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Abstract. In this paper, we present an approach to determining the cognitive
complexity of justifications for entailments of OWL ontologies. We introduce
a simple cognitive complexity model and present the results of validating that
model via experiments involving OWL users. The validation is based on test data
derived from a large and diverse corpus of naturally occurring justifications. Our
contributions include validation for the cognitive complexity model, new insights
into justification complexity, a significant corpus with novel analyses of justifi-
cations suitable for experimentation, and an experimental protocol suitable for
model validation and refinement.

1 Introduction

A justification is a minimal subset of an ontology that is sufficient for an entailment
to hold. More precisely, given O = 7, J is a justification for n in O if J C O,
J E nand, forall 7' € J, J' ¥~ n. Justifications are the dominant form of ex-
planation in OWL and justification based explanation is deployed in popular OWL
editors. The primary focus of research in this area has been on explanation for the sake
of debugging problematic entailments [8], whether standard “buggy” entailments, such
as class unsatisfiability or ontology inconsistency, or user selected entailments such as
arbitrary subsumptions and class assertions. The debugging task is naturally directed
toward “repairing” the ontology and the use of “standard errors” further biases users
toward looking for problems in the logic of a justification.

As a form of explanation, justifications are a bit atypical historically. While they
present the ultimate, ontology specific reasons that a given entailment holds, they, un-
like proofs, do not articulate how those reasons support the entailment, at least, in
any detail. That is, they correspond to the premises of a proof, but do not invoke any
specific proof calculus. Clearly, this brings advantages, as justifications are calculus in-
dependent, require nothing more than knowledge of OWL, and do not involve a host of
knotty, unresolved issues of long standing (such as what to do about “obvious” steps
[2]). Furthermore, justifications are highly manipulable: Deleting an axiom breaks the
entailment, which allows for a very active, ontology related form of experimentation

! Throughout this paper, “OWL” refers to the W3C’s Web Ontology Language 2 (OWL 2).
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by users. However, in spite of their field success, justifications are held to be lacking
because they don’t articulate the connection and thus are too hard to understand

The Description Logic that underpins OWL, SROZQ, is N2ExpTime-complete
[LO], which suggests that even fairly small justifications could be quite challenging
to reason with. However, justifications are highly successful in the field, thus the com-
putational complexity argument is not dispositive. We do observe often that certain jus-
tifications are difficult and frustrating to understand for ontology developers. In some
cases, the difficulty is obvious: a large justification with over 70 axioms is going to be at
best cumbersome however simple its logical structure. However, for many reasonably
sized difficult justifications (e.g. of size 10 or fewer axioms) the source of cognitive
complexity is not clearly known.

If most naturally occurring justifications are easy “enough” to understand, then the
need for auxilliary explanation faculties (and the concomitant burden on the user to
master them and the tool developer to provide them) is reduced. In prior work [S4316],
we proposed a predictive complexity model based on an exploratory study plus our own
experiences and intuitions. However, in order to deploy this metric reliably, whether to
assess the state of difficulty of justifications or to deploy an end-user tool using it, the
model needed validation.

In this paper, we present the results of several experiments into the cognitive com-
plexity of OWL justifications. Starting from our cognitive complexity model, we test
how well the model predicts error proportions for an entailment assessment task. We
find that the model does fairly well with some notable exceptions. A follow-up study
with an eye tracker and think aloud protocol supports our explanations for the anoma-
lous behaviour and suggests both a refinement to the model and a limitation of our
experimental protocol.

Our results validate the use of justifications as the primary explanation mechanism
for OWL entailments as well as raising the bar for alternative mechanisms (such as
proofs). Furthermore, our metric can be used to help users determine when they need
to seek expert help or simply to organise their investigation of an entailment.

2  Cognitive Complexity and Justifications

While there have been several user studies in the area of debugging [11l9], ontology
engineering anti-patterns [[L6], and our exploratory investigation into features that make
justifications difficult to understand [5], to the best of our knowledge there have not
been any formal user studies that investigate the cognitive complexity of justifications.

Of course, if we had a robust theory of how people reason, one aspect of that ro-
bustness would be an explanation of justification difficulty. However, even the basic
mechanism of human deduction is not well understood. In psychology, there is a long
standing rivalry between two accounts of human deductive processes: (1) that people

2 See, for example, a related discussion in the OWL Working Group
http://www.w3.0rg/2007/0WL/tracker/issues/52. Also, in [1], the authors
rule out of court justifications as a form of explanation: “It is widely accepted that an ex-
planation corresponds to a formal proof. A formal proof is constructed from premises using
rules of inference”.
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apply inferential rules [[15]], and (2) that people construct mental models [7]@ In spite
of a voluminous literature (including functional MRI studies, e.g., [[14]]), to date there is
no scientific consensus [[13]], even for propositional reasoning.

Even if this debate were settled, it would not be clear how to apply it to ontology
engineering. The reasoning problems that are considered in the literature are quite dif-
ferent from understanding how an entailment follows from a justification in a (fairly
expressive) fragment of first order logic. For example, our reasoning problems are in
a regimented, formalised language for which reasoning problems are far more con-
strained than deduction “in the wild.” Thus, the artificiality of our problems may en-
gage different mechanisms than more “natural” reasoning problems: e.g. even if mental
models theory were correct, people can produce natural deduction proofs and might
find that doing so allows them to outperform “reasoning natively”. Similarly, if a tool
gives me a justification, I can use my knowledge of justifications to help guide me, e.g.,
that justifications are minimal means that I must look at all the axioms presented and I
do not have to rule any out as irrelevant. As we will see below, such meta-justificatory
reasoning is quite helpful.

However, for ontology engineering, we do not need a true account of human deduc-
tion, but just need a way to determine how usable justifications are for our tasks. In other
words, what is required is a theory of the weak cognitive complexity of justifications,
not one of strong cognitive complexity [17].

A similar practical task is generating sufficiently difficult so-called “Analytical Rea-
soning Questions” (ARQs) problems in Graduate Record Examination (GRE) tests.
ARQs typically take the form of a “logic puzzle” wherein an initial setup is presented,
along with some constraints, then the examinee must determine possible solutions. Of-
ten, these problems involve positioning entities in a constrained field (e.g., companies
on floors in a building, or people seated next to each other at dinner). In [13]], the inves-
tigators constructed and validated a model for the complexity of answering ARQs via
experiments with students. Analogously, we aim to validate a model for the complexity
of “understanding” justifications via experiments on modellers.

In [[13]], Newstead et al first build a preliminary complexity model, as we did, based
on a small but intense pilot study using think aloud plus some initial ideas about the
possible sources of complexity. Then they validated their model in a series of large scale
controlled experiments wherein a set of students were given sets of questions which
varied systematically in complexity (according to their model) and in particular features
used. One strong advantage Newstead el al have is that the problems they considered
are very constrained and comparatively easy to analyse. For example, the form of ARQ
question they consider have finite, indeed, easily enumerable, sets of models. Thus, they
can easily determine how many possible situations are ruled out by a given constraint
which is a fairly direct measure of the base line complexity of the problem. Similarly,
they need merely to construct problems of the requisite difficulty, whereas we need to
recognise the difficulty of arbitrary inputs. Finally, their measure of difficulty is exactly
what proportion of a given cohort get the questions right, whereas we are dealing with
a more nebulous notion of understanding.

3 (1) can be crudely characterised as people use a natural deduction proof system and (2) as
people use a semantic tableau.
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Of course, the biggest advantage is that their problems are expressed in natural lan-
guage and reasonably familiar to millions of potential participants, whereas our investi-
gations necessarily require a fair degree of familiarity with OWL — far more than can
be given in a study-associated training session. Nevertheless, the basic approach seems
quite sound and we follow it in this paper.

3 A Complexity Model

We have developed a cognitive complexity model for justification understanding. This
model was derived partly from observations made during an exploratory study (see
[543l6] for more details) in which people attempted to understand justifications from
naturally occurring ontologies, and partly from intuitions on what makes justifications
difficult to understand.

Please note that reasonable people may (and do!) disagree with nigh every aspect of
this model (the weights are particularly suspect). For each factor, we have witnessed
the psychological reality of their causing a reasonably sophisticated user difficulty in
our exploratory study. But, for example, we cannot warrant their orthogonality, nor can
we show that some combinations of factors is easier than the sum of the weights would
indicate. This should not be too surprising especially if one considers the current under-
standing of what makes even propositional formulae difficult for automated reasoners.
While for extremely constrained problems (such as propositional kCNF), we have long
had good predictive models for reasoning difficulty for key proving techniques, more
unconstrained formulae have not been successfully analysed. Given that the complexity
of a given algorithm is intrinsically more analysable than human psychology (consider
simply the greater ease of controlled experiments), the fact that we do not have good
predictive models for automated reasoners should be a warning for theorists of cogni-
tive complexity. However, while daunting, these facts do not mean we should give up,
as even a fairly crude model can be useful, as we have found. Furthermore, we can hope
to improve the predictive validity of this model, even without determining the structure
of the phenomena.

Table [l describes the model, wherein 7 is the justification in question, 7 is the fo-
cal entailment, and each value is multiplied by its weight and then summed with the
rest. The final value is a complexity score for the justification. Broadly speaking, there
are two types of components: (1) structural components, such as C1, which require a
syntactic analysis of a justification, and (2) semantic components, such as C4, which
require entailment checking to reveal non-obvious phenomena.

Components C1 and C2 count the number of different kinds of axiom types and class
expression types as defined in the OWL 2 Structural Speciﬁcationﬂ The more diverse
the basic logical vocabulary is, the less likely that simple pattern matching will work
and the more “sorts of things” the user must track.

Component C3 detects the presence of universal restrictions where trivial satisfac-
tion can be used to infer subsumption. Generally, people are often surprised to learn
that if (z,y) ¢ R? forall y € AZ, then z € (VR.C)Z. This was observed repeatedly in
the exploratory study.

4 http://www.w3.org/TR/owl2-syntax/
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Table 1. A Simple Complexity Model

Name Base value ‘Weight
C1 AxiomTypes Number of axiom types in J & 7. 100
C2 ClassConstructors Number of constructors in 7 & 7. 10

C3 Universallmplication  If an « € J is of the form VR.C C D or D = VR.C then 50 else 1
0.

C4 SynonymOfThing IfJ =T C Aforsome A € Signature(J)and T C A ¢ J and 1
T E A # nthen 50 else 0.

C5 SynonymOfNothing  If 7 = A C L forsome A € Signature(J)and A C L ¢ J and 1
A C L # nthen 50 else 0.

C6 Domain&NoExistential If Domain(R,C) € J and J [~ E C 3R.T for some class 1
expressions F then 50 else 0.

C7 ModalDepth The maximum modal depth of all class expressions in 7. 50

C8 SignatureDifference ~ The number of distinct terms in Signature(n) not in Signature(7 ). 50

C9 AxiomTypeDiff If the axiom type of 7 is not the set of axiom types of 7 then 50 else O 1

C10 ClassConstructorDiff The number of class constructors in 7 not in the set of constructors of 1
J.

C11 LaconicGCICount The number of General Concept Inclusion axioms in a laconic version 100
of J

C12 AxiomPathLength The number of maximal length expression paths in J plus the number 10

of axioms in 7 which are not in some maximal length path of 7, where
a class (property) expression subsumption path is a list of axioms of
length n where for any 1 < ¢ < n, the axiom at position ¢ is C; T
Ci+1.

Components C4 and CS5 detect the presence of synonyms of T and L in the signature
of a justification where these synonyms are not explicitly introduced via subsumption
or equivalence axioms. In the exploratory study, participants failed to spot synonyms of
T in particular.

Component C6 detects the presence of a domain axiom that is not paired with an
(entailed) existential restriction along the property whose domain is restricted. This
typically goes against peoples’ expectations of how domain axioms work, and usually
indicates some kind of non-obvious reasoning by cases. For example, given the two
axioms JR. T C C and VR.D C C, the domain axiom is used to make a statement
about objects that have R successors, while the second axiom makes a statement about
those objects that do not have any R successors to imply that C' is equivalent to T.
This is different from the typical pattern of usage, for example where A C 3R.C' and
JR.T C Bentails A C B.

Component C7 measures maximum modal depth of sub-concepts in 7, which tend
to generate multiple distinct but interacting propositional contexts.

Component C8 examines the signature difference from entailment to justification.
This can indicate confusing redundancy in the entailment, or synonyms of T, that may
not be obvious, in the justification. Both cases are surprising to people looking at such
justifications.

Components C9 and C10 determine if there is a difference between the type of, and
types of class expressions in, the axiom representing the entailment of interest and the
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types of axioms and class expressions that appear in the justification. Any difference can
indicate an extra reasoning step to be performed by a person looking at the justification.

Component C11 examines the number of subclass axioms that have a complex left
hand side in a laconid] version of the justification. Complex class expressions on the
left hand side of subclass axioms in a laconic justification indicate that the conclusions
of several intermediate reasoning steps may interact.

Component C12 examines the number of obvious syntactic subsumption paths
through a justification. In the exploratory study, participants found it very easy to quickly
read chains of subsumption axioms, for example, {A C B,BC C,C C D,DC E}to
entail A C FE. This complexity component essentially increases the complexity when
these kinds of paths are lacking.

The weights were determined by rough and ready empirical twiddling, without a
strong theoretical or specific experimental backing. They correspond to our sense, esp.
from the exploratory study, of sufficient reasons for difficulty.

4 Experiments

While the model is plausible and has behaved reasonably well in applications, its vali-
dation is a challenging problem. In principle, the model is reasonable if it successfully
predicts the difficulty an arbitrary OWL modeller has with an arbitrary justification
sufficiently often. Unfortunately, the space of ontology developers and of OWL justifi-
cations (even of existing, naturally occurring ones) is large and heterogeneous enough
to be difficult to randomly sample.

4.1 Design Challenges

To cope with the heterogeneity of users, any experimental protocol should require mini-
mal experimental interaction, i.e. it should be executable over the internet from subjects’
own machines with simple installation. Such a protocol trades access to subjects, over
time, for the richness of data gathered. To this end, we adapted one of the experimental
protocols described in [13] and tested it on a more homogeneous set of participants—a
group of MSc students who had completed a lecture course on OWL. These students had
each had an 8 hour lecture session, once a week, for five weeks on OWL and ontology
engineering, and had completed 4 weeks of course work including having constructed
several ontologies. The curriculum did not include any discussion of justifications or
explanation per se, though entailment and reasoning problems had been coveredfd Ob-
viously, this group is not particularly representative of all OWL ontologists: They are
young, relatively inexperienced, and are trained in computer science. However, given
their inexperience, especially with justifications, things they find easy should be reliably
easy for most trained users.

While the general experimental protocol in [13] seems reasonable, there are some
issues in adapting it to our case. In particular, in ARQs there is a restricted space of

3 Laconic justifications [4] are justifications whose axioms do not contain any superfluous parts.
®Seelhttp://www.cs.manchester.ac.uk/pgt/COMP60421 / for course materials.
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possible (non-)entailments suitable for multiple choice questions. That is, the wrong
answers can straightforwardly be made plausible enough to avoid guessing. A justifi-
cation inherently has one statement for which it is a justification (even though it will
be a minimal entailing subset for others). Thus, there isn’t a standard “multiple set” of
probable answers to draw on. In the exam case, the primary task is successfully an-
swering the question and the relation between that success and predictions about the
test taker are outside the remit of the experiment (but there is an established account,
both theoretically and empirically). In the justification case the standard primary task is
“understanding” the relationship between the justification and the entailment. Without
observation, it is impossible to distinguish between a participant who really “gets” it
and one who merely acquiesces. In the exploratory study we performed to help develop
the model, we had the participant rank the difficulty of the justification, but also used
think aloud and follow-up questioning to verify the success in understanding by the
participant. This is obviously not a minimal intervention, and requires a large amount
of time and resources on the part of the investigators.

To counter this, the task was shifted from a justification understanding task to some-
thing more measurable and similar to the question answering task in [13]]. In particu-
lar, instead of presenting the justification/entailment pair as a justification/entailment
pair and asking the participant to try to “understand” it, we present the justifica-
tion/entailment pair as a set-of-axioms/candidate-entailment pair and ask the participant
to determine whether the candidate is, in fact, entailed. This diverges from the standard
justification situation wherein the modeller knows that the axioms entail the candidate
(and form a justification), but provides a metric that can be correlated with cognitive
complexity: error proportions.

4.2 Justification Corpus

To cope with the heterogeneity of justifications, we derived a large sample of justifi-
cations from ontologies from several well known ontology repositories: The Stanford
BioPortal repositoryl] (30 ontologies plus imports closure), the Dumontier Lab ontology
collectior (15 ontologies plus imports closure), the OBO XP collection] (17 ontologies
plus imports closure) and the TONES repository@ (36 ontologies plus imports closure).
To be selected, an ontology had to (1) entail one subsumption between class names with
at least one justification that (a) was not the entailment itself, and (b) contains axioms in
that ontology (as opposed to the imports closure of the ontology), (2) be downloadable
and loadable by the OWL API (3) processable by FaCT++.

While the selected ontologies cannot be said to generate a truly representative sample
of justifications from the full space of possible justifications (even of those on the Web),
they are diverse enough to put stress on many parts of the model. Moreover, most of
these ontologies are actively developed and used and hence provide justifications that a
significant class of users encounter.

7 http://bioportal.bioontology.org

8 http://dumontierlab.com/?page=ontologies

o http://www.berkeleybop.org/ontologies/

10 http://owl.cs.manchester.ac.uk/repository/
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For each ontology, the class hierarchy was computed, from which direct subsump-
tions between class names were extracted. For each direct subsumption, as many justi-
fications as possible in the space of 10 minutes were computed (typically all justifica-
tions; time-outs were rare). This resulted in a pool of over 64,800 justifications.

While large, the actual logical diversity of this pool is considerably smaller. This is
because many justifications, for different entailments, were of exactly the same “shape”.
For example, consider 71 = {AC B, BCLC} EFACCand , ={FC E,EC
G} E F C G. As can be seen, there is an injective renaming from J; to Jz, and 7 is
therefore isomorphic with [J,. If a person can understand 7; then, with allowances for
variations in name length, they should be able to understand J». The initial large pool
was therefore reduced to a smaller pool of 11,600 non-isomorphic justifications.

4.3 Items and Item Selection

Each experiment consists of a series of test items (questions from a participant point of
view). A test item consists of a set of axioms, one following axiom, and a question, “Do
these axioms entail the following axiom?”. A participant response is one of five possible
answers: “Yes” (it is entailed), ““Yes, but not sure”, “Not Sure”, “No, but not sure”, “No”
(it is not entailed). From a participant point of view, any item may or may not contain a
justification. However, in our experiments, every item was, in fact, a justification.

It is obviously possible to have non-justification entailing sets or non-entailing sets
of axioms in an item. We chose against such items since (1) we wanted to maximize the
number of actual justifications examined (2) justification understanding is the actual
task at hand, and (3) it is unclear how to interpret error rates for non-entailments in
light of the model. For some subjects, esp. those with little or no prior exposure to
justifications, it was unclear whether they understood the difference between the set
merely being entailing, and it being minimal and entailing. We did observe one person
who made use of this metalogical reasoning in the follow-up study.

Item Construction: For each experiment detailed below, test items were constructed
from the pool of 11,600 non-isomorphic justifications. First, in order to reduce variance
due primarily to size, justifications whose size was less than 4 axioms and greater than
10 axioms were discarded. This left 3199 (28%) justifications in the pool. In partic-
ular, this excluded large justifications that might require a lot of reading time, cause
fatigue problems, or intimidate, and excluded very small justifications that tended to be
trivial

For each justification in the pool of the remaining 3199 non-isomorphic justifica-
tions, the complexity of the justification was computed according to the model pre-
sented in Table[I] and then the justification was assigned to a complexity bin. A total
of 11 bins were constructed over the range of complexity (from 0 to 2200), each with a
complexity interval of 200. We discarded all bins which had 0 non-isomorphic justifi-
cations of size 4-10. This left 8 bins partitioning a complexity range of 200-1800.

' Note that, as a result, nearly 40% of all justifications have no representative in the pruned set
(see Figure ). Inspection revealed that most of these were trivial single axiom justifications
(e.g.oftheform{A=B} =EAC Bor{A=(BNC)} E ALC B,etc.
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Figure [[illustrates a key issue. The bulk of the justifications (esp. without the triv-
ial), both with and without isomorphic reduction, are in the middle complexity range.
However, the model is not sophisticated enough that small differences (e.g. below a
difference of 400-600) are plausibly meaningful. It is unclear whether the noise from
variance in participant abilities would wash out the noise from the complexity model.
In other words, just from reflection on the model, justifications whose complexity dif-
ference is 400 or less do not seem reliably distinguishable by error rates. Furthermore,
non-isomorphism does not eliminate all non-significant logical variance. Consider a
chain of two atomic subsumptions vs. a chain of three. They have the same basic log-
ical structure, but are not isomorphic. Thus, we cannot yet say whether this apparent
concentration is meaningful.

Since we did not expect to be able to present more than 6 items and keep to our
time limits, we chose to focus on a “easy/hard” divide of the lowest three non-empty
bins (200-800) and the highest three non-empty bins (1200-1800). While this limits
the claims we can make about model performance over the entire corpus, it, at least,
strengthens negative results. If error rates overall do not distinguish the two poles
(where we expect the largest effect) then either the model fails or error rates are not
a reliable marker. Additionally, since if there is an effect, we expect it to be largest in
this scenario thus making it easier to achieve adequate statistical power.

Each experiment involved a fixed set of test items, which were selected by randomly
drawing items from preselected spread of bins, as described below. Please note that the
selection procedure changed in the light of the pilot study, but only to make the selection
more challenging for the model[3

The final stage of item construction was justification obfuscation. All non-logical
terms were replaced with generated symbols. Thus, there was no possibility of using
domain knowledge to understand these justifications. The names were all uniform, syn-
tactically distinguishable (e.g. class names from property names) and quite short. The
entailment was the same for all items, i.e. C1 C c2. It is possible that dealing with these
purely symbolic justifications distorted participant response from response in the field,
even beyond blocking domain knowledge. For example, they could be alienating and
thus increase error rates or they could engage less error prone pattern recognition.

5 Results

The test items that were selected by the above sampling methodology are shown below.
Every set of axioms is a justification for c1 £ c2. There was no overlap in participants
across the studies. For the main study, none of the authors were involved in facilitating
the study, though Bail and Horridge participated in recruitment.

5.1 Pilot study

Participants: Seven members of a Computer Science (CS) Academic or Research Staff,
or PhD Program, with over 2 years of experience with ontologies and justifications.

12 The selections are available from http: //owl.cs.manchester.ac.uk/research/
publications/supporting-material/iswc2011-cog-comp
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Fig. 1. Justification Corpus Complexity Distribution

Materials and procedures: The study was performed using an in-house web based
survey tool, which tracks times between all clicks on the page and thus records the time
to make each decision.

The participants were given a series of test items consisting of 3 practice items,
followed by 1 common easy item (E1 of complexity 300) and four additional items,
2 ranked easy (E2 and E3 of complexities 544 and 690, resp.) and 2 ranked hard (H1
and H2 of complexities 1220 and 1406), which were randomly (but distinctly) ordered
for each participant. The easy items were drawn from bins 200-800, and the hard items
from bins 1200-1800. The expected time to complete the study was a maximum of 30
minutes, including the orientation, practice items, and brief demographic questionnaire
(taken after all items were completed).

Results: Errors and times are given in Table2l Since all of the items were in fact justi-
fications, participant responses were recoded to success or failure as follows: Success =
(“Yes” | “Yes, but not sure”) and Failure = (“Not sure” | “No, Not sure” | “No”). Error
proportions were analysed using Cochran’s Q Test, which takes into consideration the
pairing of successes and failures for a given participant. Times were analysed using two
tailed paired sample t-tests.

Table 2. Pilot Study Failures and Response Times

Item Failures Mean Time (ms) Time StdDev. (ms)

E1 0 65,839 39,370
E2 1 120,926 65,950
E3 2 142,126 61,771
H1 6 204,257 54,796
H2 6 102,774 88,728
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An initial Cochran Q Test across all items revealed a strong significant difference in
error proportions between the items [Q(4) = 16.00, p = 0.003]. Further analysis using
Cochran’s Q Test on pairs of items revealed strong statistically significant differences
in error proportion between: E1/H1 [Q(1) = 6.00, p = 0.014], E1/H2 [Q(1) = 6.00,
p = 0.014] E2/H2 [Q(1) = 5.00, p = 0.025] and E3/H2 [Q(1) = 5.00, p = 0.025].
The differences in the remaining pairs, while not exhibiting differences above p = 0.05,
were quite close to significance, i.e. E2/H1 [Q(1) = 3.57, p = 0.059] and E3/H1
[Q(1) = 5.00, p = 0.10]. In summary, these error rate results were encouraging.

An analysis of times using paired sample t-tests revealed that time spent understand-
ing a particular item is not a good predictor of complexity. While there were significant
differences in the times for E1/H1 [p = 0.00016], E2/H1 [p = 0.025], and E3/H1
[p = 0.023], there were no significant differences in the times for E1/H2 [p = 0.15],
E2/H2 [p = 0.34] and E3/H2 [p = 0.11]. This result was anticipated, as in the ex-
ploratory study people gave up very quickly for justifications that they felt they could
not understand.

5.2 Experiment 1

Participants: 14 volunteers from a CS MSc class on OWL ontology modelling, who
were given chocolate for their participation Each participant had minimal exposure to
OWL (or logic) before the class, but had, in the course of the prior 5 weeks, constructed
or manipulated several ontologies, and received an overview of the basics of OWL 2,
reasoning, etc. They did not receive any specific training on justifications.

Materials and procedures: The study was performed according to the protocol used in
the pilot study. A new set of items were used. Since the mean time taken by pilot study
participants to complete the survey was 13.65 minutes, with a standard deviation of
4.87 minutes, an additional hard justification was added to the test items. Furthermore,
all of the items with easy justifications ranked easy were drawn from the highest easy
complexity bin (bin 600-800). In the pilot study, we observed that the lower ranking
easy items were found to be quite easy and, by inspection of their bins, we found that
it was quite likely to draw similar justifications. The third bin (600-800) is much larger
and logically diverse, thus is more challenging for the model.

The series consisted of 3 practice items followed by 6 additional items, 3 easy
items(EM1, EM2 and EM3 of complexities: 654, 703, and 675), and 3 hard items
(HM1, HM2 and HM3 of complexities: 1380, 1395, and 1406). The items were ran-
domly ordered for each participant. Again, the expectation of the time to complete the
study was a maximum of 30 minutes, including orientation, practice items and brief
demographic questionnaire.

Results. Errors and times are presented in Table 3l The coding to error is the same as
in the pilot. An analysis with Cochran’s Q Test across all items reveals a significant
difference in error proportion [Q(5) = 15.095, p = 0.0045].

A pairwise analysis between easy and hard items reveals that there are significant
and, highly significant, differences in errors between EM1/HM1 [Q(1) = 4.50, p =

13 It was made clear to the students that their (non)participation did not affect their grade and no
person with grading authority was involved in the recruitment or facilitation of the experiment.
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Table 3. Experiment 1 Failures and Response Times

Item Failures Mean Time (ms) Time StdDev. (ms)

EM1 6 103,454 68,247
EM2 6 162,928 87,696
EM3 10 133,665 77,652
HM1 12 246,835 220,921
HM2 13 100,357 46,897
HM3 6 157,208 61,437

0.034], EM1/HM2 [Q(1) = 7.00, p = 0.008], EM2/HM1 [Q(1) = 4.50, p = 0.034],
EM2/HM2 [Q(1) = 5.44, p = 0.02], and EM3/HM2 [Q(1) = 5.44, p = 0.02].

However, there were no significant differences between EM1/HM3 [Q(1) = 0.00,
p = 1.00], EM2/HM3 [Q(1) = 0.00, p = 1.00], EM3/HM3 [Q(1) = 2.00, p = 0.16]
and EM3/HM1 [Q(1) = 0.67, p = 0.41].

With regards to the nonsignificant differences between certain easy and hard items,
there are two items which stand out: An easy item EM3 and a hard item HM3, which
are shown as the last pair of justifications in Figure[2l

In line with the results from the pilot study, an analysis of times using a paired
samples t-test revealed significant differences between some easy and hard items, with
those easy times being significantly less than the hard times EM1/HM1 [p = 0.023],
EM2/HM2 [p = 0.016] and EM3/HM1 [p = 0.025]. However, for other pairs of
easy and hard items, times were not significantly different: EM1/HM1 [p = 0.43],
EM2/HM1 [p = 0.11] and EM3/HM2 [p = 0.10]. Again, time is not a reliable predic-
tor of model complexity.

Anomalies in Experiment 1: Two items (EM3 and HM3) did not exhibit their pre-
dicted error rate relations. For item EM3, we conjectured that a certain pattern of su-
perfluous axiom parts in the item (not recognisable by the model) made it harder than
the model predicted. That is, that the model was wrong.

For item HM3 we conjectured that the model correctly identifies this item as hard["
but that the MSc students answered “Yes” because of misleading pattern of axioms at
the start and end of item HM3. The high “success” rate was due to an error in reasoning,
that is, a failure in understanding.

In order to determine whether our conjectures were possible and reasonable, we
conducted a followupup study with the goal of observing the conjectured behaviours in
situ. Note that this study does not explain what happened in Experiment 1.

5.3 Experiment 2

Participants: Two CS Research Associates and one CS PhD student, none of whom
had taken part in the pilot study. All participants were very experienced with OWL.

14 1t had been observed to stymie experienced modellers in the field. Furthermore, it involves
deriving a synonym for T, which was not a move this cohort had experience with.
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Materials and procedures: Items and protocol were exactly the same as Experiment 1,
with the addition of the think aloud protocol [12]. Furthermore, the screen, participant
vocalisation, and eye tracking were recorded.

Results: With regard to EM3, think aloud revealed that all participants were distracted
by the superfluous axiom parts in item EM3. Figure 3] shows an eye tracker heat map
for the most extreme case of distraction in item EM3. As can be seen, hot spots lie over
the superfluous parts of axioms. Think aloud revealed that all participants initially tried
to see how the Ipropl.C6 conjunct in the third axiom contributed to the entailment and
struggled when they realised that this was not the case.

EM1

C1 C J prop1.C3
prop1 C prop2
prop2 C prop3
C3LC C4

C4LC C5

C5LC C6

C6 C C7

C7C C8

C2 = 3 prop3.C8

EM2
C1 = C3n (3 prop1.C4) N (3 prop2.C5)
C1C C6
Ce6 C C7
C7C C8
C8 = C9 M (3 prop1.C10)
C2 = C9n (3 prop1.C4) n (3 prop2.C5)

EM3
C1CC8
C3C C4
C4 = C5n1 (3 prop1.C6)
C5 = C7n (3 prop2.C8)
C1 C 3 prop1.C9
Co9 C C10
C2 = C7n (3 prop1.C10)

HM1
C1 = 3 prop1.C3
prop1 = prop2
prop2 C prop3
prop3 = prop4
C3 = (3 prop5.C4) r (3 prop2.C1)
M (Vprop5.C4) m (V prop2.C1)
prop6 = prop5~
J prop6.T C C5
Ce6 C C7
C6 = (3 prop5.C5) M (Vprop5.C5)
C2 = J prop4.C7

HM2
C3 = (3 prop1.C5) LI (V prop1.C5)
C3LC C4
J prop1.T C C4
C4LC C2

HM3
C1 C V prop1.C3
C6 = V prop2.C7
Cé6 C C8
C8 C C4
C4 C 3 prop1.C5
J prop2.T C C4
C2 = (3 prop1.C3) LI (V prop3.C9)

Fig. 2. Justifications Used in Experiment 1. All justifications explain the entailment C1 C C2.
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£ Y prop1.C3
, 6=V | C7
C1C
4 )
c5m(3 propl.C6 :
C5 2.C8 A R
5= 3 pro
A e ) 3 prop2.7C C4
C1C 3 propaeco i
- CZ2=(SRpIOpIC3) - (7 prop3.C9)
C2=C7n(3 prop1.C10) EM3 HM3

Fig. 3. Eye Tracker Heat Maps for EM3 & HM3

In the case of HM3, think aloud revealed that none of the participants understood
how the entailment followed from the set of axioms. However, two of them responded
correctly and stated that the entailment did hold. As conjectured, the patterns formed
by the start and end axioms in the item set seemed to mislead them. In particular,
when disregarding quantifiers, the start axiom C1 C Vpropl.C3 and the end axiom
C2 C Jpropl.C3 ... look very similar. One participant spotted this similarity and
claimed that the entailment held as a result. Hot spots occur over the final axiom and
the first axiom in the eye tracker heat map (Figure [3), with relatively little activity in
the axioms in the middle of the justification.

6 Dealing with Justification Superfluity

Perhaps the biggest issue with the current model is that it does not deal at all with super-
fluity in axioms in justifications. That is, it does not penalise a justification for having
axioms that contain, potentially distracting, superfluous parts—parts that do not matter
as far as the entailment is concerned. Unfortunately, without a deeper investigation, it
is unclear how to rectify this in the model. Although it is possible to identify the su-
perfluous parts of axioms using laconic and precise justifications [4], throwing a naive
superfluity component into the model would quite easily destroy it. This is because
there can be justifications with plenty of superfluous parts that are trivial to understand.
For example consider 7 = {A C BN C} = A C B, where C is along and complex
class expression, and yet there can be justifications with seemingly little superfluity (as
in the case of EM3) which causes complete distraction when trying to understand an
entailment. Ultimately, what seems to be important is the location and shape of super-
fluity, but deciding upon what “shapes” of superfluity count as non-trivial needs to be
investigated as part of future work.

One important point to consider, is that it might be possible to deal with the problems
associated with superfluity by presentation techniques alone. It should be clear that the
model does not pay any attention to how justifications are presented. For example, it
is obvious that the ordering (and possibly the indentation) of axioms is important. It
can make a big difference to the readability of justifications and how easy or difficult
they are to understand, yet the model does not take into consideration how axioms will
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be ordered when a justification is presented to users. In the case of superfluity, it is
conceivable that strikeout could be used to cross out the superfluous parts of axioms
and this would dispel any problems associated with distracting superfluity. Figure
shows the helpful effect of strikeout on EM3. As can be seen, it immediately indicates
that the problematic conjunct, 3 prop1.Cs, in the third axiom should be ignored. Some
small scale experiments, carried out as part of future work, could confirm this.

EM3 EM3

CiCC3 CiCC3

C3C C4 C3C Cc4

C4 = C51 (3 prop1.C6) C4 = C51 (3 prop1.C6)
C5 = C7 1 (3 prop2.C8) C5 = C7 (3 prop2.C8)
C1 C 3 prop1.C9 C1 C 3 prop1.C9

C9 C C10 C9 C C10

C2 = C7n (3 prop1.C10) C2 = C7n (3 prop1.C10)

Fig. 4. EM3 with and without strikeout

7 Discussion and Future Work

In this paper we presented a methodology for validating the predicted complexity of
justifications. The main advantages of the experimental protocol used in the method-
ology is that minimal study facilitator intervention is required. This means that, over
time, it should be possible to collect rich and varied data fairly cheaply and from geo-
graphically distributed participants. In addition to this, given a justification corpus and
population of interest, the main experiment is easily repeatable with minimal resources
and setup. Care must be taken in interpreting results and, in particular, the protocol
is weak on “too hard” justifications as it cannot distinguish a model mislabeling from
people failing for the wrong reason.

The cognitive complexity model that was presented in this paper fared reasonably
well. In most cases, there was a significant difference in error proportion between model
ranked easy and hard justifications. In the cases where error proportions revealed no dif-
ference better than chance, further small scale follow-up studies in the form of a more
expensive talk-aloud study was used to gain an insight into the problems. These inspec-
tions highlighted an area for model improvement, namely in the area of superfluity. It
is unclear how to rectify this in the model, as there could be justifications with super-
fluous parts that are trivial to understand, but the location and shape of superfluity seem
an important factor.

It should be noted that the goal of the experiments was to use error proportion to de-
termine whether two justifications come from different populations—one from the set
of easy justifications and one from the set of hard justifications. This is rather different
than being able to say, with some level of statistical confidence, that the model gener-
alises to the whole population of easy or hard justifications. For the former the statistical
toolbox that is used is workable with very small sample sizes. Ultimately the sample
size depends on the variance of the sample, but sample sizes of less than 10 can work,
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where sample size is the number of outcomes (successes or failures) per justification.
For the latter, sample sizes must be much larger. For example, by rule of thumb, around
400 justifications would be needed from the hard category to be able say with 95% con-
fidence that all of hard justifications are actually hard justifications. While being able to
generalise to the whole population would be the best outcome, the fact that participants
would have to answer 400 items means that this is not achievable, and so the focus is
on using error proportion to determine the actually hardness of a justification.

The refinement and validation of our model is an ongoing task and will require con-
siderably more experimental cycles. We plan to conduct a series of experiments with
different cohorts as well as with an expanded corpus. We also plan to continue the anal-
ysis of our corpus with an eye to performing experiments to validate the model over the
whole (for some given population).
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