Workload Balancing and Throughput
Optimization for Heterogeneous Systems
Subject to Failures

Anne Benoit!, Alexandru Dobrila?*, Jean-Marc Nicod?, and Laurent Philippe?

! ENS Lyon, Université de Lyon, LIP laboratory (ENS, CNRS, INRIA, UCBL),
France
? Université de Franche-Comté, LIFC laboratory, (UFC), France
adobrila@lifc.univ-fcomte.fr

Abstract. In this paper, we study the problem of optimizing the
throughput of streaming applications for heterogeneous platforms sub-
ject to failures. The applications are linear graphs of tasks (pipelines),
and a type is associated to each task. The challenge is to map tasks onto
the machines of a target platform, but machines must be specialized to
process only one task type, in order to avoid costly context or setup
changes. The objective is to maximize the throughput, i.e., the rate at
which jobs can be processed when accounting for failures. For identical
machines, we prove that an optimal solution can be computed in polyno-
mial time. However, the problem becomes NP-hard when two machines
can compute the same task type at different speeds. Several polynomial
time heuristics are designed, and simulation results demonstrate their
efficiency.

1 Introduction

Most of the distributed environments are subject to failures, and each compo-
nent of the environment has its own failure rate. Assuming that a failure may
be tolerated, as for instance in asynchronous systems [I] or production sys-
tems, the failures have an impact on the system performance. When scheduling
an application onto such a system, either we can account for failures to help
improve the performance in case of failures, or ignore them. In some environ-
ments, such as computing grids, this failure rate is so high that we cannot ignore
failures when scheduling applications that last for a long time as a batch of in-
put data processed by pipelined tasks for instance. This is also the case for
micro-factories where a production is composed of several instances of the same
micro-component that must be processed by cells.

In this paper, we deal with scheduling and mapping strategies for coarse-
grain workflow applications [I8/19]. The applications are linear graphs of tasks
(pipelines), and a type is associated to each task. The target platform is a set

* Corresponding author.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 242 2011.
© Springer-Verlag Berlin Heidelberg 2011

Workload Balancing and Throughput Optimization 243

of execution resources (generically called machines), such as a grid or a micro-
factory, on which the tasks must be mapped. A series of jobs enters the workflow
and progresses from task to task until the final result is computed. Once a task
is mapped onto a set of dedicated resources (known in the literature as multi-
processor tasks [3[7]), the computation requirements and the failure rates for
each machine when processing one job of the workflow are known. After an
initialization delay, a new job is completed every period, where the period is the
inverse of the throughput. It is defined as the longest cycle-time of a machine.
Note that we target coarse-grain applications and platforms on which the cost
of communications is negligible in comparison to the cost of computations.

In the distributed computing system context, a use case of a streaming applica-
tion is for instance an image processing application where images are processed in
batches, on a SaaS (Software as a service) platform. In this context, failures may
occur because of the nodes, but they also may be impacted by the complexity of
the service [9]. On the production side, a use case is a micro-factory [I3I5/T2] com-
posed of several cells that provides functions as assembly or machining. But, at
this scale, the physical constraints are not totally controlled and it is mandatory
to take failures into account in the automated command. A common property
of these systems is that we cannot use replication, as for instance in [AT4/T0], to
overcome the failures. For streaming applications, it may impact the through-
put to replicate each task. For a production which deals with physical objects,
replication is not possible. Fortunately, losing a few jobs may not be a big deal;
for instance, the loss of some images in a stream will not alter the result, as far
as the throughput is maintained, and losing some micro-products is barely more
costly than the occupation of the processing resources that have been dedicated
to it. The failure model is based on the Window-Constrained [I6] model, often
used in real-time environment. In this model, only a fraction of the messages
will reach their destination. The losses are not considered as a failure but as a
guarantee: for a given network, a Window-Constrained scheduling [I5I17] can
guarantee that no more than x messages will be lost for every y sent messages.

In this paper, we therefore solely concentrate on the problem of period min-
imization (i.e., throughput maximization), where extra jobs are processed to
account for failures. For instance, if there is a single task, mapped on a single
machine, with a failure rate of 1/2, a throughput of z jobs per unit time will be
achieved if the task processes 2 x = jobs per time unit.

The paper is organized as follows. Section [2 presents the framework and for-
malizes the optimization problems tackled in the paper. An exhaustive com-
plexity study is provided in Section [Bt we exhibit some particular polynomial
problem instances, and prove that the remaining problem instances are NP-
hard problems. In Section Fl we design a set of polynomial-time heuristics to
solve the most general problem instance, building upon complexity results, and
in particular linear program formulations to solve sub-problems. Moreover, we
conduct extensive simulations to assess the relative and absolute performance of
the heuristics. Finally, we conclude in Section [l

244 A. Benoit et al.

2 Framework and Optimization Problems

Applicative framework. The application consists of a linear chain of n tasks,
Ty, Ts,...,T,. A type is associated to each task: we have a set of p task types
with n > p, and a function ¢ which returns the type of a task. Hence, t(i) is
the type of task T;. A series of jobs enters the workflow and progresses from
task to task until the final result is computed, and x; is the average number of
jobs processed by task T; to output one job out of the system. Note that z; 1
depends on x; and on the failure rate of the machine processing T; (see below).

Target platform. The target platform is distributed and heterogeneous. It
consists of a set of m machines (a cell in the micro-factory or a host in a grid
platform), My, Ma, ..., M,,. The task processing time depends on the machine
that performs it: it takes w; ,, units of time to machine M, to execute task T; on
one job. Each machine is able to process all the task types. However, to avoid
costly context or setup changes during execution, the machines may be special-
ized to process only one task type. Note that we do not take communication
times into account as we consider that the processing time is much greater than
the communication time (coarse-grain applications).

Failure model. It may happen that a job (or product) is lost (or damaged)
while a task is being executed on this job. For instance, an electrostatic charge
may be accumulated on an actuator and a piece will be pushed away rather than
caught, or a message will be lost due to network contention. Note that we deal
only with transient failures, as defined in [§]: the tasks are failing for some jobs,
but we do not consider a permanent failure of the machine responsible of the
task, as this would lead to a failure for all the remaining jobs to be processed
and the inability to finish them. In order to deal with failures, we process more
jobs than needed, so that at the end, the required throughput is reached. The
failure rate of task T; performed onto machine M, is the percentage of failure
for this task and it is denoted f; .

Objective function. Our goal is to assign tasks to machines so as to optimize
some key performance criteria. A task can be allocated to several machines, and
q(i,u) is the quantity of task T; executed by machine M,; if ¢(i,u) = 0, T} is
not assigned to M,. Recall that z; is the average number of jobs processed by
task 7T; to output one job out of the system. We must have, for each task T;,
> q(i,u) = x;, i.e., enough jobs are processed for task T in the system.
The objective function is to maximize the number of jobs that exit the system
per time unit, making abstraction of the initialization and clean-up phases. This
objective is important when a large number of jobs must be processed. Actually,
we deal with the equivalent optimization problem that minimize the period,
the inverse of the throughput. One challenge is that we cannot compute the
number x; of jobs that must be processed by task T; before allocating tasks
to machines, since x; depends on the failure rates incurred by the allocation.
However, each task T; has a unique successor task 7T;1, and x;41 is the amount
of jobs needed by T;y; as input. Since T; is distributed on several machines

Workload Balancing and Throughput Optimization 245

with different failure rates, we have Y . (q(i,u) x (1 = f;4)) = @1, where
q(i,u) x (1 — f;.) represents the amount of jobs output by the machine M, if
q(i,u) jobs are treated by that machine. For each task, we sum all the instances
treated by all the machines. We are now ready to define the cycle-time ct, of
machine M,,: it is the time needed by M, to execute all tasks T; with ¢(i,u) > 0:
cty = Y iy q(i,u) X w;,. The objective function is to minimize the maximum
cycle-time, which corresponds to the period of the system: min max;<y<m cty.

Rules of the game. Different rules of the game may be enforced to define the
allocation, i.e., the ¢(i,u) values. For one-to-many mappings, we enforce that a
single task must be mapped onto each machine: Vi,7' : 1 < 4,4 < n s.t. 1 # 4,
q(i,u) > 0 = ¢(¢',u) = 0. This kind of mapping is quite restrictive because we
must have at least as many machines as tasks. Note that a task can be allocated
to several machines. We relax this rule to allow for specialized mappings, in
which several tasks of the same type can be mapped onto the same machine:
Viyi' 0 1 < 4,4 < mosd. () # (i), q(i,u) > 0 = ¢q(i',u) = 0. Note that if
each task has a different type, the specialized mapping and the one-to-many
mapping are equivalent. Finally, general mappings have no constraints: any task
(no matter the type) can be mapped on any machine.

Problem definition. For the optimization problem that we consider, the three
important parameters are: (i) the rules of the game (one-to-many (02m) or
specialized (spe) or general (gen) mapping); (ii) the failure model (f if failures are
all identical, f; if the failure for a same task is identical on two different machines,
fu if the failure rate depends only on the machine, and the general case f;,,);
and (iii) the computing time (w if the processing times are all identical, w; if it
differs only from one task to another, w, if it depends only on the machine, and
w;., in the general case). We are now ready to define the optimization problem:

Definition 1. MINPER(R, F,W): Given an application and a target platform,
with a failure model F' = { f|fi|ful fiul*} and computation times W = {w|w;|w,
|wiu|*}, find a mapping (i.e., values of q(i,u) such that for each task T; with
1 <i<mn Y0, q(i,u) = x;) following rule R = {02m|spe|gen|*}, which
minimizes the period of the application, maxi<y<m Y iy q(i,u) X W; 4.

Note that * is used to express the problem with any variant of the corresponding
parameter; for instance, MINPER(x, f; »,, w) is the problem of minimizing the
period with any mapping rule, where failure rates are general, while execution
times are all identical.

3 Complexity Results

We assess the complexity of the different instances of the MINPER(R, F, W)
problem. First we provide the complexity of the problems with F' = f;, and then
we discuss the most general problems with /' = f; ,. Even though the general
problem is NP-hard, we show that once the allocation of tasks to machines
is known, we can optimally decide how to share tasks between machines, in
polynomial time. Also, we give an integer linear program to solve the problem.

246 A. Benoit et al.

3.1 Complexity of the MinPer(*, f;, *) Problems

We first show how the MINPER(x, f;, *) problems can be simplified. Indeed, in
this case, the number of products that should be computed for task T; at each
period, z;, is independent of the allocation of tasks to machines. We can therefore
ignore the failure probabilities, and focus on the computation of the period of the
application. The following Lemma [I] allows us to further simplify the problem:
tasks of similar type can be grouped and processed as a single equivalent task.

Lemma 1. For MINPER(x, f;, w;) or MINPER(x, f;,w,,), there exists an opti-
mal solution in which all tasks of the same type are executed onto the same set
of machines, in equal proportions: Vi, j : 1 <i,j < n with t(i) = t(j),

Joyj € Qst. Vu:l<u<m, q(i,u) = ; x q(j,u) . (1)

The proof consists in building an optimal solution which follows Equation (),
from an existing one. We redistribute the work and define the a; ; values for
each problem instance. The detailed proof is available in the companion research
report [2].

Corollary 1. For MINPER(x, f;,w;) or MINPER(x, f;,w,), we can group all
tasks of same typet as a single equivalent task Tt(eq), s.t. xﬁ“” = El<i<n|t(i):t Ti.
Then, we can solve this problem with the one-to-many rule, and deduce the so-
lution of the initial problem.

Proof. Following Lemma [, we search for the optimal solution which follows
Equation (). Since all tasks of the same type are executed onto the same set of
machines in equal proportions, we can group them as a single equivalent task.
The amount of work to be done by the set of machines corresponds to the total
amount of work of the initial tasks, i.e., for a type t, Zl§i§n|t(i):t ;.

The one-to-many rule decides on which set of machines each equivalent task
is mapped, and then we share the initial tasks in equal proportions to obtain the
solution to the initial problem: if task 7; is not mapped on machine M,,, then

q(i,u) = 0, otherwise ¢(i,u) = xfjg) wiu’ where w;|, = {w; | wy}.
i

()
We are now ready to establish the complexity of the MINPER(x, f;, *) problems.
Recall that n is the number of tasks, m is the number of machines, and p is
the number of types. We start by providing polynomial algorithms for one-to-
many and specialized mappings with w; (Theorem [[land Corollary 2)). Then, we
discuss the case of general mappings, which can also be solved in polynomial time
(Theorem [)). Finally, we tackle the instances which are NP-hard (Theorem [3)).

Theorem 1. MINPER(02m, f;,w;) can be solved in time O(m x logn).

Proof. First, note that solving this one-to-many problem amounts to decide on
how many machines each task is executed (since machines are identical), and
then split the work evenly between these machines to minimize the period. Hence,
if T; is executed on k machines, q(i,u) = %', where M,, is one of these £ machines,

and the corresponding period is %' x w;.

Workload Balancing and Throughput Optimization 247

We provide a greedy algorithm to solve the problem. The idea is to assign
initially one machine per task (note that there is a solution only if m > n), sort
the tasks by non-increasing period, and then iteratively add a machine to the
task whose machine(s) have the greater period, while there are some machines
available. Let g; be the current number of machines assigned to task T;: the
corresponding period is ; X w;. At each step, we insert the task whose period has
been modified in the ordered list of tasks, which can be done in O(logn) (binary
search). The initialization takes a time O(nlogn) (sorting the tasks), and then
there are m — n steps of time O(logn). Since we assume m > n, the complexity
of this algorithm is in O(m X logn). To prove that this algorithm returns the
optimal solution, let us assume that there is an optimal solution of period P,
that has assigned o; machines to task T;, while the greedy algorithm has assigned
g; machines to this same task, and its period is Pyreeqy > Popt- Let T; be the
task which enforces the period in the greedy solution (i.e., Pyreedy = Tiwi/gi)-
The optimal solution must have given at least one more machine to this task,
i.e., 0; > g;, since its period is lower. This means that there is a task 7); such that
0j < gj, since Yy, 08 <D <o, 9i = m (all machines are assigned with the
greedy algorithm). Then, note that since o; < g;, because of the greedy choice,
zjwj/oj > xyw;/g; (otherwise, the greedy algorithm would have given one more
machine to task T;). Finally, Py, > z;w;/0; > ®iw;/g; = Pyreedy, which leads
to a contradiction, and concludes the proof.

Corollary 2. MINPER(spe, f;, w;) can be solved in time O(n +m x logp).

Proof. For the specialized mapping rule, we use Corollary[lto solve the problem:
first we group the n tasks by types, therefore obtaining p equivalent tasks, in
time O(n). Then, we use Theorem [I] to solve the problem with p tasks, in time
O(m x logp). Finally, the computation of the mapping with equal proportions
is done in O(n), which concludes the proof.

Theorem 2. MINPER(gen, f;, *) can be solved in polynomial time.

Proof. We exhibit a linear program to solve the problem for the general case
with w;,. Note however that the problem is trivial for w; or wy,: we can use
Corollary [Tl to group all tasks as a single equivalent task, and then share the
work between machines as explained in the corollary.

In the general case, we solve the following (rational) linear program, where
the variables are P (the period), and ¢(i,u), for 1 <i<nand 1 <u <m.

Minimize P, subject to
(i) g(i,u) >0for 1 <i<m,1<u<m
(i) D01 cpeom (i, u) = x4 for each task T; with 1 <i < n (2)
(iif) 3 <<, (4, u) X w;u < P for each machine M, with 1 <u <m

The size of this linear program is polynomial in the size of the instance, all n x
m+ 1 variables are rational. Therefore, it can be solved in polynomial time [1T].

Finally, we prove that the remaining problem instances are NP-hard (one-to-
many or specialized mappings, with w,, or w;,). Since MINPER(02m, f;, w,,) is

248 A. Benoit et al.

a special case of all other instances, it is sufficient to prove the NP-completeness
of the latter problem.

Theorem 3. The MINPER(02m, f;, w,,) problem is NP-hard in the strong sense.

Proof. We consider the following decision problem: given a period P, is there a
one-to-many mapping whose period does not exceed P? The problem is obviously
in NP: given a period and a mapping, it is easy to check in polynomial time
whether it is valid or not. The NP-completeness is obtained by reduction from
3-PARTITION [6], which is NP-complete in the strong sense.

We consider an instance Z; of 3-PARTITION: given an integer B and 3n
positive integers a1, as, . . ., asy, such that foralli € {1,...,3n}, B/4 < a; < B/2
and with Y | a; = nB, does there exist a partition I1, ..., I,, of {1,...,3n} such
that for all j € {1,...,n}, [I;| =3 and }_,.; a; = B? We build the following
instance Zo of our problem with n tasks, such that z; = B, and m = 3n machines
with w, = 1/a,. The period is fixed to P = 1. Clearly, the size of 7, is polynomial
in the size of Z;. We now show that Z; has a solution if and only if Z5 does.

Suppose first that Z; has a solution. For 1 < ¢ < n, we assign task T; to the
machines of I;: ¢(i,u) = a, for u € I;, and ¢(i,u) = 0 otherwise. Then, we have
Y i<u<m (i, u) = D cp. ay = B, and therefore all the work for task 7; is done.
The period of machine M, is), ., ., q(i,u) X wy, = ay/a, = 1, and therefore
the period of 1 is respected. We have a solution to Zs.

Suppose now that 75 has a solution. Task 7T; is assigned to a set of machines,
say I;, such that > ; q(i,u) = B, and q(i,u) < a, for all u € I;. Since all the
work must be done, by summing over all tasks, we obtain ¢(i,u) = a,, and the
solution is a 3-partition, which concludes the proof.

3.2 Complexity of the MinPer(*, f; ., *) Problems

When we consider problems with f; , instead of f;, we do not know in advance
the number of jobs to be computed by each task in order to have one job exiting
the system, since it depends upon the machine on which the task is processed.
However, we are still able to solve the problem with general mappings, as ex-
plained in Theorem [l For one-to-many and specialized mappings, the problem
is NP-hard with w,,, since it was already NP-hard with f; in this case (see The-
orem [3). We prove that the problem becomes NP-hard with w; in Theorem [
which illustrates the additional complexity of dealing with f; ,, rather than f;.

Theorem 4. MINPER(gen, fi.,*) can be solved in polynomial time.

Proof. We modify the linear program (2)) of Theorem [2] to solve the case with
general failure rates f; . Indeed, constraint (ii) is no longer valid, since the x;
are not defined before the mapping has been decided. It is rather replaced by
constraints (iia) and (iib):

(iia) Z1§u§m q(n,u) X (1= fau) =1;
(11b) 321 cparm (6 w) X (1= fiu) = 321 cpyap ¢ + 1, u) for each Ti(1 < i< n).

Workload Balancing and Throughput Optimization 249

Constraint (iia) states that the final task must output one job, while constraint
(iib) expresses the number of jobs that should be processed for task T;, as a
function of the number for task 7;41. There are still n x m + 1 variables which
are rational, and the number of constraints remains polynomial, therefore this
linear program can be solved in polynomial time [IT].

Theorem 5. The MINPER(02m, f; ., w;) problem is NP-hard.

The proof of this theorem is quite involved, and we refer to the companion
research report [2] for the details.

However, if the allocation of tasks to machines is known, then we can optimally
decide how to share tasks between machines, in polynomial time. We build upon
the linear program of Theorem [and we add a set of parameters: a; ,, = 1 if T;
is allocated to M,, and a;, = 0 otherwise (for 1 < ¢ <n and 1 <u < m). The
variables are still the period P, and the amount of task per machine ¢(é,). The
linear program writes:

Minimize P, subject to

1<u<m A u) X (1= fru) =1 .

>
Zlgugm qli,u) X (1= fiu) = Zlgugm gli+Lu)forl<i<n
>

1cicn @) X wiy < Pforl <u<m
iv) q(i,u) < @ju X Fnax for 1 <i<mand 1 <u<m

We have added constraint (iv), which states that ¢(i,u) = 0 if a;, = 0, i.e., it
enforces that the fixed allocation is respected. Fiuax = H1<i<n maxi<u<m fiu
is an upper bound on the ¢(i,u) values, it can be pre-computed before running
the linear program. The size of this linear program is clearly polynomial in the
size of the instance, all n X m + 1 variables are rational, and therefore it can be
solved in polynomial time [I1].

The linear program of Equation (3)) allows us to find the solution in polynomial
time, once the allocation is fixed. We also propose an integer linear program
(ILP), which computes the solution to the MINPER(spe, fi ., w;) problem, even
if the allocation is not known. However, because of the integer variables, the
resolution of this program takes an exponential time. Note that this ILP can
also solve the MINPER(02m, f; ,w; .,): one just needs to assign a different type
to each task. We no longer have the a;, parameters, and therefore we suppress
constraint (iv). Rather, we introduce a set of Boolean variables, x(u,t), for 1 <
u <m and 1 <t < p, which is set to 1 if machine M, is specialized in type ¢,
and 0 otherwise. We then add the following constraints:

(iva) > <4<, @(u,t) <1 for each machine M, with 1 <u <m ;
(ivb) q(¢,u) < z(u,ti) X Fuax for 1 <i<mand 1 <u<m.

Constraint (iva) states that each machine is specialized into at most one type,
while constraint (ivb) enforces that ¢(i,u) = 0 when machine M, is not special-
ized in the type t; of task T;. This ILP has n x m + 1 rational variables, and
m X p integer variables. The number of constraints is polynomial in the size of
the instance. Note that this ILP can be solved for small problem instances with
ILOG CPLEX (www.ilog.com/products/cplex/).

www.ilog.com/products/cplex/

250 A. Benoit et al.

4 Heuristics and Simulations

From the complexity study, we are able to find an optimal general mapping.
In this section, we provide practical solutions to solve MINPER(spe, fi v, Wi),
which is NP-hard. Indeed, general mappings are not feasible in some cases, since
it involves reconfiguring the machines between the execution of two tasks whose
type is different. This additional setup time may be unaffordable. We design
in Section [L1] a set of polynomial time heuristics which return a specialized
mapping, building upon the complexity results of Section Bl Finally, we present
exhaustive simulation results in Section

4.1 Polynomial Time Heuristics

Since we are able to find the optimal solution once the tasks are mapped onto
machines, the heuristics are building such an assignment, and then we run the
linear program of Equation (B]) to obtain the optimal solution in terms of ¢(%, u).
The first heuristic is random, and serves as a basis for comparison. Then, the
next three heuristics (H2, H3 and H4) are based on an iterative allocation process
in two stages. In the first top-down stage, the machines are assigned from task
T to task T;, depending on their speed wj ,,: the machine with the best w; ,, is
assigned to 77 and so on. The motivation is that the workload of the first task is
larger than the last task because of the job failures that arise along the pipeline.
In the second bottom-up stage, the remaining machines are assigned from task
T, to task T depending on their reliability f;,: the machine with the best fi, ,
is assigned to T, and so on. The motivation is that it is more costly to lose a job
at the end of the pipeline than at the beginning, since more execution time has
been devoted to it. We iterate until all the machines have at least one task to
perform. Finally, H5 performs only a top-down stage, repetitively. The heuristics
are described below.

H1: Random heuristic. The first heuristic randomly assigns each task to a
machine when the allocation respects the task type of the chosen machine.

H2: Without any penalization. The top-down stage assigns each task to the
fastest possible machine. At the end of this stage, each task of the same type is
assigned onto the same machine, the fastest. Then, the already assigned machines
are discarded from the list. In the same way, the bottom-up stage assigns each
task of the same type to the same machine starting from the more reliable one.
We iterate on these two steps until all machines are specialized.

H3: Workload penalization. The difference with H2 is in the execution of
the top-down stage. Each time a machine is assigned to a task, this machine is
penalized to take the execution of this task into account and its w; ,, is changed to
w; X (k+1) where k is the number of tasks already mapped on the machine M,,.
This implies that several machines can be assigned to the same task type in this
phase of the algorithm: if a machine is already loaded by several tasks then we

Workload Balancing and Throughput Optimization 251

60000 12000

T T
HS —— "
Hi - O - /
H3 =%~ H
50000 2 - © - ¥ B 10000 B
HI — = - 4 LP
LP - /
40000 |- o E 8000 4
g / g
g / £
S 30000 a o 43 6000 B
2 e 2
2 / ES
20000 [Ay E 4000 B
[8
.
I~
10000 L E 2000 i
rs
-ua

o e W HR. . o 7
20 25 30 35 40 45 50 55 60 65 20 25 30 35 40 45 50 55 60 65
number of tasks number of tasks

Fig.1. m =20, p=5. Fig.2. m =20, p=5.
Heuristics against the linear program. Without H1.

may find a faster machine and assign it to this task type. The bottom-up stage
has the same behavior as for H2.

H4: Cooperation work. In this heuristic, a new machine is assigned to each
task, depending on its speed, during the top-down stage; then the bottom-up
stage has the same behavior as the heuristic H2.

H5: Focus on speed. The heuristic H5 focuses only on the speed by repeating
the top-down stage of heuristic H3, until all the machines are allocated to at
least one task.

4.2 Simulations

In this section, we evaluate the performance of the five heuristics. The period
returned by each heuristic is measured in ms. Recall that m is the number of
machines, p the number of types, and n the number of tasks. Each point in a
figure is an average value of 30 simulations where the w;, are randomly chosen
between 100 and 1000 ms (these values are chosen to show the high level of
heterogeneity of the machines, and they are randomly chosen since machines
and tasks are unrelated), for 1 <i <n and 1 < wu < m, unless stated otherwise.
Similarly, failure rates f;, are randomly chosen between 0.2 and 10 % unless
stated otherwise. Indeed, we observed that failure rates over 10 % do not change
the behavior of the heuristics.

Heuristics versus linear program. In this set of simulations, the heuristics
are compared to the integer linear program which gives the optimal solution.
The platform is such that m = 20, p = 5 and 21 < n < 61. Figure [shows
that the random heuristic H1 has poor performance. Therefore, for visibility
reasons, H1 does not appear in the rest of the figures. Results in Figure 2] show
that the heuristics are not far from the optimal. The best heuristics H2 and H4
have a ratio of 1.5 and 2 to the optimal solution. The platform used for these
simulations is limited on cases where the integer linear program finds a result.
With the same platform but p = 10, the percentage of success of the linear
program is less than 50% with 61 tasks.

252 A. Benoit et al.

1800 T 500000
HS —— 5 H
1600 (113 250 v 450000 (H4

1400 400000

350000
1200

300000
1000
250000

period in ms
period in ms

800
200000
600 150000

400 100000

2006 -9 50000

I 0 = =~
10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150
number of tasks number of tasks

Fig.3. m =50, p = 25. Fig.4. m =50, p = 25.
Heuristics with more machines than tasks. Heuristics with more tasks than machines.

80000 T I 70000 T
HS —— J HS ——
70000 11:112 ”i"i 7 Jl:llg ”;V’V’
HI % 60000 H3 <% B

60000 -
50000
50000 -
40000
40000

period in ms
period in ms

30000 -
30000

20000
20000 -

10000 — - 10000

Oll ;0 120 0 0 ;l = ll — 6‘[\ S‘ll I‘()() 120
number of tasks number of tasks
Fig.5. m =40, p = 5. Fig.6. m = 40, p = 35.
Small number of types. High number of types.

General behavior of the heuristics. In a second set of simulations, we focus
on the behavior of the heuristics alone. First we compare settings with more
tasks than machines, or the contrary. In Figure Bl we have m = 50, p = 25, and
10 < n < 50. Results show that H2 is slightly worse than the other heuristics.
This lack of performance of H2 becomes even clearer when p is closer to m (see [2]
for further results). This is explained by the fact that H2 does not apply any
penalization to the machines, thus using a good machine for many tasks of the
same type. But when there is less tasks than machines, it is better to dedicate
more machines to a given type. However, when the number of tasks is higher
than the number of machines, H2 and H4 become clearly the best (see Figure).
Indeed, at the end of the first stage of allocation, H3 and H5 will almost have
used all the machines thus the second stage will not be decisive.

Also, we studied the impact of the number of types, for m = 40 and 10 <
n < 110. In Figure Bl we have p = 5, versus p = 35 in Figure 6l For p = 5, the
possibilities to split groups are important. In this case, H2 and H4 are the best
heuristics because the workload is shared on a higher number of machines and
not only on those efficient for a given task. In the contrary, when the number
of types is close to the number of machines (p = 35), the number of split tasks
decreases. Indeed, each machine must be specialized to one type. In Figure[d], only
5 machines can be used to share the workload once each machine is dedicated
to a type, and therefore the performance of the heuristics is pretty much alike.

Workload Balancing and Throughput Optimization 253

Summary. Even though it is clear that H1 performs really poorly, the other
heuristics can all be the most appropriate, depending upon the situation. If the
number of tasks is greater than the number of machines, H2 is the best heuristic;
otherwise, H4 becomes better than H2. Further simulations are done in [2], in
particular to illustrate the impact of the failure rate on the results. Note that the
comparison between the heuristics is made easier if the gap between the number
of types and the number of machines is big. Indeed, with a small number of
types, the tasks can be split many times because more machines are potentially
dedicated to a same type. The choices made by a heuristic either to split a task
or not have more impact on the result.

5 Conclusion

In this paper, we investigate the problem of maximizing the throughput of coarse-
grain pipeline applications where tasks have a type and are subject to failures,
with different mapping strategies (one-to-many, specialized or general). A task
can be distributed on the platform so as to balance workload between the ma-
chines. From a theoretical point of view, an exhaustive complexity study is pro-
posed. We prove that an optimal solution can be computed in polynomial time in
the case of general mappings whatever the application/platform parameters, and
in the case of one-to-many and specialized mappings when the failure rates only
depend on the tasks, while the optimization problem becomes NP-hard in any
other cases. Since general mappings do not provide a realistic solution because
of unaffordable setup times when reconfiguration occurs, we propose to solve
the specialized mapping problem by designing several polynomial heuristics. An
exhaustive set of simulations demonstrate the efficiency of the heuristics: some
of them return a throughput close to the optimal, while random mappings never
give good solutions.

As future work, we plan to investigate other objective functions, such as the
mean time to output one job out of the system, or other models: the failure rate
associated to the task and/or the machine could be correlated with the time
required to perform that task.

Acknowledgment. A. Benoit is with the Institut Universitaire de France. This
work was supported in part by the ANR StochaGrid and RESCUFE projects.

References

1. Bahi, J., Contassot-Vivier, S., Couturier, R.: Coupling dynamic load balancing with
asynchronism in iterative algorithms on the computational grid. In: International
Parallel and Distributed Processing Symposium, IPDPS 2003 (April 2003)

2. Benoit, A., Dobrila, A., Nicod, J.M., Philippe, L.: Workload balancing and through-
put optimization for heterogeneous systems subject to failures. Research report,
INRIA, France (February 2011), http://graal.ens-1lyon.fr/~abenoit/

3. Blazewicz, J., Drabowski, M., Weglarz, J.: Scheduling multiprocessor tasks to min-
imize schedule length. IEEE Trans. Comput. 35, 389-393 (1986)

http://graal.ens-lyon.fr/~abenoit/

254

4.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Benoit et al.

Cirne, W., Brasileiro, F., Paranhos, D., Gdes, L.F.W., Voorsluys, W.: On the ef-
ficacy, efficiency and emergent behavior of task replication in large distributed
systems. Parallel Computing 33(3), 213-234 (2007)

. Descourvieres, E., Debricon, S., Gendreau, D., Lutz, P., Philippe, L., Bouquet, F.:

Towards automatic control for microfactories. In: TATA 2007, 5th Int. Conf. on
Industrial Automation (2007)

. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, New York (1979)

. Groflin, H., Klinkert, A., Dinh, N.P.: Feasible job insertions in the multi-processor-

task job shop. European J. of Operational Research 185(3), 1308-1318 (2008)

. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs

(1994)

. Litke, A., Skoutas, D., Tserpes, K., Varvarigou, T.: Efficient task replication and

management for adaptive fault tolerance in mobile grid environments. Future Gen-
eration Computer Systems 23(2), 163-178 (2007)

Parhami, B.: Voting algorithms. IEEE Trans. on Reliability 43(4), 617-629 (1994)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

Tanaka, M.: Development of desktop machining microfactory. Journal RIKEN
Rev 34, 46-49 (2001) iSSN:0919-3405

Verettas, 1., Clavel, R., Codourey, A.: Pocketfactory: a modular and miniature
assembly chain including a clean environment. In: 5th Int. Workshop on Microfac-
tories (2006)

Weissman, J.B., Womack, D.: Fault tolerant scheduling in distributed networks
(1996)

West, R., Zhang, Y., Schwan, K., Poellabauer, C.: Dynamic window-constrained
scheduling of real-time streams in media servers (2004)

West, R., Poellabauer, C.: Analysis of a window-constrained scheduler for real-
time and best-effort packet streams. In: Proc. of the 21st IEEE Real-Time Systems
Symp., pp. 239-248. IEEE, Los Alamitos (2000)

West, R., Schwan, K.: Dynamic Window-Constrained Scheduling for Multimedia
Applications. In: ICMCS, vol. 2, pp. 87-91 (1999)

Wieczorek, M., Hoheisel, A., Prodan, R.: Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Gener. Comput. Syst. 25(3), 237—
256 (2009)

Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid comput-
ing. Research Report GRIDS-TR-2005-1, Grid Computing and Distributed Sys-
tems Laboratory, University of Melbourne, Australia (April 2005)

	Workload Balancing and Throughput Optimization for Heterogeneous Systems Subject to Failures
	Introduction
	Framework and Optimization Problems
	Complexity Results
	Complexity of the MinPer (*,fi,*) Problems
	Complexity of the MinPer (*,fi,u,*) Problems

	Heuristics and Simulations
	Polynomial Time Heuristics
	Simulations

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

