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Abstract. Scalable Video Coding (SVC) provides an efficient compression for 
the video bitstream equipped with various scalable configurations. H.264 scala-
ble extension (H.264/SVC) is the most recent scalable coding standard. It  
involves the state-of-the-art inter-layer prediction to provide higher coding  
efficiency than previous standards. Moreover, the requirements for the video 
quality on distinct situations like link conditions or video contents are usually 
different. Therefore, it is very desirable to be able to construct a model so that 
the target quality can be estimated in advance. This work proposes a Quantiza-
tion-Distortion (Q-D) model for H.264/SVC spatial scalability, and then we can 
estimate video quality before the actual encoding is performed. In particular, we 
further decompose the residual from the inter-layer residual prediction into the 
previous distortion and Prior-Residual so that the residual can be estimated. In 
simulations, based on the proposed model, we estimate the actual Q-D curves, 
and its average accuracy is 88.79%. 

Keywords: H.264, Scalable Video Coding, Spatial Scalability, Quality  
Estimation, Quantization-Distortion Model. 

1 Introduction 

The fundamental principle of Scalable Video Coding (SVC) is to generate a single 
compressed bit stream that can adapt to the varying bit rates, display resolutions, and 
computational resource constraints of various receivers rapidly and easily. There are 
three kinds of scalability, including temporal, spatial, and quality (SNR) scalability. 
The spatial scalability that provides various resolutions is suitable for display devices 
with different sizes nowadays available. In order to remove redundancy between 
layers, the enhancement layer can be coded using the inter-layer prediction which 
includes the motion, texture and residual information from the base layer. In 
H.264/SVC, there exist three kinds of inter-layer prediction tools. There are Inter-
Layer Motion Prediction (ILMP), Inter-Layer Intra Prediction (ILIP), and Inter-Layer 
Residual Prediction (ILRP) [1][2]. ILMP up-samples motion vectors as a motion 
predictor. ILIP up-samples the reconstructed blocks for the prediction of luminance. 
Moreover, ILRP up-samples the residual for the residual compensation. 
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The requirement for the video quality on distinct situations like link conditions or 
video content is usually different. Therefore, it is very desirable to be able to construct 
a Quantization Distortion (Q-D) model so that the target quality can be achieved by 
selecting a proper encoder Quantization Parameter (QP). Most of the proposed Q-D 
models were for a single layer video coding [3-7]. In particular, their models were 
based on the assumption of residual distributions [3-5]. That is, the distortion can be 
modeled as a function of QP and the variance of the residual distribution. Recently, 
two Q-D models for SVC spatial scalability and temporal scalability were proposed to 
perform the optimal rate allocation [8][9]. For the real time application, their parame-
ters of the model are estimated during the encoding procedure.  

In this work, we propose a Q-D model for H.264/SVC spatial scalability to esti-
mate video quality. However, the model parameter and the quality score have to be 
obtained before the entire coding procedure starts. We introduce a residual decompo-
sition technique for ILRP, in which the residual can be decomposed to the coding 
error and the displacement difference (Prior-Residual). Then the distortion can be 
modeled as a function of quantization step and Prior-Residual that can be estimated 
before encoding. 

In the remaining of this paper, the analysis of the distortion in the transform domain 
and related works on Q-D model are discussed in Section 2. The proposed Q-D model 
and quality estimation for ILRP are described in Section 3. The results for validating the 
accuracy of proposed model and specifying the model parameters are depicted in Sec-
tion 4. Finally we summarize our proposed method and results in conclusion. 

2 Distortion Analysis and Related Works 

2.1 Distortion Analysis in the Transform Domain  

Most literatures on Q-D modeling analyze the distortion, specifically the Mean 
Square Error (MSE) between the original and the reconstructed frames, in the 
transform domain [3][4]. Two major reasons are that transform coefficients have 
more similar characteristics than pixels in the spatial domain among various video 
contents, and the quantization in hybrid video coding, which is the basic structure for 
most current video coding standards, is performed in the transform domain. 

From Fig. 1, we observe that the difference between original frame kf and recon-

structed frame )(' qfk equals to the difference between residual )(qrk and quantized 

residual )(qrquan
k as shown in (1). 
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Because DCT transform is linear, the equality holds in DCT domain. 
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By Parseval's theorem,  
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we can derive that the MSE between the original and the reconstructed frames equals 
to the MSE between the original and the quantized residuals in the transform domain. 
Hence, with the assumption for residual distribution, the distortion is possible to be 
modeled as a function of QP and parameters of the distribution.  

 

Fig. 1. DPCM based encoder structure 

2.2 Laplacian and Cauchy Distributions for DCT Coefficients 

The quantized residual can be regarded as a Laplacian-distributed random variable 
[3]. Then a closed-form expression of distortion is derived. Recently, Kamaci et al. 
[4] proposed Cauchy density function as the residual distribution. Its probability den-
sity function (pdf) is shown as  

( )
22

1

x
xp

+
=

μ
μ

π  (4)

where μ is the half-width at half-maximum of the pdf. It basically reflects the va-

riance of the distribution, and can be denoted as a function of 2
xσ , i.e., )( 2

xh σμ = . 

The closed-form expression of the distortion is derived and approximated to a 
power function of q in [4] as 
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where a, b>0, and depend on 2
xσ . 
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It also demonstrates the Cauchy density is more accurate in estimating the distribu-
tion of the DCT coefficients than the traditional Laplacian density. Furthermore, it 
yields less estimation error for Q-D curve. Therefore, Cauchy distribution is assumed 
in our work. 

2.3 Residual Decomposition for Single Layer 

For residual decomposition, Guo et al.[10] proposed a quality estimation method for 
single layer coding. The residual can be decomposed into the displacement difference 
and the coding error as shown in (6). 
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The residual )(qRk is the difference between the original frame kF and the predicted 

frame )('
1 qFk− that is compensated for by the previous reconstructed frame. On the 

other hand, '
1−kF is the predicted frame that is compensated for by the previous origi-

nal frame. The residual can be decomposed to the displacement difference kI , and the 

coding distortion of the previous frame )(1 qEk− . Furthermore, with the assumption 

that both kI and )(1 qEk− have zero mean and are uncorrelated, the variance is also de-

composable as (7) shows. That is, the variance )(2 q
kRσ is equal to the sum 

of )(2 q
kIσ and )(2

1
q

kE −
σ . 
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3 Proposed Q-D Estimation Method  

In this section, we describe the proposed Q-D estimation method for H.264/SVC 
inter-layer residual prediction in spatial scalability in detail. With the power form Q-D 
model and the residual decomposition as basis, we can build up the quality estimation 
mechanism. The Q-D model for single layer coding that prediction data only come 
from its own layer is described first. The model can be applied to the base layer or 
enhancement layers without inter-layer prediction in SVC. Moreover, for SVC inter-
layer prediction, the enhancement layer quality or the residual will vary with the 
similarity between two layers. A Q-D mode for enhancement layers with inter-layer 
residual prediction is then proposed. 
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3.1 Q-D Model for Single Layer Coding 

As mentioned in [10], with the assumption that a video sequence is a locally temporal 
stationary process, the corresponding variables in successive frames have the same 
variance. Thus 
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where Prior-Residual, defined as 
2
IPR σ= , is the variance of the displacement  

difference. 
Then, we can put (8) into (5) to obtain (9) 
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Because )(qD is a function of PR , and the DCT coefficients are modeled by Cauchy 

distribution in [4], (9) can be further simplified as (10). 
dcPRb aqaqqPRfqD =≈= ) , ()( '

 (10)

Where a, c, and d are constants. The specific relationship between b and PR can be 
built up by empirical tests. We will observe that PR can accurately predict the distor-
tion curve as a good parameter to identify the sequence characteristic. 

3.2 Q-D Model for Inter-layer Residual Prediction 

The inter-layer residual prediction in SVC is depicted as Fig. 2. Because the high 
correlation of residual signals between the current and the reference layer, the 
difference )(qR

kRP between the residuals of two layers instead of residual signal itself 

is encoded as the enhancement information to improve the coding efficiency. 

 
Fig. 2. Inter-layer residual prediction structure in SVC spatial scalability 
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We also employ the residual decomposition to this structure. By involving the pre-

dicted frame by non-distorted data in the enhancement layer '

1−kEF and that for the base 

layer '

1−kBF , the residual can also be decomposed to the distortion from imperfect pre-

diction and quantization error as in (11). 
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where ( )  ⋅RU  means the upsampling procedure, which can be implemented by sim-

ple bi-linear interpolation or any more sophisticate interpolation operations. 

We assume that both
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have zero mean and 

are approximately uncorrelated. In addition, a video sequence is a locally temporal 
stationary process, i.e., the corresponding variables in consecutive frames have the 
same variance. (11) can be derived as (12). 
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where Prior-Residual for Residual Prediction is denoted as 
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tions, the base layer distortion can be predicted by the enhancement one, which 
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since the higher residual variance exist in the downscaled frame. β and ρ , which is 
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can be expressed as a constant times of )(qDRP . 

Therefore, it is possible to use RPPR to predict the real residual before encoding proce-

dure including Rate Distortion Optimization (RDO), transform, and quantization pro-
cedure. 
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Then, we can put (12) into (5) to obtain (13). 
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Because )(qDRP is a function of RPPR , and the DCT coefficients are modeled by 

Cauchy distribution, (13) can be further simplified as (14). 
d

RPcPRb
RPRP aqaqqPRfqD =≈= ) , ()( '

 (14)

where b can also be represented by a power form with RPPR . It will be verified with 

c and d in the experiment section with real video data. Note that, RPPR  means the 

Prior-Residual for Residual Prediction, which is different from PR  for single layer, 
and it provides more accurate description for Q-D behavior. 

Block diagram for obtaining RPPR is shown in Fig.3. Based on the obtained PR , 

Q-D function for a certain video sequence is established We then can either predict 
the distortion according a given QP, or select a suitable QP to obtain the video with 
target visual quality. 
 

 

Fig. 3. Prior-Residual in inter-layer residual prediction 

4 Experimental Results 

In this section we construct an experiment to verify the proposed distortion model for 
ILRP. We will obtain the model parameters by fitting real coding results in the train-
ing phase, and then the performance with those sequences outside the training set will 
be demonstrated. Experiment setting is the following. Four training video sequences 
for two layers in CIF and QCIF formats at the frame rate of 30 frames/s, including 
Akiyo, Carphone, Harbour, Mobile are encoded by H.264/SVC reference software 
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JSVM 9.19.8. Six QPs (16, 20, 24, 28, 32, 36) are used in the encoding. The same 
QPs are used for both the base layer and the enhancement layer. We used 90 frames 
for training, and the first frame is an I-frame while the rest are P-frames. The inter-
layer prediction flag was the inter-layer residual prediction (0,0,1). Five test video 
sequences including Bus, Foreman, Hall, Mother_daughter, and Soccer are encoded, 
and the rest experiments setting are the same with training process. 

As Fig. 4 shows, black dots are the results after the SVC coding for four training 
sequences. The dotted lines are the approximated curves based on the power form  
Q-D relationship. We can obtain the specific value b that minimizes the estimate  
distortion for each sequence in the Table 1. Note that we pre-set a as a constant to 
simplified the model. As shown in Table 1, the numerical value of b can reflect the 
behavior that higher distortion or complicated content has a larger b at same QP 
among different video contents. 
 

Fig. 4. The training Q-D curve in inter-layer 
residual prediction 

Table 1. The Q-D model parameter in inter-
layer residual prediction 

 

From the experimental results, the Q-D model of inter-layer residual prediction 
can be precisely specified as the following  

bQstepMSEqD *254.0)( ==  (15)

As we derived in the Section 3, the constant b is only related to the residual variance 
or PR . Hence, we observe the relationship between b and PR by Fig. 5. From the 
training data, represented by blue squares in the figure, we can observe that b can be 
modeled as a power function of PR , and c and d can be determined to be 1.03 and 
0.08, respectively. The determination coefficient R2 in the fitting process is up to 0.97, 
which implies an excellent fitting.  

From the empirical data, the relationship between b and RPPR  in inter-layer 

residual prediction is shown as 

080.0*037.1 RPPRb =  (16)
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Fig. 5. The fitting curve about b and RPPR
 
in 

inter-layer residual prediction 

Table 2. The relationship between b and 

RPPR
 
in inter-layer residual prediction 

Fig.6 and Fig. 7 show the real and the estimated Q-D curves, respectively. It clearly 
shows that the estimate curves can fit the results obtaining from time-consuming SVC 
coding. Accuracy of the proposed Q-D model, defined as in (17), for various se-
quences and Qsteps are listed in Table 3. The average accuracies for all test sequences 
are more than 81.19%, and up to 93.54% in the sequence Hall. Translated to PSNR, 
the estimation error is no more than 0.74 dB.  

 

Fig. 6. The encoded Q-D curve in inter-layer 
residual prediction 

 

Fig. 7. The modeled Q-D curve in inter-layer 
residual prediction 

Table 3. The accuracy of the Q-D model in inter-layer residual prediction 
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100%
MSE Actual

MSEEstimated MSE Actual
1Accuracy ×









 −
−=  (17)

 

5 Conclusion 

We have proposed a Q-D model for inter-layer residual prediction in SVC. The 
distortion is modeled as a function of quantization step and Prior-Residual that can be 
efficiently estimated before encoding. Experimental results show that the proposed 
model can estimate the actual Q-D curves for inter-layer prediction, and the average 
accuracy of the model is 88.79% in MSE or the estimated error less than 0.74 dB in 
PSNR, which is suitable for practical use. In the future, we will extend the residual 
decomposition and Q-D modeling to all inter-layer prediction tools. 
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