. B using Bundler [6]. As the exposure and angle
difference increases the number of features that can be matched to create the cloud
decrease. This demonstrates the trade-off between the number of reliable 3D features
and the dynamic range captured.

Bundler [6], a structure from motion tool which utilises bundle adjustment,
can be used to generate a 3D model of the features and indicate which features
can be aligned, Fig.[8l This subset can be used for the projective transformation
from one image to the other. If the 3D data is not required RANSAC alone
[20] can be used for alignment as in the initial example. The second image
is transformed to align with the first. Features which can be aligned with an
projective transformation are surrounded by a bounding box, Fig.[§, and features

Fig. 8. The set of features selected from two stereo input images in Fig. [6l A lower
quality 3D point cloud is generated than if the EV values were the same but the
dynamic range of the feature set is higher. Features have been selected from the second
image on the toe area of the shoe which is over exposed in the first image because of
the light shining on it.
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outside this area may be inaccurate. This area decreases as the EV or baseline
increase. The fusion features process is then completed as before. The features
produced using stereo images will provide information about the presence of that
object in a scene. Features outside the bounding box are unreliable in their exact
location due to the lack of an projective transformation which will accurately
transform all the feature locations from the second image to the first. Localisation
can then rely solely on the features which match from the first image and those
within the aligned area.

3.1 Results

The evaluation has been conducted in a similar manner to the standard fusion
feature tests. A set of twenty eight stereo images have been used are the full set
of images shown in Fig. [0l They consist of the stereo pairs taken at measured
exposures and angles. The second image and its feature positions are warped
to best align to the first before exposure fusion takes place. The results are
shown in Fig. @ In all cases the greater correspondence ratio [I3] for feature
fusion demonstrates the advantages over the exposure fusion and tone mapped
techniques.

4 Analysis

The results clearly show the advantages of using the fusion features and FAW
over the synthetic images and AWF for these test cases. This is due to the arte-
facts, compression and changes in luminance which occurs when the synthetic
images are created. Any slight misalignment can affect the resultant SIFT fea-
tures whereas the fusion features are more robust to these errors. The fact that

- 1

= 0.9

T 0.8 'l

= | |

w 0.7 -

206 = = I
7]

0.5 u Feat
-ED.A | [T M | [ ] | | ] et
3-0.3 | ™ | I M | | | | | Fusion
Eo_z IJ | H M | | = Tone Map
mEREsnE =
o

0 ‘\hl“l ; 1 .‘I"‘ .I '. =il BN -I ' M Exposure
A A A A N XY A 3 YAy :
A i f\i"& ;\,‘3\ QQ\ m%’h;ué G;f," & 0;1“57\":3‘5'@'{;:\ &Qﬂq’dq;:ﬁ'g"dq@ £ ,\g,aﬁ, 0:{}, Fusion
: oS e S oS S S
& TSI FI LSS F I IS I F SIS

Stereo Pair

Fig.9. A graph showing the correspondence ratio (number of matches/total features)
for fusion features and features extracted from exposure fusion images generated from
28 pairs of stereo images. The x-axis shows the stereo pair disparity in degrees (plus
or minus refers to left or right of the first image) and the EV of the two images. The
features are all matched to a single target image taken at 0° and 0 EV at approximately
1 foot away from the shoe. The images used are the same as those used for Fig. [0 and
resemble those shown in Fig.
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the fusion feature process relies on features which have been extracted from
scene images with fewer processing stages. The weighted pixel averaging that
takes place in the exposure fusion and tone mapping processes effects the qual-
ity of the pixel values as poorly exposed areas can still negatively affect the final,
average, pixel values.

The difference between the feature fusion and other results for the stereo test
cases is because of the substantial ghosting effects which are exaggerated as the
stereo baseline is increased. The advantage of the stereo tests is more useful
in the lower baseline examples where the images align well with an projective
transformation and as such the use of the feature fusion technique is valid. As the
angle increases the 3D object cannot be satisfactorily aligned with a projective
transformation and as such aligned areas of the images which represent the same
positions in space become smaller thus the fusion feature technique becomes less
reliable. As such the area from which fusion features are selected can be limited
to a bounding box.

5 Conclusion

The process introduced in this paper allows sets of features to be generated
which allow matching to take place in high contrast environments. This is ad-
vantageous as it allows objects to be detected using features which may otherwise
be hidden in a single exposure image. The performance advantage of using the
fusion feature technique has been demonstrated over extracting features from
exposure fusion or tone mapped images. This is due to the artefacts and changes
that are introduced to these synthetic images which create features which do not
always match to features taken from images captured directly from a scene. The
advantages of FAW over AWF are clear as FAW reduces artefacts introduced in
the image processing stages.

Other advantages of using the process include the robustness to misaligned
3D images at small changes for non-projective scenes. Misaligned images will
make noisy tone maps and exposure images but using the fusion as a way of
selecting features is better than trying to generate new ones. The process gener-
ates a subset of the total features and generally generates fewer features then the
synthetic techniques so faster matching can take place. Fusion features doesn’t
require a HDR image to be generated therefore doesn’t require as many, resource
consuming, intermediate steps.

Future work will include comparison to other tone mapping operators and
testing other combinations of fusion feature quality measures.
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