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Abstract. In this paper, we propose a new method for real-time disparity 
estimation and intermediate view synthesis from stereoscopic images. Some 3D 
video systems employ both the left and right depth images for virtual view 
synthesis; however, we estimate only one disparity map at a virtual viewpoint. 
In addition, we utilize hierarchical belief propagation and convergence check 
methods to find the global solution rapidly. In order to use the virtual viewpoint 
disparity map for intermediate view synthesis, we build an occlusion map that 
describes the occlusion information in the virtual viewpoint region of the 
reference image. We have also implemented the total system using GPU 
programming to synthesize virtual viewpoint images in real time.  
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1  Introduction 

In recent years, various researches have been on a 3D video system as increasing 
interest in a 3D multimedia service. The 3D video system provides realistic 
multimedia services that offer 3D effects based on a binocular depth cue. It can be 
used in a wide range of multimedia applications such as immersive games, movies, 
presentations, video conferencing, 3D TVs and medical imaging. With the increasing 
demand of a 3D video display, MPEG has made an effort for a 3D audio-visual 
(3DAV) technology standardization [1]. The information of the 3D video display is 
characterized by a disparity map that consists of disparity vectors (DVs) for pixel 
pairs between the left and right images. As shown in Figure 1, virtual viewpoint 
images can be synthesized with respect to different virtual camera positions using the 
disparity map. Thus, disparity map estimation and virtual view synthesis are two most 
important parts in 3D video display. 

Many disparity map estimation algorithms for stereo image pairs have been 
proposed in the past, and they can be classified into two types. One type emphasizes a 
low computational complexity for real time implementation. The block matching 
algorithm (BMA) provides a good example for this type. Due to the low complexity, a 
quality of the resulting disparity map is lower and the low quality disparity map 
affects a quality of synthesized virtual view. The other type attempts to get an 
accurate disparity map with a higher complexity. For example, global energy 
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minimization algorithms are proposed in [2-4] for this purpose. Even though these 
methods can be used to synthesize high quality virtual viewpoint images, they 
demand a large amount of computation. So, their real time implementation is 
challenge.  

Most virtual viewpoint image generation methods use two disparity maps (left and 
right viewpoints) or single disparity map at one of two reference viewpoints.  First 
methods generate accurate synthesized image at a virtual viewpoint. However, it takes 
a long time to estimate two disparity maps. Second method needs half time for 
disparity estimation, but synthesis accuracy is lower than first one due to occlusion 
regions. 

 

 

Fig. 1. Outline of view synthesis method 

 
In this paper, we propose a real time virtual viewpoint synthesis method. In order 

to synthesize virtual viewpoint images in real time, we estimate disparity maps at the 
virtual viewpoint. Also we find convergence regions of the disparity map in the 
hierarchical belief propagation process. We cancel message updates at convergence 
regions to remove residual calculation by using a convergence map. After the 
disparity estimation process, we decide the occlusion map of the virtual viewpoint to 
select regions which can be back-projected. We synthesize the virtual viewpoint 
image using the virtual viewpoint disparity map and the occlusion map. Additionally, 
we implement the proposed method in real time using parallel programming called 
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CUDA. CUDA is the general purpose computing engine in NVIDIA GPUs that is 
accessible to software developers through industry standard programming languages. 

This paper organized as follows. In Section 2, related work about view 
interpolation is explained. In Section 3, our proposed method is explained. In Section 
4, the experimental results are given. The conclusion is presented in Section 5. 

2  Related Work 

There are many researches related to virtual viewpoint image synthesis techniques. 
Generally, left and right disparity maps are used for view synthesis [5]. As shown in 
Figure 2, this method estimates two left and right disparity maps and warp virtual 
images respectively. Then, two virtual images are summed by weighting function. 
Although it has heavy complexity due to two disparity estimation parts, it generates 
virtual images which are respectable quality. 

 

 

Fig. 2. Conventional view synthesis method 

 
Also, single disparity map estimation process can be used to synthesize a virtual 

viewpoint image. For instance, the single disparity map at left or right viewpoint can 
be used to generate virtual viewpoint image [6]. Omitting a disparity map estimation 
part of the other viewpoint leads it to fast execution. Qualities of view synthesis 
outputs are, however, lower than the first method due to occlusion regions which 
should only refer pixel information from the other viewpoint. 

In the global disparity estimation methods, the belief propagation algorithm is 
frequently used [7]. Although it produces an accurate disparity map, it is too slow to 
be practical. So, the hierarchical belief propagation algorithm is proposed [8][9]. It 
runs much faster than the previous algorithms while maintaining comparable 
accuracy. The main difference between the HBP and the standard BP algorithm is that 
the HBP algorithm works in a coarse-to-fine manner. In other words, the HBP 
algorithm estimates the disparity map with a smallest resolution, then it estimates 
higher resolution disparity maps with a previously estimated disparity map. The basic 
steps are: (a) initialize the messages at the coarsest level to all zeros, (b) apply the BP 
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algorithm at the coarsest level to iteratively refine the messages, (c) use refined 
messages from the coarser level to initialize the messages for the next level. 
Specifically, if X is a pixel at a coarser level, and its corresponding pixels at the finer 
level are X’i, i ∈ [1, 4], as shown in Figure 3. 

 

 

Fig. 3. Two levels in the coarse-to-fine method 

  
Two main parameters S and T define the behavior of the HBP algorithm, S is the 

number of levels and T is the number of iterations at each level. Generally, we 
estimate disparity maps with five levels and ten iterations (S=5, T=10). Actually, we 
only compute beliefs (disparity map) at level 0 in the HBP algorithm. 

3  Virtual Disparity Estimation and Convergence Check 

In this section, we describe the proposed method for the real time virtual viewpoint 
image generation using the virtual viewpoint disparity estimation method and the 
convergence check method of the HBP algorithm. As shown in Figure 4, our method 
contains following steps. 

 

 

Fig. 4. View synthesis using virtual disparity estimation 
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3.1  Virtual Viewpoint Disparity Estimation 

Global stereo matching methods find corresponding points using iterative energy 
minimization algorithms. An energy function E considers photo-consistency (a 
corresponding pixel should have the same intensity value) and piecewise smoothness 
(neighboring pixels are likely to have the similar disparity value). 

 

,ݔሺܧ  ,ݕ ݀ሻ  ൌ ,ݔௗ௔௧௔ሺܧ  ,ݕ ݀ሻ  ൅ ,ݔ௦௠௢௢௧௛ሺܧ ,ݕ ݀ሻ             (1) 
 

As shown in Figure 5, we directly estimate the disparity map at the virtual viewpoint. 
For this case, we calculate data cost by using 

 ∑ หܫோ൫ݔ ൅ ݀௏_௅ሺݔ, ,ሻݕ ൯ݕ െ ݔோ൫ܫ െ ݀௏_ோሺݔ, ,ሻݕ ൯ห௫,௬ݕ           (2) 
 

where dV_L/R and IL/R are virtual viewpoint disparity maps and input images. 
Relationship between disparity values of dV_R and dV_L is 

 ݀௏_ோሺݔ, ሻݕ ൌ ݄ܽ݌݈ܣ ൈ ݀௏_௅ሺݔ,  ሻ                   (3)ݕ
 

where Alpha is a relative distance from the virtual viewpoint to the right viewpoint 
when a distance between the left viewpoint and the virtual viewpoint is one.  

 

 

Fig. 5. Virtual viewpoint disparity estimation 
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most plausible value by using surrounding pixel information. Most of the presented 
hole filling methods use image interpolation or in-painting algorithm. In order to get 
best quality hole filled images, neighboring background pixel values and their 
geometric information should be used. The reason why we use generally background 
region information is that background pixels rather than the foreground ones as the 
disoccluded area is more reasonable by definition of the disocclusion [10,11]. Thus, 
we fill up hole regions with neighboring pixel values which have background 
disparities. 

3.5  GPU Implementation 

For the real time implementation, we use the GPU parallel programming which 
executed on the GPU. The architecture of CPU and GPU are very different. Although 
GPU has a small number of instruction control unit, it has a lot of cores capable of 
calculating floating points operation. Thus, GPU has a Single Instruction Multiple 
Threads (SIMT) structure [12]. So, image processing algorithm is very suitable for 
GPU programming due to that all of image pixels may have same operation. There is 
an important condition of the SIMT parallel processing. It is a data independency 
between all data executed simultaneously. We implement whole process with the 
parallel GPU programming while maintaining a data independency.  

4  Experimental Results 

In order to evaluate performance of proposed algorithm, we have implemented three 
methods (method A, method B, and proposed method) on CPU and additionally 
applied GPU parallel programming to proposed method. Because fast processing time 
and acceptable visual quality are key points of our algorithm, we measured processing 
time and visual quality by calculating PSNR value between original and output 
images. Furthermore, we check these measurements with other two methods. Method 
A and B are conventional methods. Method A interpolates the virtual viewpoint 
image using left and right disparity maps. Method B uses only a left disparity map. 
For the experiment, we performed tests on several rectified stereo images which listed 
in Table 1. Test images are obtained from Middlebury stereo website and MVD test 
materials. Test stereo set includes not only stereo images, but also intermediate 
viewpoint images to verify synthesis quality by comparing original images.  

Table 1. Specification of the test stereo image set 

Sequence Teddy Poster Cones 
News 
papers 

Book 
arrivals 

Size 640x480 480x416 480x416 640x480 640x480 

max disparity 30 20 20 50 50 
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Fig. 10. Execution time of three methods 

 

 

Fig. 11. Execution time in CPU and GPU 

5  Conclusions 

In this paper, we present the real time view interpolation method. In order to make it 
more rapidly, we apply the virtual viewpoint disparity estimation method and GPU 
parallel programming. Previous methods estimate some duplicated and unnecessary 
disparity values for the certain viewpoint. Thus, our proposed method reduces 
complexity and makes accurate synthesized images by eliminating surplus 
calculation. We designed the data cost function for the virtual viewpoint disparity 
map. The hierarchical belief propagation algorithm is used to minimize the energy 
function. In the view synthesis part, we warp pixels from reference images to the 
virtual viewpoint using the virtual viewpoint disparity map. In order to check a 
synthesized image quality, we calculate PSNR values by comparing original images 
and synthesized images. Our results are generally 0.3dB higher than previous method. 
For the real time implementation, we utilize the high speed GPU parallel programming 
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called CUDA. As a result, we can synthesize the virtual viewpoint image at a rate of 
30 frames per second at most. 
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