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Abstract. Recent advances in commercial technology increase the use of 
stereoscopy in games. While current applications display existing games in real-
time rendered stereoscopic 3D, future games will also feature S3D video as part 
of the virtual game world, in interactive S3D movies, or for new interaction 
methods. Compared to the rendering of 2D video within a 3D game scene, 
displaying S3D video includes some technical challenges related to rendering 
and adaption of the depth range. Rendering is exclusively possible on 
professional hardware not appropriate for gaming. Our approach, Multi-pass 
Stereoscopic Video Rendering (MSVR), allows to present stereoscopic video 
streams within game engines on consumer graphics boards. We further discuss 
aspects of performance and occlusion of virtual objects. This allows developers 
and other researchers to easily apply S3D video with current game engines to 
explore new innovations in S3D gaming. 
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1   Introduction 

The use of stereoscopic 3D (S3D) vision in digital entertainment technologies has 
increased significantly over the past few years [8]. Based on the overwhelming 
success of the movie Avatar and the following boost in market revenue for 3D cinema 
in general [12], companies try to push S3D content into other market segments like 
blu-rays, TV sets, TV channels, and live broadcasts [10]. Similarly, the digital games 
industry tries to benefit from the current interest in S3D as well. Nintendo has 
released the first autostereoscopic hand-held console with its 3DS [14]. Sony is 
pushing S3D gaming on its PlayStation 3 [22], backed up by its series of 3D 
television sets. Influential developers like Crytek realize S3D render techniques [20] 
and Nvidia has introduced 3D Vision for S3D gaming on the PC [3,11]. 

The addition of stereoscopic depth is believed to create a whole new experience in 
all of the aforementioned fields and it will eventually create a mass consumer product 
that will be taken for granted, just as color replaced black-and-white television 
[5,9,10]. One motivation for displaying 3D video in games is the integration of 3D 
video as contemporary media technology: In the future, people expect integrated 
video content to be displayed in S3D on a regular basis. This also affects video being 
displayed in interactive game environments, e.g. advertisement billboards in sports 
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games, or on TV screens in a game world as in Grand Theft Auto 41. This would 
require rendering stereoscopic video on a virtual screen within a 3D game world. 

A second motivation arises from interactive video in games. Interactive movies, 
such as Rebel Assault2 or The X-Files Game3, were prominent in the 1990s and 
allowed combined interaction with pre-filmed and virtual objects. As pre-filmed 
material could hardly provide enough freedom for innovative concepts, recent games 
rather incorporate live video: The Sony EyeToy4 and Microsoft Kinect5 provide live 
video-based interaction using computer vision methods and depth-aware cameras. 
The game YooStar26 combines live-filmed video with pre-filmed footage. 
BallBouncer explores multi-user gaming with live video in a cinema setting [19]. 
However, these examples provide only monoscopic video, as of yet. 

Stereoscopic vision could allow for new forms of interaction with such content, as 
has been demonstrated in the domain of augmented and mixed reality [17]. A crucial 
problem remains the correct alignment of virtual and real objects and the coherent 
perceptual problems [13]. A first commercial application of stereoscopic augmented 
reality is the AR Games set that is bundled with every Nintendo 3DS device [15]. The 
alignment of virtual and filmed objects is based on marker tracking and works well 
within a specific distance. The stereo camera configuration is fixed. 

Apart from such ideal prerequisites, our work assesses the necessary steps to 
integrate arbitrarily configured pre- or real time-recorded S3D video into the virtual 
environment of digital S3D games, i.e. on a virtual screen. The next section gives an 
overview of our technical platform and discusses the use of stereo cameras. 
Subsequently, we use this platform to explore the integration of the video data into a 
commercial 3D game engine. As current consumer hardware and Direct3D do not 
support rendering of S3D video, we propose a workaround: Multi-pass Stereoscopic 
Video Rendering (MSVR). Our approach further explores the problem of parallax 
adaptation and gives a practical solution to deal with such non-trivial setups. Lastly, 
we discuss the solution and pinpoint the need for automatic methods of parallax 
recognition and occlusion handling. 

2   Technical Platform 

For our approach, we used a typical gaming PC running Microsoft Windows 7 
Professional, with Nvidia GeForce GTX 470 graphics card, Intel Core i5 Quad-core 
processor, and eight gigabyte of memory. Our implementation of MSVR (see Section 
3.1) was incorporated into Trinigy's Vision Engine, a professional game engine that 
supports video textures and custom render methods [21]. The engine provides a C++ 
API for development and supports Direct3D-rendering, which is required to use the 
Nvidia 3D Vision driver. It is widely used for commercial game titles, such as The 
Settlers 7, Stronghold 3, or Arcania: A Gothic Tale [21]. 

                                                           
1  Rockstar Games, Inc., 2008. 
2  LucasArts Ltd., 1993.  
3  Fox Interactive, 1998. 
4  Sony Computer Entertainment, Inc., 2003. 
5  Microsoft Corp., 2010. 
6  Yoostar Entertainment Group, Inc., 2011. 
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2.1   Camera Setup and Support 

The MSVR framework supports not only pre-recorded files, but also live captured 
S3D video. For this purpose we integrated access to several camera systems: 
DirectShow-based cameras, two PlayStation Eye cameras (PSEye) based on the CL-
Eye Platform Driver [1], and a pair of professional high definition cameras. For using 
any of these approaches, the following issues have to be considered: 

DirectShow can be easily modified to support two USB cameras, but as of yet it 
only allows the use of two different cameras and does not support multiple cameras of 
the same model. However, when capturing S3D videos, it is recommended to use 
cameras as similar as possible in every aspect as any differences have a strong impact 
on binocular fusion [12]. 

The use of Playstation Eye cameras is also cumbersome. First, the camera’s wide 
shape does not allow for small interaxials. Second, even two PSEyes bought together 
from the same shop included models with fairly different serial numbers. Thus, the 
received images differed strongly in terms of color, brightness, and compression 
artifacts, which is not suitable for good S3D vision. 

In our setup we used a stereo camera rig based on the microHDTV camera element 
provided by the Fraunhofer Institute IIS. The cameras are very compact and support 
HD and Full HD resolutions at 24 to 60 Hz (synchronized). Each camera can be 
adjusted within six degrees of freedom. The cameras can be configured via Ethernet 
(image resolution, frame rate, gain, white balance, etc.) and support image 
transmission via HD-SDI MCX. The stereo camera rig is connected to a professional 
video capture board (DVS Centaurus II7) via HD-SDI. The data can be accessed using 
a SDK. 

But even when incorporating only professional cameras, a common interface still 
allows for simple and fast exchange of input components which is valuable during 
development when the rig is not available. This can be crucial as stereo camera rigs 
are very sensitive to physical force and often require recalibration. 

2.2   Nvidia 3D Vision 

The 3D Vision package includes a pair of shutter glasses, an emitter used for 
synchronization, and the 3D Vision driver. It further requires a display running at a 
refresh rate of at least 120 Hz and a GeForce graphics card of the eighth generation or 
later. Alternatives exist with DDD's Tridef [2] and iZ3D [6]. One major advantage of 
3D Vision is the automatic stereoization of Direct3D applications. The driver 
intercepts all calls to the Direct3D API and uses them to create S3D content which is 
then displayed on the monitor in synchronization with the shutter sequence of the 
glasses. Besides following some basic guidelines to enhance the stereoscopic quality, 
no additional effort is required of the application developer and the user can easily 
control the stereo effect [11]. 

Obviously, it is straightforward to display videos as textures placed on arbitrary 
geometry. Here the automatic stereoization becomes an issue: the driver alters the part 
of the standard render pipeline after clip space into two separate paths, one for each 
eye. This is simply achieved through a translation in parallel to the screen plane, 
                                                           
7  DVS Digital Video Systems GmbH. 
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which is automatically added to appropriate vertex shaders [11]. Everything but the 
vertex positions will be identical for each view, including the source texture. Thus, 
depending on the depth in the scene, each image will only contain an offset version of 
the same texture. Therefore, the resulting image will be stereoscopic, but the video 
texture will only contain monoscopic information. 

The driver should be able to provide two different textures, one for each view. This 
technique is only available with the professional version of the 3D Vision driver on 
high-end Quadro cards which support quad-buffered stereo where the entire render 
pipeline is traversed separately for each eye [16]. This allows for full control over the 
right and left view in the application. Since quad-buffered stereo is only available for 
professional hardware, it cannot be used for game development where only consumer 
gamer hardware can be assumed. This lack of control requires a workaround for 
displaying S3D video content in a game scenario. Fortunately, the 3D Vision driver 
offers ways to display S3D videos and photos [3] on which we based our workaround: 
MSVR. 

3   Integration of Stereoscopic Video into a Game Scene 

In this section we describe our approach of integrating S3D video into a professional 
game engine. We first describe our rendering method MSVR, which was briefly 
introduced in [18], and give further insights on the implementation. The following 
subsection proposes a solution for adjusting different parallaxes of S3D video content, 
the underlying occlusion mesh, and game engine content. For aligning depth 
properties of the video with those of the game scene, we give a first solution by 
manually setting the video parallaxes. We also show how video content can be split 
up and distributed within the game scene. The last subsection pinpoints problems of 
occlusion with virtual objects and video content. 

3.1   Multi-pass Stereoscopic Video Rendering (MSVR) 

The engine's default render module is extended to process the S3D video content. The 
content is made available to the application as a video texture, e.g. using standard 
DirectShow filters. Then two quads of identical size and location are created, one for 
each eye. Since the quads are used to display the video, they will be referred to as 
canvas objects. The video files contain both images in a certain alignment depending 
on the video format. Therefore, care needs to be taken when assigning texture 
coordinates to both canvas objects. As a result, the left eye image is mapped to the left 
canvas object and the right eye image to the right canvas object. The virtual camera 
and the two canvas meshes are positioned within the game scene. 

During the first render pass the entire scene is rendered into the backbuffer without 
any geometry but the left canvas object. Before clearing the backbuffer, its content is 
copied onto a Direct3D surface. In the second pass the scene is rendered with only the 
right canvas object present and the backbuffer content is again copied onto another 
Direct3D surface. 
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During application initialization, a third Direct3D surface, called stereo surface is 
created which has twice the width of the backbuffer and its height plus an additional 
row of pixels. The previous backbuffer contents, saved onto the individual surfaces, 
are copied side-by-side onto the stereo surface. The additional row is used to insert a 
stereo tag that directs the 3D Vision driver to present the backbuffer’s content in S3D 
[3]. To fit both views into the backbuffer they are copied using Direct3D's 
StretchRect method. If the display buffer is now rendered with the 3D Vision driver 
turned off, the screen will simply show two distorted versions of the images, as 
illustrated by Fig. 1b. 

Since the S3D content is only copied into the backbuffer and not actually rendered, 
no depth information will be present in the depth buffer. Thus, if the third pass would 
be to render the scene, everything would be rendered in front of the canvas objects. 
This could mean a complete occlusion of the video content by scene geometry. Thus, 
the third step is to render an additional quad mesh of the same size and position as the 
canvas objects (see Figure Fig. 1c). The depth information produced by this render 
pass will now remain in the depth buffer for the following passes. This ensures that 
during the fourth pass, in which the rest of the scene is rendered via the engine's 
default render call, occlusions are correctly determined for the video display surface. 

Displaying the scene without the 3D Vision driver will result in a combination of 
the in-game objects and the distorted S3D image pair (see Fig. 1e). If the driver is 
activated, the third and fourth pass will be stereoized automatically. The result will be 
a S3D game scene with an integrated canvas object that shows a S3D video, 
exemplified by Fig. 1f. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Fig. 1. The image sequence shows the general application flow and the composition of the 
different elements of the MSVR method. (a) A frame from the S3D video. (b) The textured 
canvas surfaces as stretched into the backbuffer. (c) Illustration of the rendered occlusion mesh 
for clarification. (d) A scene as rendered by the engine's default renderer. (e) The composition 
of the game scene and the stereo canvas in non-stereo mode. (f) The same composition in
anaglyphic stereo mode. 
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Fig. 2. The scene illustrates the three different depth settings and respective parallax differences 
caused by unadjusted MSVR: Note that the occlusion mesh’s parallax causes a black border 
and that due to the differences between scene and video parallaxes it becomes difficult to fuse 
the images. 

As with all multi-pass approaches, MSVR obviously creates performance 
overhead. Compared to adding mono video to a stereo scene, adding the stereo video 
about halves the frame rate to 30 fps in fullscreen mode. Rendering the additional 
occlusion canvas, however, does not alter the performance considerably (-1 fps). 

Another issue results from the different screen parallaxes produced by the 
individual steps of the MSVR approach. First, stereoscopic image pairs are rendered 
to the same backbuffer locations. As a result, the displayed image shows the inherent 
video parallax as determined during the capture process. Second, the rendered 
occlusion mesh is subject to the 3D Vision driver's stereoization process. Thus, its 
parallax depends on its placement in the scene. Finally, the game scene exhibits 
parallaxes according to its depth layout as extracted by the 3D Vision driver. In our 
original approach [18], these three types of parallaxes were uncorrelated (see Fig. 2). 

3.2   Adjustment of the Occlusion Mesh Parallax 

One important issue in MSVR is a correlation between the canvas locations and the 
stereoization of the occlusion mesh: As the mesh is part of the scene, it is duplicated by 
the 3D Vision driver based on the current interaxial distance and its depth in the scene. 
For this reason, there will be a parallax between each eye's images of the occlusion mesh. 
However, the individual canvas objects are rendered to the exact same position in both 
views causing no parallax, except the one inherent to the video content. 

To demonstrate this problem, think of the occlusion mesh as a rectangular cutout in 
the game engine's scene, allowing an observer to look through it and see the 
previously prepared backbuffer, containing the S3D image. For one eye, the cutout 
will coincide exactly with the stereoscopic content. For the other eye, the cutout will 
be moved horizontally by the 3D Vision driver, but the video texture will remain 
fixed. Thus, parts of the cutout reveal the blank backbuffer, ultimately resulting in a 
black border on one side of the canvas. The width of the border will scale with the 
amount of screen parallax depending on the virtual camera interaxial and the canvas' 
depth in the scene. 
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Fig. 3. Occlusion mesh border on two split video canvasses: Since the parallax of the occlusion 
mesh is adjusted by the 3D Vision driver, but that of the S3D video canvas is not, a black 
border is perceived by one eye 

The effect is demonstrated in Fig. 3. Using anaglyphic glasses and looking at the 
image with the right eye closed, reveals the mentioned border on the left side of each 
canvas object while the right eye's view will be correct. Because of this border, it 
becomes difficult to properly fuse the images. 

To accommodate for this offset either the position of the occlusion mesh or that of 
the canvas object in one view has to be adjusted. Since the occlusion mesh is 
duplicated by the Nvidia driver, the only way to adjust its parallax is to position it at a 
different depth and adjusting its size to still appear perspectively correct. While the 
idea behind this approach is simple, the actual implementation would pose several 
problems. For instance, adjusting the size of the mesh object would require locking its 
vertices; a very costly operation. Doing so every frame would cause a drastic decrease 
in performance. 

A more elegant way could be to create a custom vertex shader for the mesh, which 
scales the output position of each vertex. The 3D Vision driver uses the homogeneous 
w-coordinate of the position vector to determine the vertex's parallax offset and with 
it its perceived depth. To achieve the desired depth the vertex position vector simply 
needs to be scaled accordingly. Since the driver operates in clip space, which is right 
before perspective divide is applied, this scaling operation will affect the parallax 
computations performed by the 3D Vision driver, but not the actually rasterized 
locations determined from the vertex position. 

However, the purpose of the occlusion mesh is to correctly position the video 
element within the scene, so adjusting its depth (be it manually or with a vertex 
shader) would be counterproductive. Therefore, the canvas object needs to be 
rendered at the correct depth. 

Of course, the issue could also be resolved by cropping the occlusion mesh, so that 
the border would simply not show. This would reduce the visible part of the images 
proportionally to the amount of cropping. At the same time, it would still leave the 
inherent disparities unchanged so that there would be no correlation between the 
parallax of the S3D video content and the stereoscopically rendered scene. 

Instead, the offset between both canvas objects should match the parallax of the 
occlusion mesh to account for the horizontal shift and its depth in the scene. To 
accomplish this it is crucial to understand how the Nvidia driver calculates the 
parallax of a vertex at scene depth ݀. The used function is defined as follows: 
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 .and ݀ are both distances to the cameras given in world coordinates ݁ܿ݊݁݃ݎ݁ݒ݊݋ܥ
The concept of convergence, as used by the 3D Vision driver, does not concur with 
the common understanding of converging eyes or camera axes. While it would be 
logical in the common model to represent convergence in form of an angle, it does not 
make sense for the 3D Vision driver since the cameras will not be toed-in, but simply 
translated to avoid producing vertical parallaxes, using an asymmetric viewing 
frustum. Thus, the convergence value is expressed by a distance measure, defining at 
which scene depth the convergence plane is situated. All vertices on this plane will 
experience no transitional offset, which means they will have zero disparity making 
them appear at the same depth as the display screen. 

The separation is given in percentage of the image width and thus, so is the 
parallax value. Therefore, the formula needed to be adjusted, since it was necessary to 
know the parallax in units of the world coordinate system to correctly place the 
canvas. First, it was necessary to know the width of the image (buffer) ݊௪ in world 
coordinates. To calculate this value, the distance to the near clipping plane ݊ௗ and the 
horizontal field of view of the virtual camera (݂ݒ݋௫) were necessary. Both could be 
obtained from the Vision Engine's render context. The width was then simply given 
by the following trigonometry function: 
 ݊௪ ൌ 2 ൉ ݊ௗ ൉ tan ൬݂ݒ݋௫2 ൰ (2)

 

Knowing the width of the near clipping, the parallax can be converted into world 
coordinates by scaling it with the result of Equation (2). 
௦ݔ݈݈ܽܽݎܽ݌  ൌ ሺ݀ሻݔ݈݈ܽܽݎܽ݌ ൉ ݊௪ (3)
 

This ݔ݈݈ܽܽݎܽ݌௦ gives the offset in world coordinate units at screen depth. The final 
step left is to scale the parallax, so it can be applied to an object at the specified 
distance ݀. Since all values are given (the distance to the near clipping plane, the 
parallax at screen depth, and the distance to the object), the theorem of intersecting 
lines is used to determine the sought after parallax value as indicated by the following 
equation: 
ௗݔ݈݈ܽܽݎܽ݌  ൌ ௦ݔ݈݈ܽܽݎܽ݌ ൉ ݀݊௦  (4)

 

Knowing the distance between the stereo canvas and the cameras, Equation (4) can be 
used to determine by how much the occlusion mesh needs to be translated 
horizontally. During each update of the stereo canvas, this value is used to translate 
the left eye's canvas accordingly to avoid the border problem. 

 

ሺ݀ሻݔ݈݈ܽܽݎܽ݌ ൌ ݊݋݅ݐܽݎܽ݌݁ݏ ൉ ቀ1 െ ݀݁ܿ݊݁݃ݎ݁ݒ݊݋ܿ ቁ (1)
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(a) (b) (c) 

Fig. 4. Screen Parallax: Examples of adjusted screen parallax. (a) Due to constant adjustment 
and the zero parallax calibration, the disparity of the player's image is always almost exactly 
equal to that of the occlusion mesh. (b) Screenshot taken during the zero parallax calibration 
explaining the concept of the artificial convergence plane. (c) A magnified part of (b). 

3.3   Manually Fitting Video Content Depth to the Game Scene Depth 

While the parallax of the stereo image borders can be correctly adjusted with the 
aforementioned approach, the disparities within the stereo content would still be 
completely uncorrelated with those of the rendered game scene. Unless the video 
supports complete depth information (i.e. a depth map), a complete adaptation of the 
video depth range into the virtual depth budget is not possible. Our approach therefore 
concentrates on adjusting the depth of a particular depth plane from the video in 
respect to a given depth plane within the game scene. As our prototype incorporates 
live 3D video, we explore this problem using video from the stereo camera setup 
mentioned before. 

Our approach is based on a manual setup using a zero parallax setting. First, the 
stereo canvas is positioned at the convergence plane, defined by the 3D Vision 
driver's convergence value. Consequently, the horizontal parallaxes of the occlusion 
mesh and of the adjusted S3D video frames are zero (see Fig. 4 b+c). Now the video 
content is shifted manually until objects at a specific depth within the video also show 
zero disparity. For our example, this artificial convergence plane was set at the 
position of a person standing in front of the camera. The additional horizontal offset 
determined in this way is added to the result calculated by the parallax equation: 
݋ݔ݈݈ܽܽݎܽ݌  ൌ ݀ݔ݈݈ܽܽݎܽ݌ ൅ (5) ݐ݁ݏ݂݂݋

 

In this way the image and scene disparities would approximately coincide at all times. 
An example of this is shown in Fig. 4a. Since the calibration was performed 
manually, small errors were obviously inevitable, but if done properly, the errors are 
not visible to the naked eye. A challenging but very interesting task for future 
developments would be to perform this step in software automatically. 
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3.4   Splitting the Canvas 

Our system allows splitting the camera image to display several parts of the image on 
different canvas objects (cf. Fig. 3). One application could be to identify the faces of 
multiple players within a video and distribute the according parts throughout the game 
scene.  

To accomplish a split into two parties for example, two meshes instead of one are 
created for each eye, each with half the width of the original meshes. Additionally, the 
texture coordinates associated with each vertex are altered so that one split contains 
the left half of the video texture and the other split the remaining half. 

Consequently, each split can be set completely independent within the scene. Of 
course, it is necessary to still treat corresponding splits, for example the left split of 
the left and right eye’s canvas, in correspondence with the aforementioned 
considerations about parallax and offset to achieve the correct depth impression. 

 

  
(a) (b) (c) 

Fig. 5. Using MSVR for stereoscopic rendering of the video-plus-depth format (a+b). The 
generated occlusion mesh can be textured with the video (c) or stays hidden for z-buffer test 
with the game scene. 

3.5   Problems of Occlusion with Objects and Video 

Using S3D video in games may incorporate interaction of virtual objects with certain 
features of the video content, positioned at arbitrary depth layers. But, as the 
occlusion mesh of the video is fixed, virtual objects that shall be positioned in depth 
next to a video feature at large positive parallax, might be occluded. Thus, virtual 
objects are not enabled to extend into the depth of the video. 

One simple approach would be to render such virtual objects with disabled depth 
test and in the correct order. In a complex interactive setup, this implicates a thorough 
design of positioning and animating scene objects which clearly restricts game design. 
Furthermore, virtual objects might occlude video features of smaller parallax values, 
possibly confusing depth perception. 

Another approach is the use of non-planar occlusion meshes (see Fig. 5). 
Currently, a depth map of the video is required (as in video-plus-depth or depth-
enhanced-stereo formats). It is used to create a displacement occlusion mesh. The 
vertices are shifted according to the depth information. The visual occlusion quality 
depends on the resolution of the depth map. In the future, we consider automatic 
extraction of depth information and updating displacement meshes through vertex 
shaders. For generating the required depth data in a live video situation, depth 
cameras and other systems as Microsoft Kinect seem promising. 
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4   Conclusions and Future Work 

We presented our approach of rendering S3D video content in a professional game 
engine and discussed problems and solutions for integrating it into a S3D scene. 
While the multi-pass rendering approach only concerns a single technical platform, it 
allows other programmers, scientists, and hobbyists to develop custom stereoscopic 
visuals on consumer hardware. Besides stereoscopic video, any other independently 
arranged scenes can be rendered onto the canvasses, to circumvent the quad-buffered 
stereo barrier. Beyond this practical scope, the presented workings of occlusion 
handling and parallax integration are general problems that significantly influence the 
quality of S3D video display within a game scene. Our concepts give a first solution 
for manual adjustment and pinpoint the need for automatic methods of parallax 
adaptation and to generate depth data of a video. For the latter problem, future 3D 
video formats will hopefully offer depth meta data, as this is a major requirement for 
generating multi-view stereo data for autostereoscopic displays. This development 
highly depends on depth-measuring cameras [4] or automatic depth map extraction 
algorithms [7] in the domains of image processing and computer vision. 

Possible future applications of S3D video are the integration as a contemporary 
medium within a virtual game world, and interactive S3D movies. The use of 
stereoscopic video may provide for better interaction opportunities: slightly changing 
the viewport through position shift or zooming in or out could provide for more 
dynamic visual exploration of a filmed scene. Depth estimation or the use of pre-
rendered depth maps can allow for dynamically mixed pre-rendered/-filmed graphics 
with real-time animated objects. The use of live-feed S3D cameras can provide for 
stereoscopic augmented reality entertainment. Using MSVR, this design space can be 
explored using typically available graphics hardware and powerful game engine 
software. 
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