
Automatic and Precise Client-Side Protection

against CSRF Attacks

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens

IBBT-DistriNet
Katholieke Universiteit Leuven

3001 Leuven, Belgium
{philippe.deryck,lieven.desmet}@cs.kuleuven.be

Abstract. A common client-side countermeasure against Cross Site
Request Forgery (CSRF) is to strip session and authentication infor-
mation from malicious requests. The difficulty however is in determining
when a request is malicious. Existing client-side countermeasures are
typically too strict, thus breaking many existing websites that rely on
authenticated cross-origin requests, such as sites that use third-party
payment or single sign-on solutions.

The contribution of this paper is the design, implementation and
evaluation of a request filtering algorithm that automatically and
precisely identifies expected cross-origin requests, based on whether they
are preceded by certain indicators of collaboration between sites. We
formally show through bounded-scope model checking that our algorithm
protects against CSRF attacks under one specific assumption about the
way in which good sites collaborate cross-origin. We provide experimental
evidence that this assumption is realistic: in a data set of 4.7 million
HTTP requests involving over 20.000 origins, we only found 10 origins
that violate the assumption. Hence, the remaining attack surface for
CSRF attacks is very small. In addition, we show that our filtering does
not break typical non-malicious cross-origin collaboration scenarios such
as payment and single sign-on.

Keywords: CSRF, web security, browser security.

1 Introduction

From a security perspective, web browsers are a key component of today’s
software infrastructure. A browser user might have a session with a trusted
site A (e.g. a bank, or a webmail provider) open in one tab, and a session with a
potentially dangerous site B (e.g. a site offering cracks for games) open in another
tab. Hence, the browser enforces some form of isolation between these two origins
A and B through a heterogeneous collection of security controls collectively
known as the same-origin-policy [18]. An origin is a (protocol, domain name,
port) triple, and restrictions are imposed on the way in which code and data
from different origins can interact. This includes for instance restrictions that
prevent scripts from origin B to access content from origin A.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 100–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic and Precise Client-Side Protection against CSRF Attacks 101

An important known vulnerability in this isolation is the fact that content
from origin B can initiate requests to origin A, and that the browser will treat
these requests as being part of the ongoing session with A. In particular, if the
session with A was authenticated, the injected requests will appear to A as part
of this authenticated session. This enables an attack known as Cross Site Request
Forgery (CSRF): B can initiate effectful requests to A (e.g. a bank transaction,
or manipulations of the victim’s mailbox or address book) without the user being
involved.

CSRF has been recognized since several years as one of the most impor-
tant web vulnerabilities [3], and many countermeasures have been proposed.
Several authors have proposed server-side countermeasures [3,4,10]. However,
an important disadvantage of server-side countermeasures is that they require
modifications of server-side programs, have a direct operational impact (e.g. on
performance or maintenance), and it will take many years before a substantial
fraction of the web has been updated.

Alternatively, countermeasures can be applied on the client-side, as browser
extensions. The basic idea is simple: the browser can strip session and au-
thentication information from malicious requests, or it can block such requests.
The difficulty however is in determining when a request is malicious. Existing
client-side countermeasures [9,5,12,13,16,19] are typically too strict: they block
or strip all cross-origin requests of a specific type (e.g. GET, POST, any). This
effectively protects against CSRF attacks, but it unfortunately also breaks many
existing websites that rely on authenticated cross-origin requests. Two important
examples are sites that use third-party payment (such as PayPal) or single sign-
on solutions (such as OpenID). Hence, these existing client-side countermeasures
require extensive help from the user, for instance by asking the user to define
white-lists of trusted sites or by popping up user confirmation dialogs. This is
suboptimal, as it is well-known that the average web user can not be expected
to make accurate security decisions.

This paper proposes a novel client-side CSRF countermeasure, that includes
an automatic and precise filtering algorithm for cross-origin requests. It is
automatic in the sense that no user interaction or configuration is required.
It is precise in the sense that it distinguishes well between malicious and non-
malicious requests. More specifically, through a systematic analysis of logs of
web traffic, we identify a characteristic of non-malicious cross-origin requests
that we call the trusted-delegation assumption: a request from B to A can be
considered non-malicious if, earlier in the session, A explicitly delegated control
to B in some specific ways. Our filtering algorithm relies on this assumption:
it will strip session and authentication information from cross-origin requests,
unless it can determine that such explicit delegation has happened.

We validate our proposed countermeasure in several ways. First, we formalize
the algorithm and the trusted-delegation assumption in Alloy, building on the
formal model of the web proposed by [1], and we show through bounded-scope
model checking that our algorithm protects against CSRF attacks under this
assumption. Next, we provide experimental evidence that this assumption is

102 P. De Ryck et al.

realistic: through a detailed analysis of logs of web traffic, we quantify how
often the trusted-delegation assumption holds, and show that the remaining
attack surface for CSRF attacks is very small. Finally, we have implemented our
filtering algorithm as an extension of an existing client-side CSRF protection
mechanism, and we show that our filtering does not break typical non-malicious
cross-origin collaboration scenarios such as payment and single sign-on.

In summary, the contributions of this paper are:

– The design of a novel client-side CSRF protection mechanism based on
request filtering.

– A formalization of the algorithm, and formal evidence of the security of the
algorithm under one specific assumption, the trusted-delegation assumption.

– An implementation of the countermeasure, and a validation of its com-
patibility with important web scenarios broken by other state-of-the-art
countermeasures.

– An experimental evaluation of the validity of the trusted-delegation assump-
tion.

The remainder of the paper is structured as follows. Section 2 explains the
problem using both malicious and non-malicious scenarios. Section 3 discusses
our request filtering mechanism. Section 4 introduces the formalization and
results, followed by the implementation in Section 5. Section 6 experimentally
evaluates the trusted-delegation assumption. Finally, Section 7 extensively
discusses related work, followed by a brief conclusion (Section 8).

2 Cross-Origin HTTP Requests

The key challenge for a client-side CSRF prevention mechanism is to distinguish
malicious from non-malicious cross-origin requests. This section illustrates the
difficulty of this distinction by describing some attack scenarios and some
important non-malicious scenarios that intrinsically rely on cross-origin requests.

2.1 Attack Scenarios

A1. Classic CSRF Figure 1(a) shows a classic CSRF attack. In steps 1–4, the
user establishes an authenticated session with site A, and later (steps 5–8) the
user opens the malicious site E in another tab of the browser. The malicious
page from E triggers a request to A (step 9), the browser considers this
request to be part of the ongoing session with A and automatically adds
the necessary authentication and session information. The browser internally
maintains different browsing contexts for each origin it is interacting with. The
shade of the browser-lifeline in the figure indicates the origin associated with the
browsing context from which the outgoing request originates (also known as the
referrer). Since the attack request originates from an E browsing context and
goes to origin A, it is cross-origin.

For the attack to be successful, an authenticated session with A must exist
when the user surfs to the malicious site E. The likelihood of success can be

Automatic and Precise Client-Side Protection against CSRF Attacks 103

(a) Classic CSRF (b) Link injection

Fig. 1. CSRF attack scenarios

increased by making E content-related to A, for instance to attack a banking
site, the attacker poses as a site offering financial advice.

A2. Link Injection. To further increase the likelihood of success, the attacker
can inject links to E into the site A. Many sites, for instance social networking
sites, allow users to generate content which is displayed to other users. For such a
site A, the attacker creates a content item which contains a link to E. Figure 1(b)
shows the resulting CSRF scenario, where A is a social networking site and E is
the malicious site. The user logs into A (steps 1–4), opens the attacker injected
content (steps 5–8), and clicks on the link to E (step 9) which launches the CSRF
attack (step 13). Again, the attack request is cross-origin.

2.2 Non-malicious Cross-Origin Scenarios

CSRF attack requests are cross-origin requests in an authenticated session.
Hence, forbidding such requests is a secure countermeasure. Unfortunately, this
also breaks many useful non-malicious scenarios. We illustrate two important
ones.

F1. Payment Provider. Third-party payment providers such as PayPal or Visa
3D-secure offer payment services to a variety of sites on the web.

Figure 2(a) shows the scenario for PayPal’s Buy Now button. When a user
clicks on this button, the browser sends a request to PayPal (step 2), that
redirects the user to the payment page (step 4). When the user accepts the
payment (step 7), the processing page redirects the browser to the dispatch page
(step 10), that loads the landing page of the site that requested the payment
(step 13).

104 P. De Ryck et al.

(a) Payment scenario (b) Central authentication scenario

Fig. 2. Non-malicious cross-origin scenarios

Note that step 13 is a cross-origin request from PayPal to A in an
authenticated session, for instance a shopping session in web shop A.

F2. Central Authentication. The majority of interactive websites require some
form of authentication. As an alternative to each site using its own authentication
mechanism, a single sign-on service (such as OpenID or Windows Live ID)
provides a central point of authentication.

An example scenario for OpenID authentication using MyOpenID is shown in
Figure 2(b). The user chooses the authentication method (step 1), followed by a
redirect from the site to the authentication provider (step 4). The authentication
provider redirects the user to the login form (step 6). The user enters the required
credentials, which are processed by the provider (step 10). After verification, the
provider redirects the browser to the dispatching page (step 12), that redirects
to the processing page on the original site (step 14). After processing the
authentication result, a redirect loads the requested page on the original site
(step 16).

Again, note that step 16 is a cross-origin request in an authenticated session.
These two scenarios illustrate that mitigating CSRF attacks by preventing

cross-origin requests in authenticated sessions breaks important and useful web
scenarios. Existing client-side countermeasures against CSRF attacks [5,13,16]
either are incompatible with such scenarios or require user interaction for these
cases.

Automatic and Precise Client-Side Protection against CSRF Attacks 105

3 Automatic and Precise Request Stripping

The core idea of our new countermeasure is the following: client-side state (i.e.
session cookie headers and authentication headers) is stripped from all cross-
origin requests, except for expected requests. A cross-origin request from origin
A to B is expected if B previously (earlier in the browsing session) delegated to
A. We say that B delegates to A if B either issues a POST request to A, or if B
redirects to A using a URI that contains parameters.

The rationale behind this core idea is that (1) non-malicious collaboration
scenarios follow this pattern, and (2) it is hard for an attacker to trick A into
delegating to a site of the attacker: forcing A to do a POST or parametrized
redirect to an evil site E requires the attacker to either identify a cross-site
scripting (XSS) vulnerability in A, or to break into A’s webserver. In both these
cases, A has more serious problems than CSRF.

Obviously, a GET request from A to B is not considered a delegation, as it is
very common for sites to issue GET requests to other sites, and as it is easy for
an attacker to trick A into issuing such a GET request (see for instance attack
scenario A2 in Section 2).

Unfortunately, the elaboration of this simple core idea is complicated some-
what by the existence of HTTP redirects. A web server can respond to a
request with a redirect response, indicating to the browser that it should resend
the request elsewhere, for instance because the requested resource was moved.
The browser will follow the redirect automatically, without user intervention.
Redirects are used widely and for a variety of purposes, so we cannot ignore them.
For instance, both non-malicious scenarios in Section 2 heavily depend on the
use of redirects. In addition, attacker-controlled websites can also use redirects
in an attempt to bypass client-side CSRF protection. Akhawe et al. [1] discuss
several examples of how attackers can use redirects to attack web applications,
including an attack against a CSRF countermeasure. Hence, correctly dealing
with redirects is a key requirement for security.

The flowgraph in Figure 3 summarizes our filtering algorithm. For a given
request, it determines what session state (cookies and authentication headers)
the browser should attach to the request. The algorithm differentiates between
simple requests and requests that are the result of a redirect.

Simple Requests. Simple requests that are not cross-origin, as well as expected
cross-origin requests are handled as unprotected browsers handle them today.
The browser automatically attaches the last known client-side state associated
with the destination origin (point 1). The browser does not attach any state to
non-expected cross-origin requests (point 3).

Redirect Requests. If a request is the consequence of a redirect response, then the
algorithm determines if the redirect points to the origin where the response came
from. If this is the case, the client-side state for the new request is limited to the
client-side state known to the previous request (i.e. the request that triggered
this redirect) (point 2). If the redirect points to another origin, then, depending

106 P. De Ryck et al.

Fig. 3. The request filtering algorithm

on whether this cross-origin request is expected or not, it either gets session-state
automatically attached (point 1) or not (point 3).

When Is a Request Expected?. A key element of the algorithm is determining
whether a request is expected or not. As discussed above, the intuition is: a cross-
origin request from B to A is expected if and only if A first delegated to B by
issuing a POST request to B, or by a parametrized redirect to B. Our algorithm
stores such trusted delegations, and an assumption that we rely on (and that we
refer to as the trusted-delegation assumption) is that sites will only perform such
delegations to sites that they trust. In other words, a site A remains vulnerable to
CSRF attacks from origins to which it delegates. Section 6 provides experimental
evidence for the validity of this assumption.

The algorithm to decide whether a request is expected goes as follows.
For a simple cross-origin request from site B to site A, a trusted delegation

from site A to B needs to be present in the delegation store.
For a redirect request that redirects a request to origin Y (light gray) to

another origin Z (dark gray) in a browsing context associated with some origin α,
the following rules apply.

1. First, if the destination (Z) equals the source (i.e. α = Z) (Figure 4(a)),
then the request is expected if there is a trusted delegation from Z to Y in
the delegation store. Indeed, Y is effectively doing a cross-origin request to
Z by redirecting to Z. Since the browsing context has the same origin as
the destination, it can be expected not to manipulate redirect requests to
misrepresent source origins of redirects (cfr next case).

2. Alternatively, if the destination (Z) is not equal to the source (i.e. α �= Z)
(Figure 4(b)), then the request is expected if there is a trusted delegation
from Z to Y in the delegation store, since Y is effectively doing a cross-
origin request to Z. Now, the browsing context might misrepresent source

Automatic and Precise Client-Side Protection against CSRF Attacks 107

(a) (b) (c)

Fig. 4. Complex cross-origin redirect scenarios

origins of redirects by including additional redirect hops (origin X (white) in
Figure 4(c)). Hence, our decision to classify the request does not involve X.

Finally, our algorithm imposes that expected cross-origin requests can only use
the GET method and that only two origins can be involved in the request chain.
These restrictions limit the potential power an attacker might have, even if the
attacker successfully deceives the trusted-delegation mechanism.

Mapping to Scenarios. The reader can easily check that the algorithm blocks
the attack scenarios from Section 2, and supports the non-malicious scenarios
from that section. We discuss two of them in more detail.

In the PayPal scenario (Figure 2(a)), step 13 needs to re-use the state already
established in step 2, which means that according to the algorithm, the request
from PayPal to A should be expected. A trusted delegation happens in step 2,
where a cross-origin POST is sent from origin A to PayPal. Hence the GET
request in step 13 is considered expected and can use the state associated with
origin A. Also note how the algorithm maintains the established session with
PayPal throughout the scenario. The session is first established in step 3. Step
4 can use this session, because the redirect is an internal redirect on the PayPal
origin. Step 8 can use the last known state for the PayPal origin and step 10 is
yet another internal redirect.

In the link injection attack (Figure 1(b)), the attack happens in step 13 and is
launched from origin E to site A. In this scenario, an explicit link between A and
E exists because of the link injected by the attacker. This link is however not
a POST or parametrized redirect, so it is not a trusted delegation. This means
that the request in step 10 is not considered to be expected, so it can not access
the previously established client-side state, and the attack is mitigated.

4 Formal Modeling and Checking

The design of web security mechanisms is complex: the behaviour of (same-
origin and cross-origin) browser requests, server responses and redirects, cookie
and session management, as well as the often implicit threat models of web

108 P. De Ryck et al.

security can lead to subtle security bugs in new features or countermeasures. In
order to evaluate proposals for new web mechanisms more rigorously, Akhawe
et al. [1] have proposed a model of the Web infrastructure, formalized in Alloy.

The base model is some 2000 lines of Alloy source code, describing (1) the essen-
tial characteristics of browsers, web servers, cookie management and the HTTP
protocol, and (2) a collection of relevant threat models for the web. The Alloy
Analyzer – a bounded-scope model checker – can then produce counterexamples
that violate intended security properties if they exist in a specified finite scope.

In this section, we briefly introduce Akhawe’s model and present our extensions
to the model. We also discuss how the model was used to verify the absence of
attack scenarios and the presence of functional scenarios.

4.1 Modeling Our Countermeasure

The model of Akhawe et al. defines different principals, of which GOOD and
WEBATTACKER are most relevant. GOOD represents an honest principal, who follows
the rules imposed by the technical specifications. A WEBATTACKER is a malicious
user who can control malicious web servers, but has no extended networking
capabilities.

The concept of Origin is used to differentiate between origins, which
correspond to domains in the real world. An origin is linked with a server on
the web, that can be controlled by a principal. The browsing context, modeled
as a ScriptContext, is also associated with an origin, that represents the origin
of the currently loaded page, also known as the referrer.

A ScriptContext can be the source of a set of HTTPTransaction objects,
which are a pair of an HTTPRequest and HTTPResponse. An HTTP request and
response are also associated with their remote destination origin. Both an HTTP
request and response can have headers, where respectively the CookieHeader

and SetCookieHeader are the most relevant ones. An HTTP request also has a
method, such as GET or POST, and a queryString, representing URI parameters.
An HTTP response has a statusCode, such as c200 for a content result or c302

for a redirect. Finally, an HTTP transaction has a cause, which can be none,
such as the user opening a new page, a RequestAPI, such as a scripting API, or
another HTTPTransaction, in case of a redirect.

To model our approach, we need to extend the model of Akhawe et al. to
include (a) the accessible client-side state at a certain point in time, (b) the
trusted delegation assumption and (c) our filtering algorithm. We discuss (a)
and (b) in detail, but due to space constraints we omit the code for the filtering
algorithm (c), which is simply a literal implementation of the algorithm discussed
in Section 3.

Client-Side State. We introduced a new signature CSState that represents a
client-side state (Listing 1.1). Such a state is associated with an Origin and
contains a set of Cookie objects. To associate a client-side state with a given
request or response and a given point in time, we have opted to extend the
HTTPTransaction from the original model into a CSStateHTTPTransaction. Such
an extended transaction includes a beforeState and afterState, respectively

Automatic and Precise Client-Side Protection against CSRF Attacks 109

representing the accessible client-side state at the time of sending the request and
the updated client-side state after having received the response. The afterState

is equal to the beforeState, with the potential addition of new cookies, set in
the response.

1 sig CSState {
2 dst: Origin,
3 cookies: set Cookie
4 }
5

6 sig CSStateHTTPTransaction extends HTTPTransaction {
7 beforeState : CSState,
8 afterState : CSState
9 } {

10 //The after state of a transaction is equal to the before state + any additional cookies set in
the response

11 beforeState·dst = afterState·dst
12 afterState·cookies = beforeState·cookies + (resp·headers & SetCookieHeader)·thecookie
13

14 // The destination origin of the state must correspond to the transaction destination origin
15 beforeState·dst = req·host
16 }

Listing 1.1. Signatures representing our data in the model

Trusted-delegation Assumption. We model the trusted-delegation assumption as
a fact, that honest servers do not send a POST or parametrized redirect to web
attackers ((Listing 1.2).

1 fact TrustedDelegation {
2 all r : HTTPRequest | {
3 (r·method = POST || some (req·r)·cause & CSStateHTTPTransaction)
4 &&
5 ((some (req·r)·cause & CSStateHTTPTransaction && getPrincipalFromOrigin[(req·r)·cause·req·

host] in GOOD) || getPrincipalFromOrigin[transactions·(req·r)·owner] in GOOD)
6 implies
7 getPrincipalFromOrigin[r·host] not in WEBATTACKER
8 }
9 }

Listing 1.2. The fact modeling the trusted-delegation assumption

4.2 Using Model Checking for Security and Functionality

We formally define a CSRF attack as the possibility for a web attacker (defined in
the base model) to inject a request with at least one existing cookie attached to it
(this cookie models the session/authentication information attached to requests)
in a session between a user and an honest server (Listing 1.3).

We provided the Alloy Analyzer with a universe of at most 9 HTTP events
and where an attacker can control up to 3 origins and servers (a similar size as
used in [1]). In such a universe, no examples of an attacker injecting a request
through the user’s browser were found. This gives strong assurance that the
countermeasure does indeed protect against CSRF under the trusted delegation
assumption.

110 P. De Ryck et al.

1 pred CSRF[r : HTTPRequest] {
2 //Ensure that the request goes to an honest server
3 some getPrincipalFromOrigin[r·host]
4 getPrincipalFromOrigin[r·host] in GOOD
5

6 //Ensure that an attacker is involved in the request
7 some (WEBATTACKER·servers & involvedServers[req·r]) || getPrincipalFromOrigin[(

transactions·(req·r))·owner] in WEBATTACKER
8

9 // Make sure that at least one cookie is present
10 some c : (r·headers & CookieHeader)·thecookie | {
11 //Ensure that the cookie value is fresh (i·e· that it is not a renewed value in a redirect

chain)
12 not c in ((req·r)·∗cause·resp·headers & SetCookieHeader)·thecookie
13 }
14 }

Listing 1.3. The predicate modeling a CSRF attack

We also modeled the non-malicious scenarios from Section 2, and the Alloy
Analyzer reports that these scenarios are indeed permitted. From this, we can
also conclude that our extension of the base model is consistent.

Space limitations do not permit us to discuss the detailed scenarios present
in our model, but the interested reader can find the complete model available
for download at [6].

Table 1. CSRF benchmark

Test scenarios Result
HTML 29 cross-origin test scenarios �
CSS 12 cross-origin test scenarios �
ECMAScript 9 cross-origin test scenarios �
Redirects 20 cross-origin redirect scenarios �

5 Implementation

We have implemented our request filtering algorithm in a proof-of-concept add-
on for the Firefox browser, and used this implementation to conduct an extensive
practical evaluation. First, we have created simulations for both the common
attack scenarios as well as the two functional scenarios discussed in the paper
(third party payment and centralized authentication), and verified that they
behaved as expected.

Second, in addition to these simulated scenarios, we have verified that the
prototype supports actual instances of these scenarios, such as for example the
use of MyOpenID authentication on sourceforge.net.

Third, we have constructed and performed a CSRF benchmark1, consisting of
70 CSRF attack scenarios to evaluate the effectiveness of our CSRF prevention

1 The benchmark can be applied to other client-side solutions as well, and is
downloadable at [6].

Automatic and Precise Client-Side Protection against CSRF Attacks 111

technique (see Table 1). These scenarios are the result of a CSRF-specific study
of the HTTP protocol, the HTML specification and the CSS markup language
to examine their cross-origin traffic capabilities, and include complex redirect
scenarios as well. Our implementation has been evaluated against each of these
scenarios, and our prototype passed all tests successfully.

The prototype, the scenario simulations and the CSRF benchmark suite are
available for download [6].

6 Evaluating the Trusted-Delegation Assumption

Our countermeasure drastically reduces the attack surface for CSRF attacks.
Without CSRF countermeasures in place, an origin can be attacked by any other
origin on the web. With our countermeasure, an origin can only be attacked by
another origin to which it has delegated control explicitly by means of a cross-
origin POST or redirect. We have already argued in Section 3 that it is difficult
for an attacker to cause unintended delegations. In this section, we measure the
remaining attack surface experimentally.

We conducted an extensive traffic analysis using a real-life data set of
4.729.217 HTTP requests, collected from 50 unique users over a period of 10
weeks. The analysis revealed that 1.17% of the 4.7 million requests are treated
as delegations in our approach. We manually analyzed all these 55.300 requests,
and classified them in the interaction categories summarized in Table 2.

For each of the categories, we discuss the resulting attack surface:

Third Party Service Mashups. This category consists of various third party
services that can be integrated in other websites. Except for the single sign-on
services, this is typically done by script inclusion, after which the included
script can launch a sequence of cross-origin GET and/or POST requests
towards offered AJAX APIs. In addition, the service providers themselves
often use cross-origin redirects for further delegation towards content delivery
networks.
As a consequence, the origin A including the third-party service S becomes
vulnerable to CSRF attacks from S. This attack surface is unimportant, as
in these scenarios, S can already attack A through script inclusion, a more
powerful attack than CSRF.

In addition, advertisement service providers P that further redirect to
content delivery services D are vulnerable to CSRF attacks from D whenever
a user clicks an advertisement. Again, this attack surface is unimportant: the
delegation from P to D correctly reflects a level of trust that P has in D,
and P and D will typically have a legal contract or SLA in place.

Multi-origin Websites. Quite a number of larger companies and organi-
zations have websites spanning multiple origins (such as live.com - mi-
crosoft.com and google.be - google.com). Cross-origin POST requests and
redirects between these origins make it possible for such origins to attack
each other. For instance, google.be could attack google.com. Again, this attack

112 P. De Ryck et al.

Table 2. Analysis of the trusted-delegation assumption in a real-life data set of
4.729.217 HTTP requests

requests POST redir.
Third party service mashups 29.282 (52,95%) 5.321 23.961
Advertisement services 22.343 (40,40%) 1.987 20.356
Gadget provider services (appspot, mochibot, gmodules, . . .) 2.879 (5,21%) 2.757 122
Tracking services (metriweb, sitestat, uts.amazon, . . .) 2.864 (5,18%) 411 2.453
Single Sign-On services (Shibboleth, Live ID, OpenId, . . .) 1.156 (2,09%) 137 1.019
3rd party payment services (Paypal, Ogone) 27 (0,05%) 19 8
Content sharing services (addtoany, sharethis, . . .) 13 (0,02%) 10 3

Multi-origin websites 13.973 (25,27%) 198 13.775
Content aggregators 8.276 (14,97%) 0 8.276
Feeds (RSS feeds, News aggregators, mozilla fxfeeds, . . .) 4.857 (8,78%) 0 4.857
Redirecting search engines (Google, Comicranks, Ohnorobot) 3.344 (6,05%) 0 3.344
Document repositories (ACM digital library, dx.doi.org, . . .) 75 (0,14%) 0 75

False positives (wireless network access gateways) 1.215 (2,20%) 12 1.203
URL shorteners (gravatar, bit.ly, tinyurl, . . .) 759 (1,37%) 0 759
Others (unclassified) 1.795 (3,24%) 302 1.493
Total number of 3rd party delegation initiators 55.300 (100%) 5.833 49.467

surface is unimportant, as all origins of such a multi-origin website belong
to a single organization.

Content Aggregators. Content aggregators collect searchable content and
redirect end-users towards a specific content provider. For news feeds and
document repositories (such as the ACM digital library), the set of content
providers is typically stable and trusted by the content aggregator, and
therefore again a negligible attack vector.
Redirecting search engines register the fact that a web user is following a
link, before redirecting the web user to the landing page (e.g. as Google does
for logged in users). Since the entries in the search repository come from
all over the web, our CSRF countermeasure provides little protection for
such search engines. Our analysis identified 4 such origins in the data set:
google.be, google.com, comicrank.com, and ohnorobot.com.

False Positives. Some fraction of the cross-origin requests are caused by
network access gateways (e.g. on public Wifi) that intercept and reroute
requests towards a payment gateway. Since such devices have man-in-the-
middle capabilities, and hence more attack power than CSRF attacks, the
resulting attack surface is again negligible.

URL Shorteners. To ease URL sharing, URL shorteners transform a short-
ened URL into a preconfigured URL via a redirect. Since such URL short-
ening services are open, an attacker can easily control a new redirect target.
The effect is similar to the redirecting search engines; URL shorteners are
essentially left unprotected by our countermeasure. Our analysis identified 6
such services in the data set: bit.ly, gravatar.com, post.ly, tiny.cc, tinyurl.com,
and twitpic.com.

Others(unclassified). For some of the requests in our data set, the origins
involved in the request were no longer online, or the (partially anonymized)
data did not contain sufficient information to reconstruct what was happen-
ing, and we were unable to classify or further investigate these requests.

Automatic and Precise Client-Side Protection against CSRF Attacks 113

In summary, our experimental analysis shows that the trusted delegation
assumption is realistic. Only 10 out of 23.592 origins (i.e. 0.0042% of the
examined origins) – the redirecting search engines and the URL shorteners –
perform delegations to arbitrary other origins. They are left unprotected by
our countermeasure. But the overwhelming majority of origins delegates (in our
precise technical sense, i.e. using cross-origin POST or redirect) only to other
origins with whom they have a trust relationship.

7 Related Work

The most straightforward protection technique against CSRF attacks is server-
side mitigation via validation tokens [4,10]. In this approach, web forms are
augmented with a server-generated, unique validation token (e.g. embedded
as a hidden field in the form), and at form submission the server checks the
validity of the token before executing the requested action. At the client-side,
validation tokens are protected from cross-origin attackers by the same-origin-
policy, distinguishing them from session cookies or authentication credentials
that are automatically attached to any outgoing request. Such a token based
approach can be offered as part of the web application framework [14,7], as a
server-side library or filter [15], or as a server-side proxy [10].

Recently, the Origin header has been proposed as a new server-side coun-
termeasure [3,2]. With the Origin header, clients unambiguously inform the
server about the origin of the request (or the absence of it) in a more privacy-
friendly way than the Referer header. Based on this origin information, the server
can safely decide whether or not to accept the request. In follow-up work, the
Origin header has been improved, after a formal evaluation revealed a previously
unknown vulnerability [1]. The Alloy model used in this evaluation also formed
the basis for the formal validation of our presented technique in Section 4.

Unfortunately, the adoption rate of these server-side protection mechanisms
is slow, giving momentum to client-side mitigation techniques as important (but
hopefully transitional) solutions. In the next paragraphs, we will discuss the
client-side proxy RequestRodeo, as well as 4 mature and popular browser addons
(CsFire, NoScript ABE, RequestPolicy, and CSD2). In addition, we will evaluate
how well the browser addons enable the functional scenarios and protect against
the attack scenarios discussed in this paper (see Table 3).

RequestRodeo [9] is a client-side proxy proposed by Johns and Winter. The
proxy applies a client-side token-based approach to tie requests to the correct
source origin. In case a valid token is lacking for an outgoing request, the request
is considered suspicious and gets stripped of cookies and HTTP authorization

headers. RequestRodeo lies at the basis of most of the client-side CSRF solutions
[5,12,13,16,19], but because of the choice of a proxy, RequestRodeo often lacks
context information, and the rewriting technique on raw responses does not scale
well in a web 2.0 world.
2 Since the client-side detection technique described in [17] is not available for

download, the evaluation is done based on the description in the paper.

114 P. De Ryck et al.

Table 3. Evaluation of browser-addons

Functional scenarios Attack scenarios
F1. Payment

Provider
F2. Central

Authentication
A1. Classic

CSRF
A2. Link
Injection

CsFire [5] × × � �
NoScript ABE [13] a × × � �
RequestPolicy [16] �� b �� b �c �c

Client-Side Detection [17] × × � �
Our Approach � � � �
a ABE configured as described in [8]
b Requires interactive feedback from end-user to make the decision
c Requests are blocked instead of stripped, impacting the end-user experience

CsFire [5] extends the work of Maes et al. [11], and strips cookies and HTTP
authorization headers from a cross-origin request. The advantage of stripping
is that there are no side-effects for cross-origin requests that do not require
credentials in the first place. CsFire operates autonomously by using a default
client policy which is extended by centrally distributed policy rules. Additionally,
CsFire supports users creating custom policy rules, which can be used to blacklist
or whitelist certain traffic patterns. Without a central or user-supplied whitelist,
CsFire does not support the payment and central authentication scenario.

To this extent, we plan to integrate the approach presented in this paper to
the CsFire Mozilla Add-On distribution in the near future.

NoScript ABE [13], or Application Boundary Enforcer, restricts an application
within its origin, which effectively strips credentials from cross-origin requests,
unless specified otherwise. The default ABE policy only prevents CSRF attacks
from the internet to an intranet page. The user can add specific policies, such
as a CsFire-alike stripping policy [8], or a site-specific blacklist or whitelist.
If configured with [8], ABE successfully blocks the three attack scenarios, but
disables the payment and central authentication scenario.

RequestPolicy [16] protects against CSRF by blocking all cross-origin requests.
In contrast to stripping credentials, blocking a request can have a very
noticeable effect on the user experience. When detecting a cross-origin redirect,
RequestPolicy injects an intermediate page where the user can explicitly allow
the redirect. RequestPolicy also includes a predefined whitelist of hosts that are
allowed to send cross-origin requests to each other. Users can add exceptions to
the policy using a whitelist. RequestPolicy successfully blocks the three attack
scenarios (by blocking instead of stripping all cross-origin requests) and requires
interactive end-user feedback to enable the payment and central authentication
scenario.

Finally, in contrast to the CSRF prevention techniques discussed in this paper,
Shahriar and Zulkernine proposes a client-side detection technique for CSRF [17].
In their approach, malicious and benign cross-origin requests are distinguished
from each other based on the existence and visibility of the submitted form or
link in the originating page, as well as the visibility of the target. In addition,
the expected content type of the response is taken into account to detect false
negatives during execution. Although the visibility check closely approximates
the end-user intent, their technique fails to support the script inclusions of

Automatic and Precise Client-Side Protection against CSRF Attacks 115

third party service mashups as discussed in Section 6. Moreover, without taking
into account the delegation requests, expected redirect requests (as defined in
Section 3) will be falsely detected as CSRF attacks, although these requests are
crucial enablers for the payment and central authentication scenario.

8 Conclusion

We have proposed a novel technique for protecting at client-side against CSRF
attacks. The main novelty with respect to existing client-side countermeasures is
the good trade-off between security and compatibility: existing countermeasures
break important web scenarios such as third-party payment and single-sign-on,
whereas our countermeasure can permit them.

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, IBBT, IWT,
the Research Fund K.U. Leuven and the EU-funded FP7-projects WebSand and
NESSoS.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal
foundation of web security. In: IEEE Computer Security Foundations Symposium,
pp. 290–304 (2010)

2. Barth, A., Jackson, C., Hickson, I.: The web origin concept (November 2010),
http://tools.ietf.org/html/draft-abarth-origin-09

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: 15th ACM Conference on Computer and Communications Security, CCS 2008
(2008)

4. Burns, J.: Cross site reference forgery: An introduction to a common web
application weakness. In: Security Partners, LLC (2005)

5. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Transparent
client-side mitigation of malicious cross-domain requests. In: Massacci, F., Wallach,
D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 18–34. Springer,
Heidelberg (2010)

6. De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: Automatic and precise client-
side protection against csrf attacks - downloads (2011), https://distrinet.cs.
kuleuven.be/software/CsFire/esorics2011/

7. Django. Cross site request forgery protection (2011), http://docs.

djangoproject.com/en/dev/ref/contrib/csrf/

8. Informaction Forums. Which is the best way to configure ABE? (July 2010),
http://forums.informaction.com/viewtopic.php?f=23\&t=4752

9. Johns, M., Winter, J.: RequestRodeo: client side protection against session riding.
In: Proceedings of the OWASP Europe 2006 Conference, refereed papers track,
Report CW448, pp. 5–17 (2006)

10. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: IEEE International Conference on Security and Privacy in Communication
Networks (SecureComm), pp. 1–10 (2006)

http://tools.ietf.org/html/draft-abarth-origin-09
https://distrinet.cs.kuleuven.be/software/CsFire/esorics2011/
https://distrinet.cs.kuleuven.be/software/CsFire/esorics2011/
http://docs.djangoproject.com/en/dev/ref/contrib/csrf/
http://docs.djangoproject.com/en/dev/ref/contrib/csrf/
http://forums.informaction.com/viewtopic.php?f=23&t=4752

116 P. De Ryck et al.

11. Maes, W., Heyman, T., Desmet, L., Joosen, W.: Browser protection against
cross-site request forgery. In: Proceedings of the First ACM Workshop on Secure
Execution of Untrusted Code, pp. 3–10. ACM, New York (2009)

12. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In: Dingledine, R., Golle, P. (eds.) FC 2009.
LNCS, vol. 5628, pp. 238–255. Springer, Heidelberg (2009)

13. Giorgio Maone. Noscript 2.0.9.9 (2011), http://noscript.net/
14. Ruby on Rails. Actioncontroller::requestforgeryprotection (2011), http://api.

rubyonrails.org/classes/ActionController/RequestForgeryProtection.

html

15. Owasp. Csrf guard (October 2008), http://www.owasp.org/index.php/CSRF_

Guard

16. Samuel, J.: Requestpolicy 0.5.20 (2011), http://www.requestpolicy.com
17. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery

attacks. In: 2010 IEEE 21st International Symposium on Software Reliability
Engineering (ISSRE), pp. 358–367 (November 2010)

18. Zalewski, M.: Browser security handbook (2010), http://code.google.com/p/

browsersec/wiki/Main

19. Zeller, W., Felten, E.W.: Cross-site request forgeries: Exploitation and prevention.
Technical report, Princeton University (2008)

http://noscript.net/
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://www.owasp.org/index.php/CSRF_Guard
http://www.owasp.org/index.php/CSRF_Guard
http://www.requestpolicy.com
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main

	Automatic and Precise Client-Side Protection against CSRF Attacks
	Introduction
	Cross-Origin HTTP Requests
	Attack Scenarios
	Non-malicious Cross-Origin Scenarios

	Automatic and Precise Request Stripping
	Formal Modeling and Checking
	Modeling Our Countermeasure
	Using Model Checking for Security and Functionality

	Implementation
	Evaluating the Trusted-Delegation Assumption
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

