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Abstract. In this paper, a 2D to 3D stereo image conversion scheme is proposed 
for 3D content creation. The difficulty in this problem lies on depth estima-
tion/assignment from a mono image, which actually does not have sufficient 
information. To estimate the depth map, we adopt a strategy of performing fo-
reground/background separation first, then classifying a background depth pro-
file by neural network, estimating foreground depth from image cues, and finally 
combining them. To enhance stereoscopic perception for the synthesized images 
viewed on 3D display, depth refinement based on bilateral filter and HVS-based 
contrast modification between the foreground and background are adopted. 
Subjective experiments show that the stereo images generated by using the 
proposed scheme can provide good 3D perception.  

Keywords: 2D to 3D image conversion, background depth profile, stereoscopic 
perception, depth cue estimation. 

1 Introduction 

3D video applications, such as 3D multimedia, 3DTV broadcasting, and 3D gaming, 
are getting more popular due to an incredible viewing experience compared with 2D 
video. Among them, the 3D digital frame is promising in near future’s consumer 
electronics products. Nowadays in the market, its LCD panel has been manufactured in 
a size of 7 inches that can be viewed without glasses (i.e., naked eye). A traditional 2D 
color image, either raw or decoded data, can then be converted into a left-and- right or a 
multi-channel format so as to be viewed on 3D displays. 

To have a capability of multi-view conversion, the depth information that originally 
does not exist in the 2D color images needs to be estimated. Then, the Depth Image 
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Based Rendering (DIBR) technique can be used to render/synthesize stereo or mul-
ti-views. Currently, researchers have proposed several 2D to 3D conversion algo-
rithms for static images [2,13-15,17] and dynamic videos [4-6,12], aiming to mitigate 
the insufficiency of 3D contents. Due to less depth cues (e.g., motion) that can be 
found compared to video, images’ 2D to 3D conversion is much more challenging. 

Recent researches about automatic depth estimation from 2D photographic images 
can be divided into two categories. The first one is depth from defocus/focus. S. K. 
Nayer and Y. Nakagawa [1] explored the relationship between the focus level and the 
object distance from the focused plane, called SFF (Shape from focus), to estimate the 
depths. This method demands multiple images captured with different focal lengths, 
which is beyond our discussion. V. P. Namboodiri and S. Chaudhuri [2] proposed a 
method to perceive the depth layers from a single defocused image, called DFD 
(Depth from defocus). They estimate the blurring degree of each pixel and use it for 
assigning the relative depth. The other category of 2D depth estimation is based on 
multiple depth cues. For example, in [13], Hough transform is used to detect the va-
nishing point as the geometric cue, by which an initial depth map can be constructed. 
The depth map is then refined based on the texture cues extracted from the image 
segmentation result. In [14], wavelets transform of luminance (Y) component is used to 
detect high frequency of the foreground objects. For pixels of high spatial frequency, 
the depth is assigned larger (i.e., nearer). Their method is however preferably applica-
ble to close-up images. On the other hand, Liu et al. [15] excludes the computation of 
depth cues from texture, contrast, or motion vector, but adopts a semantic-based algo-
rithm which analyzes each image into parts of sky, land, building, etc. and assigns 
depths according to the result of semantic classification. On the other hand, Philips 
company [3] analyzes the image content to fit a background depth model. Discrete 
Cosine Transforms (DCTs) of the horizontal and the vertical projection profiles are 
performed and then a classifier is used to determine a best fit model according to the 
transformed coefficients.   

In view of the human visual system (HVS), 3D space extensity perceived by human 
beings is mainly contributed from a layered or structured background depth and the 
relative depth between the foreground and the background. Based on this concept, we 
propose in this paper a 2D to 3D image conversion algorithm that integrates the 
processes of foreground/background separation, relative depth estimation for fore-
grounds, classification of and combination with a structured background depth pro-
file, and post processing. Note that our classification of background depth profile is 
based on features of local texture gradient and local edge direction, aiming to provide 
better classification than that based on DCT coefficients of projection profiles. Our 
scheme is more generic and then more suitable for the conversion of 2D images in-
cluding indoor, outdoor, landscapes, portrayal, etc. 

The remainder of this paper is organized as follows. Section II describes the pro-
posed depth estimation algorithm. Section III elaborates details of post processing to 
enhance the perceived stereo quality. In Section IV, experiment results are given and 
finally Section V draws some conclusions. 



2D to 3D Image Conversion Based on Classification of Background Depth Profiles 383 

2 Proposed Depth Estimation Algorithm 

Our proposed image conversion algorithm is illustrated in Fig.1, which consists of 
two parts: depth estimation and post processing. First, a segmentation-based method 
is applied to extract the foregrounds. Then the foreground depth and the background 
depth profile are estimated separately; the former is based on multiple depth cue esti-
mation, while the later is based on neural classification. To enhance the perceived 
depth on a stereoscopic display, the initial depth map is refined by using the color 
information (e.g., alignment of color and depth edges) and the relative contrast between 
the foreground and background regions are tuned based on HVS. Finally, the refined 
color and depth information are both used to synthesize the stereo image pair by depth 
image based rendering (DIBR) technique. 

2D image

Depth estimation 

Foreground/ 
background 
separation 

Foreground 
depth cue 
estimation 

background 
depth profile 
classification

image color 
enhancement

stereo 
image 

Post processing 

depth 
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Fig. 1. The proposed 2D to 3D image conversion algorithm 

2.1 Foreground/Background Separation 

To extract the foreground regions, we adopt a strategy of performing region segmen-
tation first and subsequently identifying regions that possibly belong to the fore-
grounds. There are several well-known region segmentation algorithms that have been 
proposed in literature. Among them, the mean-shift algorithm [10] is popularly used. 
Fig.2(b) demonstrates the segmentation result. 

It is a challenging work to identifying foreground regions without some a priori 
knowledge. Based on an observation that foreground objects often occur at the central 
part of a frame (at least this assumption is valid for the digital frame application), we 
devise sampling boxes, as shown in Fig.2(b), to make statistics about the foreground 
(red) and background (green) color information. Since the pixel colors have been 
quantized by mean-shift algorithm, the results of color statistics will be limited. De-
note the kinds of colors existing in the central and outer regions be 

},...,1{ MiocOC i ==  and },...,1{ NibcBC i == , respectively. Our goal will be to delete 

from BC the colors that possibly belong to foregrounds. Colors that retain in the re-
vised CB ′  will be used to extract the background regions. 
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Our method to classify the regions of a color ibc  in BC is to design filters based 

on a priori. A filter is used to sift out a color ibc  from BC if it also occurs in OC and 

satisfies a certain criterion according to some region features (note that ibc  may 

contain several disjointed regions in the frame). Region features are defined to  
include: position ),( yx and size ),( yx ΔΔ of the smallest enclosing rectangle, and com-

pactness (the ratio between the region area size and yx Δ⋅Δ ). The criteria used in fil-

ters may be, e.g., the bottom y of a background region should not be lower than a 
threshold (a lower region most probably belong to the foreground); regions of larger 

xΔ are possibly foregrounds. Fig.2(c) shows an example of foreground extraction 
(i.e., classifying regions of colors in CB ′ as backgrounds and as foregrounds, other-
wise). It can be seen that the result is satisfactory. Surely, the use of filters is not suf-
ficient to sift out all false background colors in BC. 

 

  
(a) (b) (c) 

Fig. 2. (a) Original image, (b) result of mean-shift segmentation and the sampling boxes for the 
foregrounds (red) and the backgrounds (green), (c) identified foreground regions (shown with 
their mean-shift colors) 

2.2 Foreground Depth Estimation 

The cues for foreground depth estimation include texture gradient, sharpness, and face 
detection. Normally, a nearer object has stronger texture gradient and sharpness. 
However, these two cues are often indistinctive for the human face. We then adopt 
skin-color detection as an auxiliary tool to identify human faces as foregrounds. Note 
that since the depth image is usually smooth (i.e., of low spatial frequency), we cal-
culate the depth cues based on blocks of 8×8 pixels to reduce the processing time.  

(a) Texture gradient 
The texture gradient of each pixel is calculated by using the Law’s eight masks [7]: 
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where ),( yxI  is the intensity value at position (x,y), and wi(k,l), i=1~8, denote the 

Law’s masks. The texture gradient for each block is then defined as: 
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where Tt1 is a predefined threshold and (u,v) is the block index.  

(b) Sharpness 

Empirically, edges of a near object have a sharper contrast than those of a far object. 
We define the variance and contrast of the graylevel in each block as the cues: 
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where vuI , , max
,vuI , and min

,vuI  represent the average, maximum and minimum pixel 

values within the (u,v)-th block, respectively. 

(c) Face cue  

First, the input image is transformed from RGB to YCbCr color space. Pixels that 
satisfy conditions in both the RGB and YCbCr spaces are identified as the skin-color 
pixels [8]. Also, human’s hair [9] (black is assumed) can be detected by using the 
algorithm proposed in [9]. The skin-color and hair-color pixels are united to form the 
human’s information and assigned with a depth cue pf =255; otherwise pf =0. 

(d) Depth cue fusion 

Finally, the depth cues are fused to generate the depths for pixels located by the fore-
ground mask obtained in Section 2.1 through Eq.(5): 

)v,u(f))v,u(fw)v,u(fw)v,u(fw()v,u(f PTCV ⋅+⋅+⋅= 321 , (5) 

where 1w ~ 3w are predetermined weights ( 01321 .www =++ ) and “ ” means pix-

el-wise maximum extraction. Since the depth cues are calculated in terms of blocks of 
8×8 pixels, we apply a simple bilinear interpolation to rescale the foreground 
depth ),( vuf  to match the size of the input image. 

2.3 Background Depth Profile Classification 

We use a three-layer BPNN (Back-propagation Neural Network) to classify an image 
to one of the 5 types of background depth profiles. Figure 3 shows the 5 depth profiles 
defined in our system. The “1: up-bottom progressive” type is mostly often used in 
2D-to-3D conversion. The “2: left-right progressive” and “3: right-left progressive” 
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(a)                  (b)               (c) 

  

(d)              (e) 

Fig. 3. Background depth profiles (a) up-bottom progressive, (b) left-right progressive, (c) 
right-left progressive, (d) indoor, and (e) close-up 

show different increasing styles of depth. The “4: indoor” is most suitable for indoor 
scenario that constructs the strongest space extensity. On the other hand, “5: close-up” 
assumes the background depths all to zero, thus protruding the foreground objects 
substantially. 

Features used in our neural network include: 

1. local edge direction: The input image is divided into 3×3 regions, each is calculated 
the edge direction by using horizontal and vertical Sobel operator. All edge direc-
tions are quantized into 8 principle ones, each spaced by 45 degrees. The direction 
histograms of these 9 regions thus form the features of 72 dimensions.  

2. local texture gradient: the average depth cues Tf in these 9 individual regions, 

calculated based on Eq.(2), are also adopted as features of 9 dimensions. 

Our algorithm is based on a similar observation in [16] that edge directions will have a 
dominant pattern which can be used to calculate the vanish point. Hence features based 
on local edge direction and texture gradient will be much more promising in practice. 
The three-layer neural network carried out to classify the background depth profile of 
each input image have 81 (72+9) input neurons, 50 hidden-layer neurons, and 5 output 
neurons. All input features are first normalized to be between 0.0 and 1.0. The output 
neuron with the highest score is selected as the background depth profile. 

2.4 Combination of Foreground and Background Depths 

The foreground and background depths obtained above are individually normalized to 
),( maxmin

FF gg  and ),( maxmin
BB gg , respectively. These two sub-ranges can be fully or  
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partially overlapped (e.g., both are (0,255)), depending on user preferences. Finally, 
they are combined pixel-by-pixel by using a maximum operation. For non-foreground 
pixels, the final depth is the one calculated from the background depth profile; for 
foreground pixels, it is the maximum between foreground and background depths. 

3 Color and Depth Post-processing 

3.1 Depth Refinement 

Since the depths are estimated at block-level first and then scaled up to the pix-
el-level, the depth edges may not be aligned with the color edges. This misalignment 
often causes quality degradation in the synthesized stereo images. We apply a bilateral 
filter [11] to refine the depth map. The bilateral filter is a weighted filter which eva-
luates the similarity of colors and distance between a current pixel and its neighboring 
ones, assigns the proper weights, and then calculates the weighted averages. It can not 
only smooth the depth map, but also make edges of foregrounds aligning to the color 
edges. Fig.4 (c) shows the refined depth map. 

 

  
(a)                             (b) 

   
(c) 

Fig. 4. Results of depth refinement (a) input image (b) initial depth estimation, (c) depth refined 
by bilateral filtering 
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3.2 Color Enhancement 

It is known that the relative overlapping, foreground/background contrast, lighting, 
and shadows have influences on stereoscopic perception [12]. When looking at an 
image, people usually focus on foreground regions; the more the contrast between 
foreground and background regions, the more the stereoscopic perception. In this 
system, we apply two methods to modify colors of foreground/background pixels, 
according to the result of background depth classification, such that the stereoscopic 
effect is enhanced. 

1.  For background depth profiles #1-4, modify the RGB or hue-and-saturation (H/S) 
values of pixels in the background to increase its contrast w.r.t. the foreground; 

2. for background depth profiles #5 (i.e., close-up), modify the RGB or 
hue-and-saturation (H/S) values of pixels in foreground to increase its contrast 
w.r.t. the background. 

 
Figure 5 demonstrates the original images and the color-enhanced images, respec-
tively. It is seen that with proper color enhancement, the space extensity can be  
enhanced.  

 

    
(a)                            (b) 

    
(c)                           (d) 

Fig. 5. (a)(c) Input images and (b)(d) color enhanced images 
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4 Experiment Results 

The 3D display used in the experiments is an Acer 3D notebook (Model: 5738DG) 
equipped with polarizing glasses. Since depth estimation from a mono view is really 
challenging, we do not evaluate it by computing the objective quality metrics (e.g., 
PSNR) which require the existence of depth ground truths. Instead, subjec-
tive assessment based on Mean Opinion Score (MOS) of the synthesized stereo views 
is conducted. A total of 12 non-professional subjects are asked to score 1 to 5 (5 (ex-
cellent), 4 (good), 3 (fair), 2 (poor), and 1 (bad)) for each stereo pair generated by our 
proposed method (with 1w =0.4, 2w =0.2, and 3w =0.4). The test image size is all 

640×480 pixels.  
To evaluate background depth profile classification, 200 images (including land-

scape, portrait painting and indoor image, etc.) downloaded from the Internet are col-
lected. Among them, the 5 types of background depth profiles are evenly distributed. A 
number of 75 images are used for training, 25 images for validation, and 100 images for 
testing. To determine the ground truths for neural network training, 5 subjects are asked 
to vote for the background depth profiles for each image. The dominant ones are se-
lected as the truths. Table 1 shows the classification rates 91% and 83% for the training 
and test samples, respectively. 

 

Table 1. Classification rates for background depth profiles 

Type of depth 
profile 

Classification rate 
(training sample) 

Classification rate 
(test sample) 

1 85 % 80 % 
2 90 % 100 %
3 90 % 85 %
4 90 % 70 %
5 100 % 80 %

Average 91 % 83 %

 

Examples of some estimated depth maps are given in Fig. 6. Their background 
depth profiles are automatically classified as Type 1~5, respectively. The finally es-
timated depth maps are satisfactory. 

Fig. 7 shows the MOS scores of the proposed algorithm for test images of different 
kinds of background depth profiles. Obviously, the close-up category yields the high-
est stereoscopic perception. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

   
(e) 

Fig. 6. (Left) input image (right) estimated depth map 
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Fig. 7. MOS scores for test images of different kinds of background depth profiles 

5 Conclusions 

In this paper, we propose a 2D to 3D image conversion scheme. Our scheme is featured 
of: 1) segmentation-based foreground extraction, 2) foreground depth estimation based 
on multiple depth cue, 3) neural-network-based background depth profile classifica-
tion, and 4) color enhancement for stereoscopic perception. Experiments show that our 
background depth classification has achieved a correct rate of 83% and the quality of 
synthesized stereo images viewed on the 3D display is good. 
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