
Y.-S. Ho (Ed.): PSIVT 2011, Part II, LNCS 7088, pp. 335–346, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Recovering Depth Map from Video with Moving Objects 

Hsiao-Wei Chen and Shang-Hong Lai 

Computer Science, National Tsing Hua University, 
No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. 

wei@hotmail.com, lai@cs.nthu.edu.tw 

Abstract. In this paper, we propose a novel approach to reconstructing depth 
map from a video sequence, which not only considers geometry coherence but 
also temporal coherence. Most of the previous methods of reconstructing depth 
map from video are based on the assumption of rigid motion, thus they cannot 
provide satisfactory depth estimation for regions with moving objects. In this 
work, we develop a depth estimation algorithm that detects regions of moving 
objects and recover the depth map in a Markov Random Field framework. We 
first apply SIFT matching across frames in the video sequence and compute the 
camera parameters for all frames and the 3D positions of the SIFT feature 
points via structure from motion. Then, the 3D depths at these SIFT points are 
propagated to the whole image based on image over-segmentation to construct 
an initial depth map. Then the depth values for the segments with large re-
projection errors are refined by minimizing the corresponding re-projection 
errors. In addition, we detect the area of moving objects from the remaining 
pixels with large re-projection errors.  In the final step, we optimize the depth 
map estimation in a Markov random filed framework. Some experimental 
results are shown to demonstrate improved depth estimation results of the 
proposed algorithm. 

Keywords: Depth map recovery, structure from motion, Markov random field. 

1   Introduction 

In recent years, 3D imaging industry emerges rapidly. More and more movies take 
advantage of advanced 3D technology to reconstruct 3D motion or 3D scene for 
movie production or post-processing, which would produce amazing visual effect as 
if it were really happening. With the rapid development of the 3D movies, the 3D 
television also follows the trend. In each mall, we can see 3D TV exhibition in the 
spotlight. The digital camera also starts to include some 3D imaging function that 
supports 3D stereo images, 3D panorama shooting mode, and so on. In addition to 
these products, 3D digital photo frame and 3D digital printing are also the new related 
3D products, and there will be more 3D products in the future.  

For those 3D display monitors, it needs the image files that contain 3D 
information. If we can convert the captured 2D images or videos into the 3D format, 
we can view the images and videos with 3D display. Thus, the 2D-to-3D media 
conversion is very important for the development of the 3D imaging industry. 
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Most of the 2D-to-3D conversion technologies either cannot provide satisfactory 
results or require additional equipment, such as the stereo cameras or 3D range 
sensors. Although using the additional devices can provide more accurate results, they 
are more expansive and they cannot work for previous media. Therefore, we develop 
a new approach to estimating the depth map from a video sequence. The algorithm 
would automatically detect moving objects and estimate the depth map from a video 
sequence by considering both the spatial and temporal coherence in the video.  

2   Previous Works 

Depth estimation is an important and challenge problem in computer vision. The 
methods of depth map reconstruction can be roughly divided into two types: 
monocular vision based and multi-view based approaches. We briefly discuss them in 
this section. 

2.1   Monocular Vision  

In monocular vision, most methods used learning techniques or additional 
assumptions to obtain more information in a single image. Saxena et al. [1] proposed 
a learning algorithm to reconstructed 3D structure environment from a single image. 
They used supervised learning to learn how different visual cues are associated with 
different depths and used Markov Random Field (MRF) model to combine all the 
information. They also added other properties, including image features and a set of 
plane parameters of superpixels, into MRF to estimate the 3D positions and 
orientations for all superpixels. Unlike the previous approach which attempted to map 
from appearance features to depth, the algorithm in [2] first used semantic 
segmentation based on learning algorithm in an image to identify the positions of sky, 
tree, road, etc., in an image. They constructed a descriptor for each pixel, which 
includes local appearance features and global geometry features, and used a learning 
model to predict the initial depth map. Next they used some geometric constrains 
added to MRF framework to construct a smooth depth map. In addition, Hoiem [9] 
recovered the occlusion boundaries and depth ordering in the scene. They proposed a 
hierarchical segmentation process based on agglomerative merging to re-estimate 
boundary strength as the segmentation progresses. 

2.2   Multi-view Vision 

The most popular topic in multi-view vision is stereo reconstruction. Sun et al. [10] 
formulates the stereo matching problem in an MRF framework and solved it by belief 
propagation (BP) which works via iteratively passing messages to neighbor nodes. 
The drawback of this approach is that it spends too much time in processing the 
messages. Therefore, Felzenszwalb et al. [11] proposed a hierarchical BP algorithm to 
significantly reduce the computational complexity. 
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Fig. 1. The flowchart of the proposed method   Fig. 2. The flowchart of SIFT matching 

Another type of multi-view vision is for a video or multi-images captured from 
different views by using structure from motion (SfM) to compute the camera 
parameters for the multi-view images. Most of the SfM methods [5] defined energy 
functions on the 3D volume and used MRF to obtain the 3D surface. Recently, Zhang 
et al. [3, 4] used not only color constancy constraint but also the geometric coherence 
constraint which can maintain the temporal coherence in the video. For estimating the 
accurate disparity in textureless region, they added segmentation information based 
on color information to construct the initial disparity map. Next they used iteratively 
optimization which they called bundle optimization to refine the disparities in a 
pixelwise manner. More recently, Newcombe and Davison [6] used point-based 
structure from motion (SfM) to compute the camera poses first, computed the optical 
flow across frames, and used the triangulation method iteratively to optimize the 3D 
surface. 

3   Proposed Method 

Fig. 1 is the flow chart of the proposed depth map estimation algorithm. The goal for 
the first four steps is to collect information for recovering depth map; and the goal 
from 5th to 8th steps is to reconstruct and refine the depth map. First, we apply SIFT 
feature matching [12] to extract the corresponding points in the neighbor frames and 
use these points to compute the camera parameters by the SfM algorithm [13][14]. 
Then, we apply the mean-shift segmentation algorithm [7] and determine the 
occlusion boundaries based on [9] to classify the sky, ground, vertical regions. By 
using the 3D coordinate points from SfM, we construct a rough depth map based on 
the above over-segmentation. Next, we refine the depth map in the segments with 
large re-projection errors. However, the re-projection errors are still large after the 
depth refinement process in the regions containing moving objects. Thus, we use 
these regions as seeds to detect the regions of moving objects. In the final step, we 
optimize the depth map in the MRF framework to obtain accurate depth estimation. 
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Fig. 3. (a) Mean-shift segmentation. (b-d) The mask of “vertical”, “ground” and “sky”. (e) 
Occlusion boundaries. The left side of the arrow is front of the right side of the arrow. 

3.1   SIFT Matching 

To construct the depth map from video, we would like to establish the relationship 
between the neighboring frames. The first step is to find reliable corresponding points 
in the video. Only having the corresponding points, we can calculate the camera 
parameters for all frames. 

SIFT is an algorithm to detect and describe interest points in the images. The SIFT 
feature description is robust against the changes due to image scale, noise, 
illumination and rotation. For the above advantages, we apply the SIFT matching to 
compute the corresponding points across the six neighboring frames. Fig. 2 depicts 
the idea of the SIFT matching step. 

3.2   Structure from Motion 

In this step, we apply the SfM algorithm [13][14] to the SIFT correspondence points 
to estimate the camera parameters and 3D structures of these SIFT feature points. To 
estimate the depth map at a specific frame, I used seven neighboring consecutive 
frames into the SfM algorithm to compute the camera parameters and the 3D 
structures. These 3D points are the key to reconstruct the initial depth map in our 
algorithm. The details will be described in section 3.5.  

3.3   Image Segmentation  

Image segmentation is to divide an image into multiple homogeneous segments. The 
pixels in the same segment have similar visual characteristics, such as color, location, 
texture, etc. For these reasons, I use segmentation to help us improve the depth 
estimation, which will be described in section 3.6. In this paper, the mean-shift 
algorithm is chosen for the image over-segmentation, and an example result is 
depicted in Fig. 3(a). The segments are used for recovering the occlusion boundaries 
from an image, which will be discussed subsequently. 

(b) (a) 

(c) (d) (e) 
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3.4   Occlusion Boundaries 

One of the important key in reconstructing depth map is occlusion relation. Owing to 
the change of view, some objects would be occluded by something in front of them, 
which would cause some problems in depth estimation. For example, sky is always 
covered by houses, trees, and so on. When we project a pixel to other frames, the 
labels may be different due to occlusion. This would lead to large errors in the image 
re-projection. 

Hoiem et al. proposed an algorithm [9] to recover the occlusion boundaries and 
detecting the regions of “sky”, “vertical” and “ground” from an image. We 
incorporate their results of the occlusion boundaries and segment type classification 
into the depth map estimation framework to optimize the depth map estimation. An 
example of applying the algorithm in [9] is depicted in Fig. 3. 

3.5   Initial Depth Map 

We have collected a lot of useful information for reconstructing depth map in the 
previous steps. Therefore, we use all the information to construct an initial depth map. 
The main idea is that the neighboring pixels which have similar colors may have 
similar depth. In the SfM step, in addition to the camera parameters for all frames, we 
also obtain a sparse set of 3D feature points. Thus, these 3D points are used to 
propagate to the entire image. The flowchart of this step is shown in Fig. 4. 

First, we scan all the 3D points to decide the range of the depth in the current 
frame, and record which pixels are already assigned with depth values. Then, for each 
segment, we counted how many pixels are already assigned with depth values. If the 
number is less than a threshold (5 in our implementation), we do nothing because 
there is not enough information to assign the depth for this segment. Otherwise, we 
consider each segment as a plane, and construct a smooth depth map for the segment. 
Hence, we set a linear plane, as in eq. (1), for each segment. Note that x and y are the 
coordinates of the pixel, a, b, c are the plane parameters, and d is the depth value. By 
using the least-square fitting, we calculate parameter a, b, c from some known points, 
(x1, y1) … (xn, yn) with the relation given in eq. (2). d ൌ ax ൅ by ൅ c (1)

1. Set known 3D points 
1.1 A sparse of 3D points from SfM 
 

2. Set depth to each segments 
2.1 For each segment, construct a smooth depth map  

by (2) if it has enough information 
2.2 Propagate the depth value to neighbor segments 
2.3 Repeat step 2.1 and 2.2 

Fig. 5. The initial depth map Fig. 4. The flowchart of making initial depth map 
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൥xଵ yଵ ڭ1 ڭ x୬ڭ y୬ 1൩ ቈabc቉ ൌ ൥dଵdଶdଷ൩ (2)

Not all segments have enough information to construct the depth. Hence, we 
propagate the depth from the known segments to unknown segments. In the edge of 
known segment and unknown segment, we check the similar degree of color. If the 
color is similar, then set the same depth value to the neighboring pixels. The steps of 
constructing depth and propagating depth are iterative. Fig. 5 depicts some results in 
this step. The red regions represent no depth information. 

3.6   Depth Map Refinement 

In the previous step, the initial depth map is rough and there is no depth information 
in some segments. Hence, in this step I would correct those segments which cause big 
error or have no depth information in the depth map. 

First, I compute the projection error for each pixel in the whole image. The 
processing of projection is shown in Fig. 6. The blue points are the camera position 
and the orange points are the 2D coordinate in each frame. The red point is the 
corresponding 3D point of the orange points in the real world. Assuming the current 
frame is in the center of Fig. 6. p is one of pixel in the current frame. Giving the depth 
value of p and camera parameters of current frame and target frame, we can compute 
the corresponding coordinates, p’, in target frame by (3). P ൌ  RିଵሺdKିଵp െ tሻ , pᇱ ൌ KᇱሺRᇱP ൅ tᇱሻ (3)

where p is the 2D image coordinate of a pixel, represented as [ x y 1 ]’ in the 
homogeneous coordinate, P is the 3D coordinate of p in the world coordinate, 
represented as [ X Y Z ]’, K, R, t are the camera parameters at the current frame, K’, 
R’, t’ are the camera parameters at the target frame, and p’ is the corresponding 
coordinate of p in the target frame. If the depth value is accurate, then p and p’ must 
have similar colors. Therefore, we define the re-projection error as a measure of 
difference between the colors at p and p’. Here, we use l2-norm to measure the 
difference between two colors in our implementation. 

 
 
 

Fig. 7. The depth map after refining 
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Fig. 6. The chart of projecting to the neighbor 
frame 
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Fig. 8. (a) is the average error for each segments after depth refined. (b) is the seeded segments. 
(c) is the full region of moving object. (d) is the final error map based on pixels. (e) is the final 
error map based on segments. (f) The depth mp after optimization of MRF. 

Due to the occlusion problem around the object boundary, we compute the average 
re-projection error for each segment instead of a pixel. If the average re-projection 
error in one segment is larger than a threshold, it denotes the depth value in this 
segment is inaccurate. For these segments, we search a new depth value within the 
depth range by finding the minimum re-projection error for the segment. Fig. 7 
depicts an example of the depth map after the above refinement process. 

3.7   Moving Object Detection 

Most of the proposed approaches for the depth map reconstruction from a video 
sequences, such as [3], [4], and [6], do not account for moving objects in the video 
sequence. They all assume the scene is static; but in practice it is very common for the 
videos to contain moving objects. 

It is not suitable to compute depth of moving objects by multi-view camera 
projections due to the unknown object motion. From the previous step, we have the 
average re-projection error for each segment after the depth map refinement, as shown 
in Fig. 8(a). However, there are still some segments with large errors, which means 
these segments are likely to be the moving object. Thus, we use these segments, as 
shown in Fig. 8(b), as the seeds to determine the regions of moving objects. Not all 
segments belonging to moving objects have large re-projection errors, just like the 
body of car in Fig. 8(a). Next, all the SIFT matching points in the seeded segments are 
used to calculate the displacement of moving object in the neighboring frames. The 
displacement is the difference of two corresponding points in x and y axes. To assure 
robust displacement estimation, we choose the median of all the displacements 
instead of mean. The relation equations are given in eq. (4) and (5), where p and p’ 
are the corresponding points in the current frame and a neighboring frame, Dx and Dy 
are the displacements in x and y axes, and ܦ௫෢  and ܦ௬෢  are the final displacement. ܦ௫௜ ൌ ௫௜݌ െ ௬௜ܦ  , ᇱ௫௜݌ ൌ ௬௜݌ െ ᇱ௬௜ (4)݌

(a) (b) (c) 

(e) (f) (d) 
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௫෢ܦ ൌ ݉݁݀݅ܽ݊௜ ሺܦ௫௜ሻ , ܦ௬෢ ൌ ݉݁݀݅ܽ݊௜ ሺܦ௬௜ሻ (5)

Because we assume the moving object in the neighboring frame and current frame 
would be the same shape and not be deformed. Then, we shift the neighboring frame 
by the displacement and subtraction by the current frame. We call the result as an 
error map. In our experiment, we use two neighboring frames, so we have two error 
maps. These two error maps are summed to form a combined error map. The final 
error map in Fig. 8(d) shows the probability of moving object. The pixels with darker 
color are more likely to be the moving object. 

The process of finding the moving object is also based on segments. Therefore, the 
combined error map based on segments is depicted in Fig. 8(e). We use the seeded 
segments as the center, and visit the neighboring segments to merge the neighboring 
segment if the associated error is small. We repeat this segment merging process 
iteratively until convergence. Fig. 8(c) shows the region of detected moving object in 
this step. 

3.8   MRF Optimization 

The previous steps of reconstructing and refining depth map are all segment-based. 
Because these steps do not account for the relationship between neighboring 
segments, the computed depth map usually contains obvious errors. To improve the 
depth map estimation, we integrate the information in a Markov Random Field (MRF) 
framework to optimize the depth map. 

Let the depth map of the current frame be represented as D. The image of the 
current frame is denoted by I, and IԢ෡ ൌ ሼܫԢ௧ |t ൌ 1, … , nሽ  is the set of reference 
frames. Then, we define the following energy function for MRF: E൫ܦ෡; I, Ԣ෡൯ܫ ൌ ;෡ܦ஽൫ܧ I, Ԣ෡൯ܫ ൅ α ;෡ܦ௦൫ܧ I൯ (6)

where the data term ED measures the projection error, the smoothness term ES 
represents the smoothness on the depth map between neighboring pixels, And α is the 
weight used to balance these two terms. ܦ ෡  is the refined depth map by MRF. 

The definition of the data term ܧ஽ሺܦ෡;  Ԣ෡ሻ is given in eq. (7). It computes the colorܫ
difference between the corresponding points in the neighboring frames based on the 
current depth estimate. 

;෡ܦ஽൫ܧ  I, Ԣ෡൯ܫ ൌ ෍ ෍ min ሺܾܽݏ൫ܫሺ݌ሻ െ ,௧ሻ൯݌ᇱ௧ሺܫ δሻ௡
௧ୀଵ௣אI  (7)

௧݌ ൌ ݌ଵିܭሻ݌෡ሺܦ௧ሺܴ௧൫ܴିଵሺܭ െ ሻ൯ݐ ൅ ௧ሻ, (8)ݐ

pt is the corresponding point of a pixel p in the tth reference frame, and δ is a threshold 
for the color difference. The symbols Kt, Rt, tt denote the camera parameters at the tth 
reference frame, and K, R, t are the camera parameters at the current frame. ܦ෡ሺ݌ሻ is 
the depth value of p.  
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The smoothness term is defined by 

;෡ܦ௦൫ܧ  I൯ ൌ ෍ ෍ ଵሻ݌෡ሺܦሺݏܾܽ െ ଵሻ݌൫Iሺݏଶሻሻܾܽ݌෡ሺܦ െ Iሺ݌ଶሻ൯ ൅ 1௣మאேሺ௣భሻ௣భאூ  (9)

If p1 and p2 are neighbors, then their absolute difference in depth are divided by the 
corresponding absolute color difference, as in the denominator, and then added into 
smoothness term.  

There are many algorithms based on MRF framework [16], and we choose graph-cut 
with swap algorithm [17][18] to refine our final depth map by minimizing the energy 
function given in eq. (6). The pixels belonging to moving objects, as determined in 
section 3.7, are not involved in the depth map refinement. After the optimization, we set 
an appropriate depth value to each of these regions of moving objects. We assume the 
moving object is usually vertical on the ground; therefore we assign the depth values of 
the pixels on the bottom of the moving object region as the depth for the region. An 
example of the MRF optimization result is depicted in Fig. 8(f). 

4   Experiment Results 

We apply in the proposed depth estimation algorithm to six real data sets. The data 
sets can be classified into two types: static scene and the scene containing moving 
objects. There are three videos belonging to static scene, i.e. “Road”, “Stair” and 
“Temple” [3][4], and we will compare the results with those in [3][4]. There are three 
videos containing moving objects. The videos “lovebird1” and “lovebird2” come 
from [19] and “Poznań” comes from [20].  

The experimental results on the dataset “Poznań” are shown in Fig. 9-11. We focus 
on the passing vehicle in this video. In addition, there is a pedestrian in Fig. 9-11, but 
we only detect the moving person in Fig. 9. The key is the speed of the person is too 
slow to be detected as a moving object. Nevertheless, the result of depth map 
estimation in this example is acceptable. For the three video sequences, we detect the 
moving object successfully, and this helps to recover accurate depth maps. 

 

 

Fig. 9. The 77th frame in the data set “Poznań”. (a) The reference frames. (b) The current frame. 
(c) The white region is the detected moving object. (d) Final depth map. 
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For the other datasets, we focus on the moving people in “lovebird1” and 
“lovebird2” videos. However, because of the high frame rate in these two videos, the 
movement of people is quite small in the neighboring frames. Therefore, we cannot 
detect moving object in these two videos, but it does not affect our results. The final 
estimated depth maps are depicted in Fig. 12. Although there is slight movement in 
these two videos, we still can obtain accurate depth map estimation. 

Although we focus on handling moving object in this paper, we also test our 
algorithm on the three datasets of static scene. The results are shown in Fig. 13 and 
we also compare the depth estimation results with those by the state-of-the-art method 
[4]. From the figure, we can see our results are comparable to the results from [4] in 
these experiments for the static scene. 

 

Fig. 10. The 130th frame in the data set “Poznań”. (a) The reference frames. (b) The current 
frame. (c) The white region is the detected moving object. (d) Final depth map. 

 

Fig. 11. The 427th frame in the data set “Poznań”. (a) The reference frames. (b) The current 
frame. (c) The white region is the detected moving object. (d) Final depth map. 

 

(a)                     (b)                      (c)                    (d) 

Fig. 12. The (a)&(c) images and (b)&(d) estimated depth maps for the 4th frame in the 
“lovebird1” and “lovebird2” sequences, respectively 
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Fig. 13. From left to right: an image sample, depth map estimated by [4], depth map estimated 
by the proposed algorithm for the (a) Road, (b) Stair, and (c) Temple video sequences, 
respectively 

5   Conclusion 

In this paper, we proposed a robust system that reconstructs depth map from a video 
sequence automatically. In our system, we employ several computer vision 
technologies to help us construct accurate depth map from video. We integrate SIFT 
feature matching, SfM, mean-shift over-segmentation, occlusion boundary analysis to 
obtain some 3D information. To deal with moving object, we detect the segments of 
moving objects by selecting pixels with large re-projection errors as seeds in an 
iterative merging process. Finally, we integrate the 3D information in an MRF 
formulation to optimize the depth map. We demonstrate the proposed algorithm can 
provide satisfactory depth estimation results for videos with moving objects. 
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