
J. Anacleto et al. (Eds.): ICEC 2011, LNCS 6972, pp. 124–135, 2011.
© IFIP International Federation for Information Processing 2011

Integrating Stereoscopic Video in 3D Games

Jonas Schild1, Sven Seele2, and Maic Masuch1

1 Entertainment Computing Group, University of Duisburg-Essen,
Forsthausweg 2, 47057 Duisburg, Germany

{jonas.schild, maic.masuch}@uni-due.de
2 Bonn-Rhein-Sieg University of Applied Sciences,

Grantham-Allee 20, 53757 Sankt Augustin, Germany
sven.seele@smail.inf.h-brs.de

Abstract. Recent advances in commercial technology increase the use of
stereoscopy in games. While current applications display existing games in real-
time rendered stereoscopic 3D, future games will also feature S3D video as part
of the virtual game world, in interactive S3D movies, or for new interaction
methods. Compared to the rendering of 2D video within a 3D game scene,
displaying S3D video includes some technical challenges related to rendering
and adaption of the depth range. Rendering is exclusively possible on
professional hardware not appropriate for gaming. Our approach, Multi-pass
Stereoscopic Video Rendering (MSVR), allows to present stereoscopic video
streams within game engines on consumer graphics boards. We further discuss
aspects of performance and occlusion of virtual objects. This allows developers
and other researchers to easily apply S3D video with current game engines to
explore new innovations in S3D gaming.

Keywords: Stereoscopic rendering, S3D video, game engine, 3D gaming.

1 Introduction

The use of stereoscopic 3D (S3D) vision in digital entertainment technologies has
increased significantly over the past few years [8]. Based on the overwhelming
success of the movie Avatar and the following boost in market revenue for 3D cinema
in general [12], companies try to push S3D content into other market segments like
blu-rays, TV sets, TV channels, and live broadcasts [10]. Similarly, the digital games
industry tries to benefit from the current interest in S3D as well. Nintendo has
released the first autostereoscopic hand-held console with its 3DS [14]. Sony is
pushing S3D gaming on its PlayStation 3 [22], backed up by its series of 3D
television sets. Influential developers like Crytek realize S3D render techniques [20]
and Nvidia has introduced 3D Vision for S3D gaming on the PC [3,11].

The addition of stereoscopic depth is believed to create a whole new experience in
all of the aforementioned fields and it will eventually create a mass consumer product
that will be taken for granted, just as color replaced black-and-white television
[5,9,10]. One motivation for displaying 3D video in games is the integration of 3D
video as contemporary media technology: In the future, people expect integrated
video content to be displayed in S3D on a regular basis. This also affects video being
displayed in interactive game environments, e.g. advertisement billboards in sports

 Integrating Stereoscopic Video in 3D Games 125

games, or on TV screens in a game world as in Grand Theft Auto 41. This would
require rendering stereoscopic video on a virtual screen within a 3D game world.

A second motivation arises from interactive video in games. Interactive movies,
such as Rebel Assault2 or The X-Files Game3, were prominent in the 1990s and
allowed combined interaction with pre-filmed and virtual objects. As pre-filmed
material could hardly provide enough freedom for innovative concepts, recent games
rather incorporate live video: The Sony EyeToy4 and Microsoft Kinect5 provide live
video-based interaction using computer vision methods and depth-aware cameras.
The game YooStar26 combines live-filmed video with pre-filmed footage.
BallBouncer explores multi-user gaming with live video in a cinema setting [19].
However, these examples provide only monoscopic video, as of yet.

Stereoscopic vision could allow for new forms of interaction with such content, as
has been demonstrated in the domain of augmented and mixed reality [17]. A crucial
problem remains the correct alignment of virtual and real objects and the coherent
perceptual problems [13]. A first commercial application of stereoscopic augmented
reality is the AR Games set that is bundled with every Nintendo 3DS device [15]. The
alignment of virtual and filmed objects is based on marker tracking and works well
within a specific distance. The stereo camera configuration is fixed.

Apart from such ideal prerequisites, our work assesses the necessary steps to
integrate arbitrarily configured pre- or real time-recorded S3D video into the virtual
environment of digital S3D games, i.e. on a virtual screen. The next section gives an
overview of our technical platform and discusses the use of stereo cameras.
Subsequently, we use this platform to explore the integration of the video data into a
commercial 3D game engine. As current consumer hardware and Direct3D do not
support rendering of S3D video, we propose a workaround: Multi-pass Stereoscopic
Video Rendering (MSVR). Our approach further explores the problem of parallax
adaptation and gives a practical solution to deal with such non-trivial setups. Lastly,
we discuss the solution and pinpoint the need for automatic methods of parallax
recognition and occlusion handling.

2 Technical Platform

For our approach, we used a typical gaming PC running Microsoft Windows 7
Professional, with Nvidia GeForce GTX 470 graphics card, Intel Core i5 Quad-core
processor, and eight gigabyte of memory. Our implementation of MSVR (see Section
3.1) was incorporated into Trinigy's Vision Engine, a professional game engine that
supports video textures and custom render methods [21]. The engine provides a C++
API for development and supports Direct3D-rendering, which is required to use the
Nvidia 3D Vision driver. It is widely used for commercial game titles, such as The
Settlers 7, Stronghold 3, or Arcania: A Gothic Tale [21].

1 Rockstar Games, Inc., 2008.
2 LucasArts Ltd., 1993.
3 Fox Interactive, 1998.
4 Sony Computer Entertainment, Inc., 2003.
5 Microsoft Corp., 2010.
6 Yoostar Entertainment Group, Inc., 2011.

126 J. Schild, S. Seele, and M. Masuch

2.1 Camera Setup and Support

The MSVR framework supports not only pre-recorded files, but also live captured
S3D video. For this purpose we integrated access to several camera systems:
DirectShow-based cameras, two PlayStation Eye cameras (PSEye) based on the CL-
Eye Platform Driver [1], and a pair of professional high definition cameras. For using
any of these approaches, the following issues have to be considered:

DirectShow can be easily modified to support two USB cameras, but as of yet it
only allows the use of two different cameras and does not support multiple cameras of
the same model. However, when capturing S3D videos, it is recommended to use
cameras as similar as possible in every aspect as any differences have a strong impact
on binocular fusion [12].

The use of Playstation Eye cameras is also cumbersome. First, the camera’s wide
shape does not allow for small interaxials. Second, even two PSEyes bought together
from the same shop included models with fairly different serial numbers. Thus, the
received images differed strongly in terms of color, brightness, and compression
artifacts, which is not suitable for good S3D vision.

In our setup we used a stereo camera rig based on the microHDTV camera element
provided by the Fraunhofer Institute IIS. The cameras are very compact and support
HD and Full HD resolutions at 24 to 60 Hz (synchronized). Each camera can be
adjusted within six degrees of freedom. The cameras can be configured via Ethernet
(image resolution, frame rate, gain, white balance, etc.) and support image
transmission via HD-SDI MCX. The stereo camera rig is connected to a professional
video capture board (DVS Centaurus II7) via HD-SDI. The data can be accessed using
a SDK.

But even when incorporating only professional cameras, a common interface still
allows for simple and fast exchange of input components which is valuable during
development when the rig is not available. This can be crucial as stereo camera rigs
are very sensitive to physical force and often require recalibration.

2.2 Nvidia 3D Vision

The 3D Vision package includes a pair of shutter glasses, an emitter used for
synchronization, and the 3D Vision driver. It further requires a display running at a
refresh rate of at least 120 Hz and a GeForce graphics card of the eighth generation or
later. Alternatives exist with DDD's Tridef [2] and iZ3D [6]. One major advantage of
3D Vision is the automatic stereoization of Direct3D applications. The driver
intercepts all calls to the Direct3D API and uses them to create S3D content which is
then displayed on the monitor in synchronization with the shutter sequence of the
glasses. Besides following some basic guidelines to enhance the stereoscopic quality,
no additional effort is required of the application developer and the user can easily
control the stereo effect [11].

Obviously, it is straightforward to display videos as textures placed on arbitrary
geometry. Here the automatic stereoization becomes an issue: the driver alters the part
of the standard render pipeline after clip space into two separate paths, one for each
eye. This is simply achieved through a translation in parallel to the screen plane,

7 DVS Digital Video Systems GmbH.

 Integrating Stereoscopic Video in 3D Games 127

which is automatically added to appropriate vertex shaders [11]. Everything but the
vertex positions will be identical for each view, including the source texture. Thus,
depending on the depth in the scene, each image will only contain an offset version of
the same texture. Therefore, the resulting image will be stereoscopic, but the video
texture will only contain monoscopic information.

The driver should be able to provide two different textures, one for each view. This
technique is only available with the professional version of the 3D Vision driver on
high-end Quadro cards which support quad-buffered stereo where the entire render
pipeline is traversed separately for each eye [16]. This allows for full control over the
right and left view in the application. Since quad-buffered stereo is only available for
professional hardware, it cannot be used for game development where only consumer
gamer hardware can be assumed. This lack of control requires a workaround for
displaying S3D video content in a game scenario. Fortunately, the 3D Vision driver
offers ways to display S3D videos and photos [3] on which we based our workaround:
MSVR.

3 Integration of Stereoscopic Video into a Game Scene

In this section we describe our approach of integrating S3D video into a professional
game engine. We first describe our rendering method MSVR, which was briefly
introduced in [18], and give further insights on the implementation. The following
subsection proposes a solution for adjusting different parallaxes of S3D video content,
the underlying occlusion mesh, and game engine content. For aligning depth
properties of the video with those of the game scene, we give a first solution by
manually setting the video parallaxes. We also show how video content can be split
up and distributed within the game scene. The last subsection pinpoints problems of
occlusion with virtual objects and video content.

3.1 Multi-pass Stereoscopic Video Rendering (MSVR)

The engine's default render module is extended to process the S3D video content. The
content is made available to the application as a video texture, e.g. using standard
DirectShow filters. Then two quads of identical size and location are created, one for
each eye. Since the quads are used to display the video, they will be referred to as
canvas objects. The video files contain both images in a certain alignment depending
on the video format. Therefore, care needs to be taken when assigning texture
coordinates to both canvas objects. As a result, the left eye image is mapped to the left
canvas object and the right eye image to the right canvas object. The virtual camera
and the two canvas meshes are positioned within the game scene.

During the first render pass the entire scene is rendered into the backbuffer without
any geometry but the left canvas object. Before clearing the backbuffer, its content is
copied onto a Direct3D surface. In the second pass the scene is rendered with only the
right canvas object present and the backbuffer content is again copied onto another
Direct3D surface.

128 J. Schild, S. Seele, and M. Masuch

During application initialization, a third Direct3D surface, called stereo surface is
created which has twice the width of the backbuffer and its height plus an additional
row of pixels. The previous backbuffer contents, saved onto the individual surfaces,
are copied side-by-side onto the stereo surface. The additional row is used to insert a
stereo tag that directs the 3D Vision driver to present the backbuffer’s content in S3D
[3]. To fit both views into the backbuffer they are copied using Direct3D's
StretchRect method. If the display buffer is now rendered with the 3D Vision driver
turned off, the screen will simply show two distorted versions of the images, as
illustrated by Fig. 1b.

Since the S3D content is only copied into the backbuffer and not actually rendered,
no depth information will be present in the depth buffer. Thus, if the third pass would
be to render the scene, everything would be rendered in front of the canvas objects.
This could mean a complete occlusion of the video content by scene geometry. Thus,
the third step is to render an additional quad mesh of the same size and position as the
canvas objects (see Figure Fig. 1c). The depth information produced by this render
pass will now remain in the depth buffer for the following passes. This ensures that
during the fourth pass, in which the rest of the scene is rendered via the engine's
default render call, occlusions are correctly determined for the video display surface.

Displaying the scene without the 3D Vision driver will result in a combination of
the in-game objects and the distorted S3D image pair (see Fig. 1e). If the driver is
activated, the third and fourth pass will be stereoized automatically. The result will be
a S3D game scene with an integrated canvas object that shows a S3D video,
exemplified by Fig. 1f.

(a) (b) (c)

(d) (e) (f)

Fig. 1. The image sequence shows the general application flow and the composition of the
different elements of the MSVR method. (a) A frame from the S3D video. (b) The textured
canvas surfaces as stretched into the backbuffer. (c) Illustration of the rendered occlusion mesh
for clarification. (d) A scene as rendered by the engine's default renderer. (e) The composition
of the game scene and the stereo canvas in non-stereo mode. (f) The same composition in
anaglyphic stereo mode.

 Integrating Stereoscopic Video in 3D Games 129

Fig. 2. The scene illustrates the three different depth settings and respective parallax differences
caused by unadjusted MSVR: Note that the occlusion mesh’s parallax causes a black border
and that due to the differences between scene and video parallaxes it becomes difficult to fuse
the images.

As with all multi-pass approaches, MSVR obviously creates performance
overhead. Compared to adding mono video to a stereo scene, adding the stereo video
about halves the frame rate to 30 fps in fullscreen mode. Rendering the additional
occlusion canvas, however, does not alter the performance considerably (-1 fps).

Another issue results from the different screen parallaxes produced by the
individual steps of the MSVR approach. First, stereoscopic image pairs are rendered
to the same backbuffer locations. As a result, the displayed image shows the inherent
video parallax as determined during the capture process. Second, the rendered
occlusion mesh is subject to the 3D Vision driver's stereoization process. Thus, its
parallax depends on its placement in the scene. Finally, the game scene exhibits
parallaxes according to its depth layout as extracted by the 3D Vision driver. In our
original approach [18], these three types of parallaxes were uncorrelated (see Fig. 2).

3.2 Adjustment of the Occlusion Mesh Parallax

One important issue in MSVR is a correlation between the canvas locations and the
stereoization of the occlusion mesh: As the mesh is part of the scene, it is duplicated by
the 3D Vision driver based on the current interaxial distance and its depth in the scene.
For this reason, there will be a parallax between each eye's images of the occlusion mesh.
However, the individual canvas objects are rendered to the exact same position in both
views causing no parallax, except the one inherent to the video content.

To demonstrate this problem, think of the occlusion mesh as a rectangular cutout in
the game engine's scene, allowing an observer to look through it and see the
previously prepared backbuffer, containing the S3D image. For one eye, the cutout
will coincide exactly with the stereoscopic content. For the other eye, the cutout will
be moved horizontally by the 3D Vision driver, but the video texture will remain
fixed. Thus, parts of the cutout reveal the blank backbuffer, ultimately resulting in a
black border on one side of the canvas. The width of the border will scale with the
amount of screen parallax depending on the virtual camera interaxial and the canvas'
depth in the scene.

130 J. Schild, S. Seele, and M. Masuch

Fig. 3. Occlusion mesh border on two split video canvasses: Since the parallax of the occlusion
mesh is adjusted by the 3D Vision driver, but that of the S3D video canvas is not, a black
border is perceived by one eye

The effect is demonstrated in Fig. 3. Using anaglyphic glasses and looking at the
image with the right eye closed, reveals the mentioned border on the left side of each
canvas object while the right eye's view will be correct. Because of this border, it
becomes difficult to properly fuse the images.

To accommodate for this offset either the position of the occlusion mesh or that of
the canvas object in one view has to be adjusted. Since the occlusion mesh is
duplicated by the Nvidia driver, the only way to adjust its parallax is to position it at a
different depth and adjusting its size to still appear perspectively correct. While the
idea behind this approach is simple, the actual implementation would pose several
problems. For instance, adjusting the size of the mesh object would require locking its
vertices; a very costly operation. Doing so every frame would cause a drastic decrease
in performance.

A more elegant way could be to create a custom vertex shader for the mesh, which
scales the output position of each vertex. The 3D Vision driver uses the homogeneous
w-coordinate of the position vector to determine the vertex's parallax offset and with
it its perceived depth. To achieve the desired depth the vertex position vector simply
needs to be scaled accordingly. Since the driver operates in clip space, which is right
before perspective divide is applied, this scaling operation will affect the parallax
computations performed by the 3D Vision driver, but not the actually rasterized
locations determined from the vertex position.

However, the purpose of the occlusion mesh is to correctly position the video
element within the scene, so adjusting its depth (be it manually or with a vertex
shader) would be counterproductive. Therefore, the canvas object needs to be
rendered at the correct depth.

Of course, the issue could also be resolved by cropping the occlusion mesh, so that
the border would simply not show. This would reduce the visible part of the images
proportionally to the amount of cropping. At the same time, it would still leave the
inherent disparities unchanged so that there would be no correlation between the
parallax of the S3D video content and the stereoscopically rendered scene.

Instead, the offset between both canvas objects should match the parallax of the
occlusion mesh to account for the horizontal shift and its depth in the scene. To
accomplish this it is crucial to understand how the Nvidia driver calculates the
parallax of a vertex at scene depth ݀. The used function is defined as follows:

 Integrating Stereoscopic Video in 3D Games 131

 .and ݀ are both distances to the cameras given in world coordinates ݁ܿ݊݁݃ݎ݁ݒ݊݋ܥ
The concept of convergence, as used by the 3D Vision driver, does not concur with
the common understanding of converging eyes or camera axes. While it would be
logical in the common model to represent convergence in form of an angle, it does not
make sense for the 3D Vision driver since the cameras will not be toed-in, but simply
translated to avoid producing vertical parallaxes, using an asymmetric viewing
frustum. Thus, the convergence value is expressed by a distance measure, defining at
which scene depth the convergence plane is situated. All vertices on this plane will
experience no transitional offset, which means they will have zero disparity making
them appear at the same depth as the display screen.

The separation is given in percentage of the image width and thus, so is the
parallax value. Therefore, the formula needed to be adjusted, since it was necessary to
know the parallax in units of the world coordinate system to correctly place the
canvas. First, it was necessary to know the width of the image (buffer) ݊௪ in world
coordinates. To calculate this value, the distance to the near clipping plane ݊ௗ and the
horizontal field of view of the virtual camera (݂ݒ݋௫) were necessary. Both could be
obtained from the Vision Engine's render context. The width was then simply given
by the following trigonometry function:
 ݊௪ ൌ 2 ൉ ݊ௗ ൉ tan ൬݂ݒ݋௫2 ൰ (2)

Knowing the width of the near clipping, the parallax can be converted into world
coordinates by scaling it with the result of Equation (2).
௦ݔ݈݈ܽܽݎܽ݌ ൌ ሺ݀ሻݔ݈݈ܽܽݎܽ݌ ൉ ݊௪ (3)

This ݔ݈݈ܽܽݎܽ݌௦ gives the offset in world coordinate units at screen depth. The final
step left is to scale the parallax, so it can be applied to an object at the specified
distance ݀. Since all values are given (the distance to the near clipping plane, the
parallax at screen depth, and the distance to the object), the theorem of intersecting
lines is used to determine the sought after parallax value as indicated by the following
equation:
ௗݔ݈݈ܽܽݎܽ݌ ൌ ௦ݔ݈݈ܽܽݎܽ݌ ൉ ݀݊௦ (4)

Knowing the distance between the stereo canvas and the cameras, Equation (4) can be
used to determine by how much the occlusion mesh needs to be translated
horizontally. During each update of the stereo canvas, this value is used to translate
the left eye's canvas accordingly to avoid the border problem.

ሺ݀ሻݔ݈݈ܽܽݎܽ݌ ൌ ݊݋݅ݐܽݎܽ݌݁ݏ ൉ ቀ1 െ ݀݁ܿ݊݁݃ݎ݁ݒ݊݋ܿ ቁ (1)

132 J. Schild, S. Seele, and M. Masuch

(a) (b) (c)

Fig. 4. Screen Parallax: Examples of adjusted screen parallax. (a) Due to constant adjustment
and the zero parallax calibration, the disparity of the player's image is always almost exactly
equal to that of the occlusion mesh. (b) Screenshot taken during the zero parallax calibration
explaining the concept of the artificial convergence plane. (c) A magnified part of (b).

3.3 Manually Fitting Video Content Depth to the Game Scene Depth

While the parallax of the stereo image borders can be correctly adjusted with the
aforementioned approach, the disparities within the stereo content would still be
completely uncorrelated with those of the rendered game scene. Unless the video
supports complete depth information (i.e. a depth map), a complete adaptation of the
video depth range into the virtual depth budget is not possible. Our approach therefore
concentrates on adjusting the depth of a particular depth plane from the video in
respect to a given depth plane within the game scene. As our prototype incorporates
live 3D video, we explore this problem using video from the stereo camera setup
mentioned before.

Our approach is based on a manual setup using a zero parallax setting. First, the
stereo canvas is positioned at the convergence plane, defined by the 3D Vision
driver's convergence value. Consequently, the horizontal parallaxes of the occlusion
mesh and of the adjusted S3D video frames are zero (see Fig. 4 b+c). Now the video
content is shifted manually until objects at a specific depth within the video also show
zero disparity. For our example, this artificial convergence plane was set at the
position of a person standing in front of the camera. The additional horizontal offset
determined in this way is added to the result calculated by the parallax equation:
݋ݔ݈݈ܽܽݎܽ݌ ൌ ݀ݔ݈݈ܽܽݎܽ݌ ൅ (5) ݐ݁ݏ݂݂݋

In this way the image and scene disparities would approximately coincide at all times.
An example of this is shown in Fig. 4a. Since the calibration was performed
manually, small errors were obviously inevitable, but if done properly, the errors are
not visible to the naked eye. A challenging but very interesting task for future
developments would be to perform this step in software automatically.

 Integrating Stereoscopic Video in 3D Games 133

3.4 Splitting the Canvas

Our system allows splitting the camera image to display several parts of the image on
different canvas objects (cf. Fig. 3). One application could be to identify the faces of
multiple players within a video and distribute the according parts throughout the game
scene.

To accomplish a split into two parties for example, two meshes instead of one are
created for each eye, each with half the width of the original meshes. Additionally, the
texture coordinates associated with each vertex are altered so that one split contains
the left half of the video texture and the other split the remaining half.

Consequently, each split can be set completely independent within the scene. Of
course, it is necessary to still treat corresponding splits, for example the left split of
the left and right eye’s canvas, in correspondence with the aforementioned
considerations about parallax and offset to achieve the correct depth impression.

(a) (b) (c)

Fig. 5. Using MSVR for stereoscopic rendering of the video-plus-depth format (a+b). The
generated occlusion mesh can be textured with the video (c) or stays hidden for z-buffer test
with the game scene.

3.5 Problems of Occlusion with Objects and Video

Using S3D video in games may incorporate interaction of virtual objects with certain
features of the video content, positioned at arbitrary depth layers. But, as the
occlusion mesh of the video is fixed, virtual objects that shall be positioned in depth
next to a video feature at large positive parallax, might be occluded. Thus, virtual
objects are not enabled to extend into the depth of the video.

One simple approach would be to render such virtual objects with disabled depth
test and in the correct order. In a complex interactive setup, this implicates a thorough
design of positioning and animating scene objects which clearly restricts game design.
Furthermore, virtual objects might occlude video features of smaller parallax values,
possibly confusing depth perception.

Another approach is the use of non-planar occlusion meshes (see Fig. 5).
Currently, a depth map of the video is required (as in video-plus-depth or depth-
enhanced-stereo formats). It is used to create a displacement occlusion mesh. The
vertices are shifted according to the depth information. The visual occlusion quality
depends on the resolution of the depth map. In the future, we consider automatic
extraction of depth information and updating displacement meshes through vertex
shaders. For generating the required depth data in a live video situation, depth
cameras and other systems as Microsoft Kinect seem promising.

134 J. Schild, S. Seele, and M. Masuch

4 Conclusions and Future Work

We presented our approach of rendering S3D video content in a professional game
engine and discussed problems and solutions for integrating it into a S3D scene.
While the multi-pass rendering approach only concerns a single technical platform, it
allows other programmers, scientists, and hobbyists to develop custom stereoscopic
visuals on consumer hardware. Besides stereoscopic video, any other independently
arranged scenes can be rendered onto the canvasses, to circumvent the quad-buffered
stereo barrier. Beyond this practical scope, the presented workings of occlusion
handling and parallax integration are general problems that significantly influence the
quality of S3D video display within a game scene. Our concepts give a first solution
for manual adjustment and pinpoint the need for automatic methods of parallax
adaptation and to generate depth data of a video. For the latter problem, future 3D
video formats will hopefully offer depth meta data, as this is a major requirement for
generating multi-view stereo data for autostereoscopic displays. This development
highly depends on depth-measuring cameras [4] or automatic depth map extraction
algorithms [7] in the domains of image processing and computer vision.

Possible future applications of S3D video are the integration as a contemporary
medium within a virtual game world, and interactive S3D movies. The use of
stereoscopic video may provide for better interaction opportunities: slightly changing
the viewport through position shift or zooming in or out could provide for more
dynamic visual exploration of a filmed scene. Depth estimation or the use of pre-
rendered depth maps can allow for dynamically mixed pre-rendered/-filmed graphics
with real-time animated objects. The use of live-feed S3D cameras can provide for
stereoscopic augmented reality entertainment. Using MSVR, this design space can be
explored using typically available graphics hardware and powerful game engine
software.

Acknowledgments. This work has been co-funded by the BMWi through the
Prime3D project. Video images used are partly courtesy of Fraunhofer HHI. Vision
Engine educational license was kindly provided by Trinigy. We would like to thank
DVS for providing the capture card, Fraunhofer IIS for the cameras, and all our
partners for their valuable support.

References

1. Code Laboratories. Cl-eye platform driver,
http://codelaboratories.com/products/eye/driver/

2. Tridef, D.: Bringing 3D to mainstream, http://www.tridef.com/home.html
3. Gateau, S.: The in and out: Making games play right with stereoscopic3d technologies,

http://developer.download.nvidia.com/presentations/2009/GDC/
GDC09-3DVision-The_In_and_Out.pdf

4. Hahne, U., Alexa, M.: Depth Imaging by Combining Time-of-Flight and On-Demand
Stereo. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS, vol. 5742, pp. 70–83. Springer,
Heidelberg (2009)

5. IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of
stereoscopic presentation, image motion, and screen size on subjective and objective
corroborative measures of presence. Presence 10(3), 298–311 (2001)

 Integrating Stereoscopic Video in 3D Games 135

6. iZ3D. The Future Of Gaming Is Here, http://www.iz3d.com/
7. Kim, H., Yang, S., Sohn, K.: 3D Reconstruction of Stereo Images for Interaction between

Real and Virtual Worlds. In: Proceedings of the 2nd IEEE/ACM International Symposium
on Mixed and Augmented Reality (ISMAR 2003), pp. 169–178. IEEE Computer Society
Press, Washington, DC, USA (2003)

8. Kroeker, K.L.: Looking beyond stereoscopic 3D’s revival. Communications of the
ACM 53(8), 14–16 (2010)

9. Lambooij, M.T.M., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort in stereoscopic
displays: A review. In: Woods, A.J., Dodgson, N.A., Merritt, J.O., Bolas, M.T.,
McDowall, I.E. (eds.) Proceedings of the Stereoscopic Displays and Virtual Reality
Systems XIV, vol. 6490. SPIE, San Jose (2007)

10. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear
disparity mapping for stereoscopic 3d. In: ACM SIGGRAPH 2010 Papers, p. 75:1-75:10.
ACM Press, New York (2010)

11. McDonald, J.: Nvidia 3d vision automatic,
http://developer.download.nvidia.com/whitepapers/2010/3DV_Be
stPracticesGuide.pdf

12. Mendiburu, B.: 3D Movie Making – Stereoscopic Digital Cinema from Script to Screen.
Focal Press, Burlington (2009)

13. Milgram, P., Drascic, D.: Perceptual effects in aligning virtual and real objects in
augmented reality displays. In: Human Factors and Ergonomics Society Annual Meeting
Proceedings, pp. 1239–1243. Human Factors and Ergonomics Society (1997)

14. Nintendo: Nintendo 3ds, http://www.nintendo.com/3ds/
15. Nintendo: 3DS AR Games, http://www.nintendo.com/3ds/built-in-

software#/4
16. Nvidia Quadro quad buffered professional stereo technology,

http://www.nvidia.com/object/quadro_stereo_technology.html
17. Ohta, Y., Tamura, H. (eds.): Mixed Reality: Merging Real and Virtual Worlds. Ohmsha &

Springer, Tokyo (1999)
18. Schild, J., Seele, S., Fischer, J., Masuch, M.: Multi-pass rendering of stereoscopic video

on consumer graphics cards. In: Symposium on Interactive 3D Graphics and Games I3D
2011, p. 209. ACM, New York (2011)

19. Sieber, J., McCallum, S., Wyvill, G.: BallBouncer: Interactive Games for Theater
Audiences. In: 13th International Conference on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia, Dunedin, New Zealand, pp. 29–31 (2008)

20. Taube, A.: Stereoskopie für Spiele-Entwickler. Making Games Magazine 8(1), 12–19
(2011)

21. Trinigy: The vision game engine,
http://www.trinigy.net/en/products/vision-engine

22. Thorsen, T.: ”Nearly” 30 3D PS3 games due in (2011),
http://www.gamespot.com/news/6305285.html

	Integrating Stereoscopic Video in 3D Games
	Introduction
	Technical Platform
	Camera Setup and Support
	Nvidia 3D Vision

	Integration of Stereoscopic Video into a Game Scene
	Multi-pass Stereoscopic Video Rendering (MSVR)
	Adjustment of the Occlusion Mesh Parallax
	Manually Fitting Video Content Depth to the Game Scene Depth
	Splitting the Canvas
	Problems of Occlusion with Objects and Video

	Conclusions and Future Work
	References

