Shape Matching and Recognition
Using Group-Wised Points

Junwei Wang, Yu Zhou, Xiang Bai, and Wenyu Liu*

Department of Electronics and Information Engineering,
Huazhong University of Science and Technology, Wuhan, China
wjw.200120010163.com, zhouyu.hust@gmail .com, xiang.bai@gmail.com,
liuwy@hust.edu.cn

Abstract. Shape matching/recognition is a very critical problem in the
field of computer vision, and a lot of descriptors and methods have been
studied in the literature. However, based on predefined descriptors, most
of current matching stages are accomplished by finding the optimal cor-
respondence between every two contour points, i.e., in a pair-wised man-
ner. In this paper, we provide a novel matching method which is to find
the correspondence between groups of contour points. The points in the
same group are adjacent to each other, resulting in a strong relation-
ship among them. Two groups are considered to be matched when the
two point sequences formed by the two groups lead to a perfect one-to-
one mapping. The proposed group-wised matching method is able to
obtain a more robust matching result, since the co-occurrence (order)
information of the grouped points is used in the matching stage. We test
our method on three famous benchmarks: MPEG-7 data set, Kimia’s
data set and Taril000 data set. The retrieval results show that the new
group-wised matching method is able to get encouraging improvements
compared to some traditional pair-wised matching approaches.

Keywords: Shape matching, Pair-wised matching, Group-wised,
Co-occurrence.

1 Introduction

Shape description and matching is a very critical problem in the field of computer
vision. There are some important issues to be noted. First, geometric transfor-
mation invariance should be satisfied when matching two shapes, i.e., one shape
and its translated /rotated/scaled versions are supposed to be very similar. Next,
some intra-class variations, such as noise, articulation, local deformation and oc-
clusion, should be carefully treated. The influences of these variances to shape
similarity measure should be decreased to an acceptable level.

To handle the complex situations listed above, several shape representations
and descriptors with “rich” shape information have been studied in the last
decade, including Visual Part [2], Shape Context (SC) [3], Inner-distance Shape
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Context (IDSC) [9], Triangle Area Representation (TAR) [II], and Shape Tree
[10]. Latecki and Lakamper introduced one novel shape representation called
Visual Part [2]. Shapes are simplified by a process of digital curve evolution
(DCE) and are further decomposed into perceptually meaningful parts, which
are called Visual Parts. Shape matching is performed by looking for the optimal
correspondence of visual parts. Shape Context [3], which utilizes the geometric
relationship between contour sample points, is one of the most classical shape
descriptors in the literature. For each sample point on one shape contour, its
Shape Context captures the spatial distribution of all the other sample points
relative to it, which offers a globally discriminative characterization. Ling and
Jacobs proposed a novel distance definition called inner distance as a replace-
ment for the usual Euclidean distance. The inner distance is defined as the length
of the shortest path between landmark points within the shape silhouette, which
is articulation insensitive and more effective at capturing part structures. Using
the inner distance, Shape Context can be extended to a novel descriptor called
Inner-Distance Shape Context [9]. Triangle Area Representation [I1] presents a
measure of convexity/concavity of each contour point using the signed areas of
triangles formed by boundary points at different scales. The area value of triangle
is a measure for the curvature of corresponding contour point. This representa-
tion is effective in capturing both local and global shape characteristics. Shape
Tree [I0] is one classical segment-based shape matching algorithm, which pro-
posed a hierarchical representation for contour curves. The original curve can be
broken into two halves by the middle point on it, and each of the two sub-curves
can be broken into its halves. This hierarchical description can be represented by
a binary tree, which is called the Shape Tree of a curve. The matching process
is performed by comparing the hierarchical segments explicitly.

The methods introduced in the above paragraph are all effective shape de-
scriptors. However, among all these methods, the matching stage is accomplished
by finding the optimal correspondence between contour sample points or local
parts. The sample points or shape parts, which are represented by the predefined
descriptors, mainly consist of local characteristics of given shapes. For example,
Shape Context, which is one of the most classical descriptors in recent years,
pays more attention to local shape features. The bins in the histogram of Shape
Context are uniform in a log-polar space, which makes it much more sensitive to
nearby sample points than to points farther away [3]. Consequently, the contour
sample points or parts are matched together probably because the two points or
parts have similar local shape characteristics. This kind of matching strategy is
sometimes not robust enough to deal with complex situations, when there are
certain amount of inter/intra class variations.

In this paper, we present a novel method to achieve more robust shape match-
ing. Our motivation comes from this observation: two contour points should take
a correspondence, not only because these two points are very similar, but also
the points related to them are very similar as well. If we take related points into
consideration, the matching result is much more likely to be correct. Therefore,
we put related points into one group, and when we perform matching between
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two points, we consider matching their corresponding groups. We call this novel
and robust matching strategy group-wised matching. In the next section, we will
give some cues on how to judge which are related points and how to define
groups.

A similar manner to our idea is the Dynamic Programming (DP) algorithm,
which has been widely used for shape matching (e.g., by the method of Multi-
scale Convexity Concavity (MCC) [6] and Inner-Distance Shape Context (IDSC)
[9], etc.). In DP algorithm, the order information of contour sample points is
utilized as a global constraint for optimal correspondence. However, in current
DP algorithm, local point-wise misalignment is allowed, and the correspondence
is still found between single points, not group of points. We combine our group-
wised matching approach with the usual DP algorithm, and achieved better
retrieval results (see experiments in Section [)).

The remainder of this paper is organized as follows. Section 2] introduces the
proposed group-wised shape matching algorithm in details. Section [3] presents
the experimental results. Finally, Section ] makes some conclusions.

2 The Proposed Group-Wised Method

In this Section, we give the definition what is a group and the group-wised
matching method in details.

2.1 Point Groups

Let S = {p,;} (i =1,...,N) denotes the sequence of equidistant sample points
on the outer contour of a given shape S, where the index i is according to the
order of the sample points along the contour in the counter-clockwise direction.
In our implementation, we set the number N = 100, which is consistent with
the settings in many recent works, such as [6] and [9].

To build up the group-wised matching strategy, at first we need to give the
definition of group. As stated in the previous section, it is a good choice to
combine one given point and its related points on the shape contour to form a
group. Then the problem is which point is related to the given point. We adopt
one simple strategy here: the neighboring points are treated as the related points.
That is because related points are more likely to get close to each other than
get far away from each other. Just take the shape boundary of a human-being
as an example. The contour points representing his/her “ears”, “eyes”, “nose”
and “mouth” are closely related to each other, as all of them are the elements
of the “head”. On the contrary, the contour points representing his/her “hands”
and “feet” are almost unrelated to each other. Figure [l gives another example
of related points on the boundary of a horse shape. In Figure [, some related
points on the head of the horse are labeled as red dots connected by solid lines;
some unrelated points on its legs and back are labeled as blue dots connected
by dashed lines.

For the reason stated above, we choose points close to each other to form
a group. Specifically, for one sample point p;, we choose k nearby points on
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A Group Consisting of
Related Points
e \\

Fig.1. An example of related/unrelated points. The “horse” shape is chosen from
MPEG-7 CE-Shape-1 part B database [I]. See more details in the text.

the left hand side p,_1,P;_9,.-.,P;_x, and k nearby points on the right hand
side P; 1, P42, -->P;y- Note that the number of points on the left hand side
is equivalent to the number of points on the right hand side, which leads to a
balance description. With these 2k + 1 points, we are able to define a meaningful
point group, G;. The point p; is right on the center of this group, which is
regarded as the centroid of the group G;. As there is co-occurrence (order)
information among these contour sample points, the point group G; is indeed a
point subsequence belonging to the point sequence {p;} (i = 1,...,N) on the
outer contour of the shape S:

Gi = (Pi—k»Pi—kt1>-+sPi1,Pi Pit1s -+ Pivk—1>Pisk)- (1)

The parameter k, which controls the scale or the point number of the group,
is regarded as the radius of the group. When k increases, the neighborhood of
the point p,; increases, and more points (with more shape characteristics) are
included into the group.

For every sample point p, (¢ = 1,...,N), we define a point group G; (i =
1,..., N). Then the whole shape S is represented by a sequence of point groups:

G=6(S)=(G1,Ga,...,Gn). (2)

2.2 Group-Wised Matching

For the task of shape recognition, usually a shape similarity or dissimilarity
(distance) is computed by finding the optimal correspondence of contour points.
Then the shape dissimilarity is the sum of the distances of the correspond-
ing points. As defined in Section 2] every sample point is represented by one
group consisting of itself and several neighboring points. Consequently, the shape



Shape Matching and Recognition Using Group-Wised Points 397

similarity is computed by finding the optimal correspondence of the predefined
groups, and the shape dissimilarity value is the sum of the distances of the
corresponding groups.

To match two shapes X,Y (represented by two sequences of point groups),
the dissimilarity between any pair of points (indeed groups) should be computed.
Let p;,q; denote contour points of X, Y, respectively, and G;, G; denote corre-
sponding groups for the two points. When we perform a matching between these
two sample points p;, q;, we indeed perform a matching between the two groups
G;,Gj. To match the two groups, we consider not only the cost for mapping
the two center points (i.e., the centroid of the groups) p;, q;, but also the costs
for mapping their neighboring points within corresponding groups. Specifically,
if the original pair-wised cost (feature distance) for mapping two points p,, q;
(i,j =1,...,N) is denoted as c(p;, q;), then our group-wised matching method
defines the mapping cost for the two groups G;, G; as:

k
d(p;, Qj) = d(G;, Gj) = C(Pm‘lj) + Zwt{c(pi—t7qj—t) + C(pi+t7qj+t)}' (3)

t=1

In this way, shape matching is achieved through a group-wised manner. That is,
not only the feature distance between the two points p;, q; but also the feature
distances between the neighboring points of the two points p;,q; are utilized.
Clearly, the pair-wised cost information ¢(p;, qj) is completely included in the
group-wised cost d(p;, q;)-

Note that the co-occurrence (order) information of every point group is per-
fectly included into the mapping cost defined in Equation 3] as we assume that
the two groups G; and G; must have a perfect one-to-one mapping in their se-
quence point order, i.e., p;_; corresponds to q;_, and p,, corresponds to q;_,
forallt =1,..., k. Figure[2shows the idea of our group-wised matching method
along with the difference between group-wised and pair-wised approaches.

This group-wised mapping cost can also be regarded as one novel pair-wised
mapping cost for each pair of two points: the original pair-wised cost ¢(p;, qj)
is replaced by the novel pair-wised cost d(p;,q;) for all 4,5 =1,..., N.

In Equation Bl w; is the weight coefficient for every neighboring point. In
order to be able to tolerate boundary deformations, the costs of mapping points
closer to the two points p;,q; are treated as more important than the costs
of mapping points farther away from p;,q;. To achieve this, the value of w;
should become smaller and smaller (approaching zero) when ¢ is increasing.
In our implementations, the weights of neighboring points are set to decline
exponentially, i.e., the weight coefficients are defined as follows:

1
Wt = ot . (4)
According to Equation Bl we calculate the novel mapping cost for every pair of

sample points p;, q; (i, =1,...,N). With these costs, we obtain a cost matrix
D(X,Y) for the two shapes X,Y:
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(b)

Fig.2. An example of (a) pair-wised matching and (b) group-wised matching. Note
that in our group-wised matching approach the points follow a perfect one-to-one
mapping according to the order of the sample points along the shape contours.

D(XvY) = (di,j) = (d(piaqj))aiaj =1,.. ~aN~ (5)

D(X,Y) is the input for any shape matching algorithm. In our method, we
choose the Dynamic Programming (DP) algorithm as the matching method.

2.3 Analysis

Here we give a brief analysis for our method. As introduced in precious sections,
the contribution of our method is a more robust matching approach, which
results from including more local shape characteristics and the co-occurrence
(order) information of contour points into the matching stage. As we see, the orig-
inal shape descriptor is undefined, thus the original feature distance (c(p;,q;))
is also undefined; this implies that there is no constraint to the original shape
descriptor for sample points or local parts. This makes our method very easy to
be combined with many current shape descriptors.

There is another valuable property for our method. According to Equation [3]
our method can also be regarded as a novel descriptor, which is simply the com-
bination (sequence) of several predefined descriptors. That is, for every sample
point p; (i =1,...,N), we introduce a novel descriptor H;:
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Hi = (Fi—p,Fi_pyr1,... . Fi1, Fi, Fiqa, ... Figp1, Figr), (6)

where F} (t = i—k,...,i+k) is the predefined descriptor for the tth sample point
within the group G;. Then the group-wised mapping cost defined in Equation [3]
is just a novel pair-wised mapping cost as the feature distance between the two
sample points p;, q; based on their novel descriptors H;, H;:

k
d(p;, q;) = c(Hi, Hj) = Z c(Fitt, Fye)- (7)
t=—k
In this way, our method is able to inherit the properties of the primary de-
scriptors. For example, if we adopt the primary descriptor as Shape Context,
then the group-wised manner automatically obtains all the properties of Shape
Context. This property makes our method very convenient when facing different
applications as long as we are able to change the predefined descriptors freely.
The computational complexity of our method remains unchanged compared
with the predefined descriptors. This results from Equation[3] which implies that
in our method the only work we need to do is to sum up some original costs
(feature distance) together to create some new costs. Since for every sample
point, the number of costs being added together is the same (which is determined
by the parameter k), this process can be implemented by matrix operations,
whose computational complexity is even much lower than the complexity of
feature distance computation. As a result, our group-wised algorithm doesn’t
bring any additional computational burden to the whole shape matching system,
although it will make some more computational demands.

3 Experiments

This section gives the experimental results using our method. Without losing the
generality of our method, the predefined descriptor is chosen as Shape Context
(SC) [3], one of the most classical descriptors in the literature. The most impor-
tant parameter in our method is the group radius k. In our implementations, k
is equal to 2 for all situations. We test the effect of the proposed method with
three widely used shape databases, i.e., MPEG-7 data set [I], Tari1l000 data set
[13] and Kimia’s 99 data set [5].

3.1 MPEG-7 Shape Database

The database of MPEG-7 CE-Shape-1 part B [I] is very famous in shape match-
ing and classification. This database consists of 1,400 binary images from 70
shape categories, i.e., 20 images per category. This data set is rather difficult
since there are some large intra-class variances. Some examples of this data set
are given in Figure [l Following the common performance measurement “bulls-
eye test” [0][9][1I][3], we treat every image in this database as a query, and
count the number of correct images in the top 40 matches.
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Fig. 3. Example shapes in MPEG-7 CE-Shape-1 part B database [I]

Table [l presents the retrieval rates of our method and some classical descrip-
tors. We see that the proposed method outperforms Shape Context when our
method treats SC as the predefined descriptor. Besides, it outperforms some im-
portant works such as Inner-distance Shape Context (IDSC) [9] and Multi-scale
Convexity Concavity (MCC) [6] as well. Our method also achieves a consid-
erable retrieval rate compared with some recent works such as Triangle Area
Representation (TAR) [II] and Shape Tree [10].

Table 1. Retrieval rates (Bullseye) of different methods on MPEG-7 CE-Shape-1 Part
B data set [1]

Algorithm Score
Shape Tree [I0] 87.70%
SC+Group-wised Matching+DP (Ours) 87.15%
TAR [I1] 87.13%
SC+DP [15] 86.80%
IDSC+DP [9] 85.40%
MCC [6] 84.93%
Generative Models [7] 80.03%
SC+TPS [3] 76.51%
Visual Parts [2] 76.45%

3.2 Kimia’s 99 Database

The Kimia’s 99 shape data set [5] is also very famous in shape matching and
recognition. There are some occlusions, articulations and local deformations,
thus it is suitable to be used to check both contour-based and skeleton-based
shape descriptors. This data set includes ninety nine binary images from nine
categories (see in Fig. H). The retrieval result is summarized by counting the
correct number of top 1 to top 10 nearest matches. The best possible result for
each of them is 99.
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Fig. 4. The ninety-nine shapes in Kimia’s 99 database [5]
Table 2. Retrieval results on Kimia’s 99 data set [5]

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC+TPS [3] 97 91 838 85 84 77 75 66 56 37

Generative Model [7] 99 97 99 98 96 96 94 83 75 48

IDSC+DP [9] 99 99 99 98 98 97 97 98 94 79

SC+DP 98 97 98 98 97 97 96 97 96 80

TAR [§] 99 99 99 98 98 97 98 95 93 80
SC+Group-wised Matching+DP (Ours) 99 97 97 97 96 98 96 96 95 89
Shape Tree [10] 99 99 99 99 99 99 99 97 93 86

Table 2l gives the results of our method and some recent descriptors. Again,
we find that our method outperforms Shape Context, and it is comparable with
IDSC and TAR. The best result is achieved by Shape Tree [10].

3.3 Taril000 Database

The Taril000 data set [I3] is also a large database for binary images. It consists
of 1,000 binary images from 50 shape categories, i.e., 20 images per category,
which is the same as in MPEG-7 database. Some of these categories are also
included in MPEG-7 database, such as brick, cattle, cellular, phone,face, flatfish,
fountain, key,ray, teddy, watch and so on. Figure [J] gives some examples for this
data set. When testing the retrieval performance, we follow two rules, one is the
“bulls-eye test” introduced in Section Bl and the other is the Precision-Recall
(P-R) curve.

When following the “bulls-eye test”, the score of our method (94.58%) outper-
forms the result of Shape Context (94.18% [15]). Figure [0 shows the Precision-
Recall curves of our method, Shape Context along with some other methods.
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Fig. 6. Precision/Recall curves on Taril000 database [I3]

From the P-R curves we see that our method slightly outperforms Shape Con-
text, and significantly outperforms the methods in [13].

4 Conclusions

This paper presents one novel shape matching method called Group-wised
Matching. As shown by its name, this method extends the usual pair-wised
matching algorithm to a group-wised matching framework. One point is matched
to another when the two corresponding groups achieves an excellent mapping. As
the group of one contour sample point consists of its neighboring points, more
shape characteristics along with the co-occurrence (order) information of the
point sequence on the shape contour are included within the matching stage. As
a result, the proposed matching method is able to obtain a more robust match-
ing result. The robustness and power of our method has been demonstrated
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by the shape matching and retrieval experiments on three famous benchmarks:
MPEG-7 data set, Kimia’s data set and Taril000 data set. The retrieval results
show that the new group-wised matching method is able to get encouraging
improvements compared to some traditional pair-wised matching approaches.

Several extensions of the proposed approach are possible. In this paper, the
mapping cost for two groups is defined in a simple way, as every group is re-
graded as a short point sequence. In fact, the group may also be considered as
a graph, and some current graph matching algorithms can be used to define the
group-wised matching cost. Currently, the neighborhood or the size of the group
(controlled by the parameter k) for every sample point are completely the same.
This strategy, although very simple and easy to implement, may be improved.
An algorithm may be invented to calculate one suitable value for the parameter
k for each sample point. Next, the group-wised manner may not only be used
for contour points, but also be used for shape instances. Finally, our method
may be extended to some other problems and applications such as point pattern
matching [4] [12] and object detection in real images [16] [14].
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