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Abstract. In this paper, we develop a unified image deblurring framework that 
consists of both blur kernel estimation and non-blind image deconvolution. For 
blind kernel estimation, we propose a patch selection procedure and integrate it 
with a coarse-to-fine kernel estimation algorithm to develop a robust blur kernel 
estimation algorithm. For the non-blind image deconvolution, we modify the 
traditional Richardson-Lucy (RL) image restoration algorithm to suppress the 
notorious ringing artifact in the regions around strong edges. Experimental re-
sults on some real blurred images are shown to demonstrate the improved effi-
ciency and image restoration by using the proposed algorithm. 

1 Introduction 

Motion blur is caused by relative motion between the camera and the scene during 
exposure. The real camera motion is usually too complicated to estimate from a 
blurred image when it involves camera rotation or large scene depth variations. To 
simplify the problem formulation, previous researches usually assumed the camera 
motion is perpendicular to the optical axes and the effect of scene depth variation can 
be neglected. In other words, the blur kernel is assumed to be spatially invariant. Un-
der this assumption, a blurred image, B, can be modeled as (1), where K is the blur 
kernel, I is the clear image, N is the noise, and ٔ is the convolution operator. ܤ ൌ ܭ۪ܫ ൅ ܰ .                                     (1) 

The blind image restoration problem in (1) is ill-posed because I and K are highly un-
der-constrained and there are infinitely many possible combinations of I and K such that 
their convolution is equal to the blurred image B. Fergus et al. [4] proposed to utilize 
ensemble learning to estimate the blur kernel with a sophisticated variational Bayes 
inference algorithm, which employs the property of specific distributions of image gra-
dients for natural images to approximate the posterior distribution. Levin [6] also  
exploited image statistics for estimating blur kernels. Shan et al. [9] proposed two prob-
abilistic models to improve image restoration. One is to model the spatially random 
distribution of noise, and the other is a smoothness prior model which can reduce the 
ringing artifacts. Cho and Lee [11] proposed a latent image prediction step, which  
applied shock filter to recover the sharp edge information for estimating the blur kernel. 
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Even with a known blur kernel, the restored image may contain some undesirable 
reconstruction artifacts, such as the ringing artifacts. To overcome this problem, Le-
vin et al. [7] modeled the sparse image derivative distribution as a heavy-tailed func-
tion to alleviate the ringing artifacts. Shan et al. [9] proposed a local smoothness prior 
which assumes the gradients of smooth regions in a blurred image are similar to those 
in a clear image. Yuan et al. [8, 10] proposed the concept of residual deconvolution 
and modified the standard Richardson-Lucy (RL) algorithm [1], [2] by incorporating 
either a gain-control process [7] or a bilateral-filtering-like process [9] for suppressing 
the ringing artifacts.  

In this paper, we propose a simple and efficient method to estimate the blur kernel 
under the assumption of spatially-invariant case, and modify the Richardson-Lucy 
algorithm to form a new deconvolution method called GARL, which effectively re-
duces the ringing artifact. The contributions of this paper are listed as follows: 

 
1. We propose a patch selection scheme to choose a suitable region from the input 

blurred image for kernel estimation with the purpose of computational efficiency. 
2. Combining several popular concepts in blind kernel estimation, we develop our 

method using a quadratic smoothness prior, bilateral filtering, and a good patch. 
3. We exploit the gradient attenuation concept and modify the standard RL algo-

rithm to suppress the ringing artifacts in the RL-based image deconvolution.  
4. We propose an iterative detail recovery procedure that can recover missing de-

tails due to ringing suppression.  
 

The rest of this paper is organized as follows: The blur kernel estimation algorithm is 
introduced in section II. Non-blind image deconvolution method is proposed in  
section III. Experimental results are reported in section IV. Finally, we conclude in 
section V. 

2 Blur Kernel Estimation 

Several recent researches have proposed novel and effective ways to estimate the blur 
kernel. We integrate some of these methods and add other new procedures to form our 
own kernel estimation method, of both efficiency and accuracy, as depicted in Fig. 2. 

In [11], the authors minimized the objective function with a quadratic regulariza-
tion term using conjugate gradient method. They also adopt bilateral filtering [3] to 
filter out possible noises in the latent image in their framework. Their algorithm is 
simple, straightforward, and efficient. In [12], a new metric to measure the usefulness 
of image edges in motion deblurring is proposed. They found that some regions in an 
image are good for kernel estimation, while some are not. As a result, they construct a 
map telling which parts of the image are useful. During the kernel estimation, this 
map is used as a mask so that only the useful parts are taken into consideration. 

We take the advantages of the above methods in our kernel estimation algorithm, 
including quadratic objective function, bilateral filtering, and the map of useful gra-
dients. In addition, we add a new procedure – patch selection. Patch selection has 
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been commonly used in deblurring to reduce the execution time in blur estimation, 
but few researchers have put efforts to analyze it. An image of high resolution, say, a 
million pixels, takes a long time to be processed, so most of the time we choose one 
or more small patches for the blur kernel estimation instead of using the entire image. 
If the patch is selected well, an accurate kernel can still be found in a relatively short 
time. A good patch for deblurring should contain strong edges of various directions. 
An edge that is parallel to the blur direction provides no information, but an edge 
perpendicular to the blur direction is the most appropriate one. 

To automatically select the patch, we adopt the concept from the Harris corner de-
tector [13], which determines if a pixel is a good corner from the eigenvalues of the 
gradient covariance matrix for a local neighborhood. For a pixel p, a 2x2 Harris ma-
trix C is defined as ۱ሺ࢖ሻ ൌ ∑ ቈ ,௫ଶሺ݅ܫ ݆ሻ ,௫ሺ݅ܫ ݆ሻܫ௬ሺ݅, ݆ሻܫ௫ሺ݅, ݆ሻܫ௬ሺ݅, ݆ሻ ,௬ଶሺ݅ܫ ݆ሻ ቉ሺ௜,௝ሻௐ೛  ,             (2)         

where Wp is a local window centered at p, and Ix and Iy represent the partial deriva-
tives along x and y directions, respectively. The corner response function is then de-
fined by ܴ ൌ ሺ۱ሻݐ݁݀ െ ݇൫݁ܿܽݎݐሺ۱ሻ൯ଶ

 ,                        (3) 

where k is a constant. A high response value at pixel p means that the region around p 
is probably a corner region because it contains a set of image gradients with diverse 
directions in a local region. In our patch selection, we apply the same strategy, but the 
window size is set to the patch size, which is an input to our program. Generally, the 
edge length of the patch is set to be 1/3 to 1/2 of the input blurry image. The patch 
size is chosen not too small for stability consideration. Nevertheless, very small patch 
sizes may work well in some cases and it can considerably reduce the execution time. 

Fig. 1 shows some examples of synthetic data. We compare the estimated kernels 
computed from the whole image and some patch selection methods, including the (1) 
proposed method, (2) point with maximum gradient magnitude (3) central point. Some 
times (1) and (2) generate similar patches because corners usually have high gradient 
magnitude. The advantage of using (3) is that the salient part of an image usually lies in 
the center, and this scheme doesn’t need any additional computation. Using the whole 
image produces the best result most of the time, but the execution time may be too long 
for a large image. With this effective patch selection scheme, we can find an appropriate 
window of a pre-selected size for the blur kernel estimation.  

2.1 Multi-scale Scheme 

To handle large blurs, a multi-scale optimization strategy is imperative. Generally, the 
initial kernel size is defined by the user. Thus this value would be easy to set if we 
start from a small scale. Besides, large blurs are more probable to have complex ker-
nels than small ones. A multi-scale scheme improves the robustness and accuracy of 
kernel estimation. 
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2.2 Optimization for K 

Most kernel estimation methods do not use the whole image information because 
there are too many noises or redundant regions that are of no use for kernel estima-
tion. Therefore, we usually extract the edges out first. 

Given a blur image patch, Bp, we solve for the kernel K by constructing the useful 
edge map from Bp [12]. As mentioned before, we first compute the r-map defined by 

   rሺxሻ ൌ ቛ∑ ಿ೓ሺೣሻא஻೛ሺ௬ሻ೤׏ ቛ∑ ฮ׏஻೛ሺ௬ሻฮ೤אಿ೓ሺೣሻ ା଴.ହ  ,                             (4) 

where Bp denotes the blurred image patch and ௛ܰሺݔሻ is a h × h window centered at 
pixel x, and the constant 0.5 is to prevent producing a large r in flat regions. Then we 
apply thresholding on the r map to rule out pixels with small r values by M ൌ Hሺr െ τ௥ሻ ,                                 (5) 

where H is the Heaviside step function. The value in map M is 1 if r is higher than the 
threshold τ௥, and 0 otherwise. The final edge map is determined as ׏I௣ୱ ൌ Iሚ௣׏ · H ቀMฮ׏Iሚ௣ฮଶ െ τୱቁ  ,                       (6) 

where Iሚ௣ denotes the shock filtered image patch and τୱ is a threshold of the gradient 
magnitude. Once the edge map is obtained, we can solve the blur kernel K by mini-
mizing the objective function EሺKሻ ൌ ฮ׏I௣ୱ ٔ K െ B௣ฮଶ׏ ൅ γԡKԡଶ  ,                   (7) 

where ߛ is a weight for the regularization term. Taking the derivatives of Eሺkሻ with 
respect to k and performing FFT on all variables, we obtain the close-form solution 
for K as follows: K ൌ Fିଵ ቆF൫ப౮I೛౩൯തതതതതതതതതതതതതF൫ப౮B೛൯ାF൫ப౯I೛౩൯തതതതതതതതതതതതതF൫ப౯B೛൯F൫ப౮I೛౩൯మାF൫ப౯I೛౩൯మାஓ ቇ,                     (8)   

where F means FFT, ିܨଵ means inverse FFT, and Fത is the conjugate complex of F. 
In our experiments, we set γ to be large, from 20 to 100, because we want the ker-

nel to be smooth enough. If γ is too small, the kernel may break into pieces. At the 
end of each scale, we preserve the maximum component and leave the others out as a 
denoising step. 

2.3 Latent Image Deconvolution 

In the quadratic regularization term, the objective function of the latent image patch Ip 
is defined as E൫I௣൯ ൌ ฮI௣ ٔ k െ B௣ฮଶ ൅ λԡ׏Iԡଶ ,                  (9) 
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3 Non-blind Image Deconvolution 

In this paper, we propose a novel algorithm for non-blind image deconvolution, called 
GARL, which stands for Gradient Attenuation Richardson-Lucy. It effectively alle-
viates ringing artifacts by exploiting the gradient attenuation function [4] as the pixel 
weights to slow down the updating of pixels in the smooth regions and the regions 
around strong edges, thus suppressing the ringing propagation. The GARL algorithm 
is based on the classical Richardson-Lucy algorithm. 

The Richardson-Lucy algorithm iteratively updates the image according to  ܫ௧ାଵ ൌ ௧ܫ · ቀܨ כ ஻ூ೟ٔிቁ ,                           (11) 

where כ is the correlation operator, and t indicates the iteration number. In [7], the 
residual RL is proposed, which performs the RL algorithm on residual image to re-
duce the absolute amplitudes of the signals, hence reducing the ringing artifact. The 
iterative updating formula on the residual image becomes ∆ܫ௧ାଵ ൌ ሺ∆ܫ௧ ൅ 1ሻ · ቀܨ כ ∆஻ାଵሺ∆ூ೟ାଵሻٔிቁ െ 1  ,              (12) 

where ∆I denotes the residual image and ∆B is the residual blurred image: ∆B ൌ∆I ٔ F ൅ N. 

3.1 GARL 

As described in [7], [9], the frequency of ringing artifact is lower than that of image 
details and ringing artifacts are negligible by human perception in highly textured 
regions. Therefore, to suppress ringing artifact, we force the smoothness constraint on 
the middle range of frequencies and the iterative update equation becomes ∆ܫ௧ାଵ ൌ ଵଵାఓௐ ቄሺ∆ܫ௧ ൅ 1ሻ · ቀܨ כ ∆஻ାଵሺ∆ூ೟ାଵሻٔிቁ െ 1ቅ ,              (13) 

Since we want to suppress the contrast of ringing in the smooth regions while avoiding 
the suppression of sharp edges, the weight matrix should be large in smooth regions and 
small in edge and textured regions. We modify the gradient attenuation function [5] to 
determine the weight W for each pixel in (13). In the hierarchical restoration scheme, 
our modified gradient attenuation function, defined by W, is re-computed for each pixel 
at each scale s by propagating the scaling factor φ௦ as follows: φ௦ሺx, yሻ ൌ ቀ ఈೞԡ׏ூೞሺ௫,௬ሻԡቁఉ · ቀԡ׏ூೞሺ௫,௬ሻԡఈೞ ቁఊெೞሺ௫,௬ሻ

 ,                 (14) 

଴ܹ ൌ ߮଴, ௦ܹ ൌ ሺ ௦ܹିଵሻ՛ · ߮௦  ,                         (15) ܯ௦ ൌ ۄ௦ԡܫଶ׏ԡۃ ٔ ܨ · ሺ1 െ  ሻ  ,                     (16)ۄ௦ԡܫ׏ԡۃ

where (.)↑ defines the up-sampling operator with linear interpolation, x and y denote 
the position in an image, αs determines which gradient magnitude defines the smooth 
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regions, β and γ control the attenuating scale globally and locally, respectively, and 
they are set between 0.5 and 0.6 (β>γ) in our experiments. Ms indicates the influence 
range of strong edges according to the estimated blur kernel, and <||.||> is the normali-
zation operator. The values of Ms are between 0 and 1 so γ only effects the scaling 
factor at the positions where Ms(x,y)≠0. Because details are recovered more at finer 
scales, the gradient magnitudes of smooth area are larger than those at the same posi-
tions of the coarser scales. 

3.2 Detail Recovery 

The GARL can suppress most ringing artifacts with superior results compared to the 
other results, but it also suppresses some details around the strong edges. Therefore 
we propose a detail recovery process to further recover the lost details. 

If we obtain two restored images from the GARL and the standard RL, the differ-
ence between them would contain the details and ringings, thus it can be expressed as 
follows: ܫ஽௜௙௙ ൌ ோ௅ܫ െ ܫீ ஺ோ௅ ൌ ஽ܫ ൅  R ,                         (17)ܫ
where IGARL and IRL denote the restored images by GARL and the standard RL, respec-
tively, their difference is denoted by IDiff, and ID and IR indicate the detail and ringing 
layer, respectively. 

For each iteration, the IR
t is obtained by applying a bilateral filter on IDiff

t and then 
we determine a scaling factor, λt, to obtain a more accurate ringing layer by minimiz-
ing the following equation: ߣ௧ ൌ argmin஛ฮܫ஽௜௙௙௧ െ ோ௧ܫߣ ฮଶ

መோ௧ܫ (18)                     ,   ൌ ோ௧ܫ௧ߣ   .                                (19) 

The detail layer and the difference layer for the next iteration are updated as: ܫ஽௧ ൌ ሺ1 ൅ หூመೃ೟ ห୫ୟ୶ ሺหூመೃ೟ หሻሻିଵ · ሺ1 െ Mሻ · ൫ܫ஽௜௙௙௧ െ መோ௧ܫ ൯  ,             (20) ܫ஽௜௙௙௧ାଵ ൌ ஽௜௙௙௧ܫ െ መோ௧ܫ െ ஽௧ܫ   ,                       (21) 

where M was defined in eq. (5) in the kernel estimation method. 
The M map is a zero-one mask, with the pixels of value 1 representing the regions 

around strong edges and value 0 for smooth regions or regions containing many tex-
tures. It is inevitably to carefully select appropriate parameters to produce good resto-
ration results. We set τୱ to be inside the range from 0.1 to 0.3, depending on the cha-
racteristics of the images. 

The final restored image, IF, is determined by: ܫி ൌ ܫீ ஺ோ௅ ൅ ∑ ஽௧௧ܫ   .                           (22) 

Fig.3 is an example of GARL method. We also compare the results with other me-
thods [7], [8]. The GARL result apparently contains less ringing artifact. Fig.4 shows 
the procedure of the detail recovery procedure. 
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