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Abstract. With the increasing demands for highly detailed 3D data,
dynamic scanning systems are capable of producing 3D+t (a.k.a. 4D)
spatio-temporal models with millions of points recently. As a conse-
quence, effective 4D geometry compression schemes are required to face
the need to store/transmit the huge amount of data, in addition to classi-
cal static 3D data. In this paper, we propose a 4D spatio-temporal point
cloud encoder via a curve-based representation of the point cloud, partic-
ularly well-suited for dynamic structured-light-based scanning systems,
wherein a grid pattern is projected onto the surface object. The object
surface is then naturally sampled in a series of curves, due to the grid pat-
tern. This motivates our choice to leverage a curve-based representation
to remove the spatial and temporal correlation of the sampled point along
the scanning directions through a competitive-based predictive encoder
that includes different spatio-temporal prediction modes. Experimental
results show the significant gain obtained with the proposed method.

Keywords: Point cloud, compression, curve-based, dynamic, 4D, 3D+t,
grid pattern.

1 Introduction

Recent evolutions in acquisition technologies allow to produce 3D geometric
models with millions of points that evolve over time (see Fig. 1). Problems of
efficiently storing, transmitting, processing and rendering spatio-temporal data
are then been raised, in addition to classical static 3D data. Towards an efficient
compression performance, a suitable 4D data representation becomes particu-
larly more and more important.

Currently active 3D scanners are widely used for acquiring 3D models [2].
Especially, scanning systems based on structured light have been intensively
studied in the acquisition of dynamic scene [1,3,4], recently. Structured-light-
based scanning is done by sampling the surface of an object with a known pat-
tern (e.g. grid, horizontal bars, lines). Studying the deformation of the pattern
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t = 0 t = 1 t = 2 t = 3 t = 4

Fig. 1. Example of a 4D data acquired with a grid-pattern one-shot scanners [1]

allows building a 3D model by means of a point cloud. The huge amount of
raw point data has to be stored/transmitted by efficient compact means. Noise
and incompleteness, however, make the process more difficult to achieve. While
mesh compression is a mature field [5], there is still room for improvement in
point cloud compression. To the best of our knowledge, present point-based
compression strategies are mainly based on surface approximation [6,7], and/or
hierarchical space subdivision by augmenting the dataset by a data structure
(e.g. spanning tree [8,9], octree [10,11]), which lead to either smooth out sharp
features, an extra-transmission of a data structure, or an unavoidable lossy en-
coding. In addition, the augmentation of the dataset by data structure makes
difficult the exploitation of temporal consistency.

With the aim of tackling the aforementioned issues, we first made the ob-
servation that structured-light-based scanning systems output points along the
measuring direction, which naturally orders groups of points along the same di-
rection: scan lines. We particularly aim at structured-light-based scanning sys-
tems that use a grid pattern formed by straight lines distinguishable only as
vertical and horizontal lines [1] as illustrated in Fig. 2. When the projected grid
pattern is extracted from the captured image, 3D points are naturally fitted into
a series of space curves. This motivates our choice to leverage the spatially se-
quential order of the sampled-points along these scan lines: first, we pre-process
the data to retrieve each scan line into a curve of points, and after, we exploit the
curve-based representation through a spatio-temporal competition-based predic-
tive encoder specially designed with linear and curved-driven prediction modes.
We then formulate the problem of encoding a point cloud as “How to retrieve
the scan lines?”, and after “How to encode a curve in space?”, and then “How to
encode a space curve over time?”. This formulation has the benefit to simplify
the former problem into sub-problems that allow application-oriented function-
alities, such as:

– temporal prediction that consists of searching for a similar curve in previous
temporal frames,

– random access that allows the decoding of a local part of the point cloud
without the necessity of decoding the full dataset,

– error propagation limitation since all curves within a frame are independently
encoded,
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Fig. 2. (left) Grid-pattern-based scanning system: a grid pattern is projected from the
projector and captured by the camera. (right) Example of projected grid pattern.

– possible lossless coding due to the predictive nature of the encoder,
– parallel computation where each curve is simultaneously encoded.

The rest of the paper is organized as follows. Section 2 describes the point cloud
pre-processing towards a curve-based representation. Section 3 addresses the
problem of efficiently compressing a raw point dataset, followed by the experi-
mental results in Section 4. Finally, our final conclusions are drawn in Section 5.

2 Curve-Based Representation

In an arbitrary point cloud, the identification of neighbors is a nontrivial task.
One approach consist in locally defining as neighbor the point that minimizes
an error cost functional based on a prediction rule, which results in the augmen-
tation of the dataset by a predictive data structure such as a spanning tree that
also needs to be encoded and transmitted. However, for point cloud outputted
by scanners using structured light there is a straightforward way through the
scan lines as discussed before. Moreover, the projected grid-pattern makes each
scan lines differentiable from others as shown in Fig. 3. It is then possible to
address this problem in a more global way, at least at a scan line scale. In some
cases, space curves can be directly obtained from the acquisition process, e.g.
line detection algorithm [4].

2.1 Curve-Based Point Cloud Definition

Let us consider the point cloud S = {p1, p2, · · · pN} as a collection of N 3D points
pk1≤k≤N

. As mentioned earlier, structured-light-based 3D scanning systems fit
the sampled points in curves. The point cloud S can then be represented as a
set of M curves Cl1≤l≤M as

S = {C1, C2, · · · , CM} (1)

where a l-ieme curve Cl is expressed as

Cl = {pr, pr+1, · · · , ps} with 1 ≤ r < s < N (2)
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(a) Sampled surface (b) Curve-based representation

Fig. 3. Sampled point cloud partitioned into a series of curves wrt to the scanning
directions. Curves are discriminate by different colors.

2.2 Curve-Based Partitioning

Each curve C is defined to contain points that share similar proprieties, e.g.
curvature, direction, Euclidean distance with his neighbor, etc.. Algorithm 1
shows how the point cloud S is partitioned into a set of curves as defined in
Equation (1). The division is controlled by defining if the current point pk to
process is an outlier with respect to the current curve C. In this study, we defined
an outlier as

d (pk, pk−1) > ε, (3)

with ε =
1

N − 1

N∑

i=2

d (pi, pi−1).

The current point pk is considered as an outlier and then added to a new curve,
if the Euclidean distance d(., .) is larger than a defined threshold ε: here the
average value of the distance between two consecutive points throughout the
point cloud. In general, other outlier definitions can be considered. For example
by checking if adding the current point pk will disturb the normal distribution of
the current curve. Another example is the use of a multiple of the inter-quartile-
range (IQR) value of the current curve as a threshold. In this study we consider
the Euclidean distance that gives a satisfactory curve set representation.

3 Point Cloud Encoding

After pre-processing the point cloud data to leverage the spatial order of samples
along the scanning directions, we propose applying well-known
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Algorithm 1. The partitioning algorithm
Input: set of points S∗

Output: set of curves S
Data: current curve C
foreach point pk in S∗ do

if size (C) is lower than 3 then
add pk in C;

else if true == isAnOutlier (C, pk) then
add C into S ;
clear C;
add pk in C;

else
add pk into C;

end

end
if true == isEmpty (C) then

add C into S ;
end

hybrid-video-encoding techniques: spatio-temporal predictions followed by resid-
ual coding. In opposition to present predictive strategies [12,8,9] wherein a span-
ning tree is built, prior to only one predictive rule, we propose using multiple
spatio-temporal predictors that allow sidestepping the utilization of a spanning
tree, and moreover, providing an easier and intuitive way to perform tempo-
ral prediction. The proposed framework can be denoted as a competition-based
predictive encoder in relation with the competition between all spatio-temporal
prediction modes for each point.

Let us first introduce some notations. Let Ct be the current curve to encode at
time t. Each point p t

k in Ct is predicted by the prediction p̂ t
k with respect to the

previous coded point p̃ j
i with j ≤ t and i < k. Note that previous coded points

have been quantized and inverse quantized. The prediction unit outputs then the
quantized corrective vector rt

k = pt
k − p̂ t

k , also denoted as residual, and transmits
it to the entropy coder. The coding efficiency comes with the accuracy of the
prediction that is improved by choosing the most suitable prediction method
for each point. The prediction that minimizes the quantized Euclidean distance
Q (‖pk − p̂ t

k‖) is defined as the best one. Q being the quantization operator
defined in Section 3.3. Then for each point the chosen prediction mode is signaled
in the bitstream. The following predictions obey the two assumptions: closed
points within a curve either evolve in the same direction, or turn constantly.

3.1 Intra-prediction

Intra-prediction attempts to determine, for each point pk in C, the best predicted
point p̂k with respect to the previous coded points p̃i,i<k in the same curve C.
For notation concision, let us define the sub-curve containing the previous coded
points by
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C|i<k = C ∩ {pi|i < k}, (4)

and the prediction by
p̂k = P (C|i<k) . (5)

Note that in this section, we have not made explicit that C and p̂k are function
of t for notation concision.

No-prediction P Intra. When no-prediction is applied, this defines the current
point as a key point used for random access and error propagation limitation.

P Intra (C|i<k) = (0, 0, 0). (6)

Const P Const. The previous coded point pk−1 in the curve is used as predictor.

PConst (C|i<k) = p̃k−1. (7)

Linear P Linear. The prediction is based on the two previous coded point pk−1

and pk−2 in the curve, assuming then that pk−2, pk−1 and pk belong to the same
line.

PLinear (C|i<k) = 2 · p̃k−1 − p̃k−2 (8)

Fit-a-sub-line P F itSubLine. The prediction point is an extension of a segment
L (C|i0≤i<k). The segment is given by line fitting algorithm based on the M-
estimator technique, that iteratively fits the segment using the weighted least-
squares algorithm. The starting point pi0 has to be signaled to the decoder, and
thus, an additional flag is put in the bitstream.

PFitSubLine (C|i<k) = 2· < L (C|i0≤i<k)⊥p̃k−1 >

− < L (C|i0≤i<k)⊥p̃k−2 >
(9)

Turning-angle P T urning. The current point pk is predicted under the as-
sumption that the curve is turning constantly around the point pk−1. Given the
displacement vector vk = pk−pk−1 between two consecutive points, the assump-
tion is equivalent to consider equal the turning angles between two consecutive
displacement vectors. The turning angle in 3D space between two vectors being
defined by the triplet angles α (αx, αy, αz) as the difference of their direction

angles. Given a vector vk(vkx, vky, vkz), his direction angles θ
(
θvk x, θvk y, θvk z

)

are expressed by

cos
(
θvk x

)
=

vkx

‖vk‖ , cos
(
θvk y

)
=

vky

‖vk‖ , cos
(
θvk z

)
=

vkz

‖vk‖ . (10)

The prediction of the current point pk can then be expressed as

PTurning (C|i<k) = p̃k−1 + R (αk−1) · vk−1, (11)

where R (αk−1) · vk−1 being the 3D rotation of vk−1 wrt the turning angle

αk−1 =
(
θvk−1 − θvk−2

)
. (12)
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3.2 Temporal-Prediction

The temporal prediction can be decomposed in two steps: first, find a close curve
in previous frames in terms of distance or similarity, and after, use either the
direction or curvature of the optimal curve Ct−1 to predict the current point pt

k

in Ct. We then highlight the two main strategies:

– find the closest curve in previous frames by segment matching,
– find the most similar curve with closest Euclidean invariant signature in

previous frames,

which result in temporal prediction modes presented thereafter.

Close P Close. Between two consecutive frames, points occupy roughly the same
position due to the small amount of motion, or the presence of static objects in
the scene. It is then possible to find an optimal curve Ĉt−1 in the previous frame
that can be superposed with the current one Ct such that

Ĉt−1 = argminCt−1

{
d

(Ct−1|i0≤i<k, Ct|i0≤i<k

)}
(13)

where the distance between the two curves is expressed by

d
(Ct−1|i0≤i<k, Ct|i0≤i<k

)
=

k−1∑

i0

d
(
p̂ t−1

i , p̂ t
i

)
. (14)

The points in Ĉt−1 are then utilized to predict the current point as follows:

PClose
(Ct|i<k

)
= p̂ t−1

k (15)

For instance, other alternatives may consist in considering instead p̂ t−1
k−1 or the

mean point 1
2

(
p̂ t−1

k−1 + p̂ t−1
k

)
.

Similar P Similar. By finding a similar curve in terms of shape prior to a
close Euclidean invariant signature, we assign the same turning angle, as defined
previously, to the predictor. Let us first define the signature of a space curve, up
to a Euclidean transform, by its curvature function κ(n) and torsion function
τ(n), both functions of the parameter n. It was shown in [13,14] that κ(n) and
τ(n) can be approximated at the point pk by

κ(pk) = ±4 ·
√

s · (s − a) · (s − b) · (s − c)
a · b · c , (16)

τ(pk) = ±6 · H

d · e · f · κ(pk)
. (17)

where H being the height of the tetrahedron form by pi−1, pi, pi+1, pi+2 of base
pi−1, pi, pi+1, and

a = d(pk−1, pk), b = d(pk, pk+1), c = d(pk−1, pk+1),
d = d(pk+i, pk+2), e = d(pk, pk+2), f = d(pk−1, pk+2),
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and s = 1
2 (a + b + c). Since κ and τ only depends on the Euclidean distance

d(., .) between points, they provide a completely Euclidean invariant numerical
signature approximation. The turning angles of the curve having the closest
signature is then applied such that

PSimilar
(Ct|i<k

)
= p̃ t

k−1 + R (
α t−1

k

) · v t
k−1, (18)

where
α t−1

k =
(
θv t−1

k
− θv t−1

k−1

)
. (19)

3.3 Quantization

After prediction, the point cloud is represented by a set of corrective vectors,
wherein each coordinate is a real floating number. The quantization will enable
the mapping of these continuous set of values to a relatively small discrete and
finite set. In that sense, we apply a scalar quantization as follow

Q (rk) = r̃k = sign(rk) · round
(|rk| ∗ 2bp−1

)
(20)

where bp is the desired bit precision to represent the absolute floating value of
the residual.

3.4 Coding

The last stage of the encoding process removes the statistical redundancy in
the quantized absolute component of the residual |r̃k| by entropy Huffman cod-
ing. Huffman coding assigns a variable length code to each absolute value of
the quantization residual based on the probability of occurrence. The bitstream
consists of: a header containing the canonical Huffman codeword lengths, the
quantization parameter bp, the total number of points and the residual data for
every point; wherein the coded residual of every point is composed of: 3 bits
signaling the prediction used, 1 bit for the sign, a variable-length code for each
absolute component value of the corrective vector with regards to the entropy
coder.

4 Experimental Results

The performance of the proposed framework is evaluated using the two models
shown in Fig. 4 over 24 frames. We defined a group of frames consisting of
twelve frames wherein the first frame is intra-only predicted to limit temporal
artifact propagation. The objective compression performance of the proposed
method is investigated in the rate-distortion (RD) curves plotted in Figure 5
through the average number of bits per points (bpp), in relation to the loss
of quality, measured by the peak signal to noise ratio (PSNR). The PSNR is
evaluated using the Euclidean distance between points. The peak signal is given
by the length of the diagonal of the bounding box of the original model. The RD
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(a) Kick (b) Squirt

Fig. 4. Test models
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Fig. 5. Rate-distortion performance of the proposed encoder, using 4D and 3D pre-
diction strategy. For comparison, we also show results for classical spanning-tree-based
encoder [8]. Experiments are done for 24 frames, where frame at t = 0 and t = 12 are
intra-only encoded.

results correspond respectively to the seven bp quantization parameters: 8, 9, 10,
11, 12, 14 and 16. We compare our intra-only (a.k.a. 3D) competitive-optimized
strategy and its temporal extension (a.k.a. 4D) with the spanning-tree-based
strategy [8]. It can be observed that the proposed method provides better RD
results in both cases. Experimental results highlight the advantage of competing
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Fig. 6. Example of average prediction mode distribution at different quantization
parameters bp

multiple predictors instead of the spanning tree strategy optimized for only one
predictor. It can be observed in Fig. 6 the average distribution of the different
prediction modes at different quantization parameter bp. It is important to note
that within the prediction unit, the utilized previous coded points have been
quantized and inverse quantized, which results in more or less quantization error
wrt the quantization parameter bp. Fig. 6 illustrates that at strong quantization
(i.e. low bp) temporal predictions are more efficient, while at weak quantization
intra-linear prediction are over utilized. Ideally, the choice of the prediction mode
should be optimized in a rate-distortion sense, which will be left as future work.
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5 Conclusion

We designed and implemented a 3D+t (a.k.a. 4D) predictive single-rate encoder
for point positions outputted by structured-light 3D scanning systems using a
grid pattern. We pre-processed the point cloud to leverage points along a series
of curves to exploit the spatio-temporal organization of the points, which are
ordered prior to the scanning direction. By using curves as a coding unit we suc-
ceed in improving the rate-distortion performance, while enabling application-
orientated features such as random access, error propagation limitation. Several
issues remain that warrant further research. In future studies, we integrate other
point attributes (e.g. color, normal, etc.), and extend our encoder to arbitrary
point clouds.
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