A Novel Shared-Memory Thread-Pool
Implementation for Hybrid Parallel CFD Solvers

Jens Jagerskiipper! and Christian Simmendinger?

! German Aerospace Center (DLR)
Institute of Aerodynamics and Flow Technology
Center of Computer Applications in Aerospace Science and Engineering (C2A%S?E)
38108 Braunschweig, Germany
Jens . Jaegerskuepper @DLR.de
2 T-Systems Solution for Research (SfR)
Pfaffenwaldring 38—40,
70569 Stuttgart, Germany

Abstract. The Computational Fluid Dynamics (CFD) solver TAU for
unstructured grids is widely used in the European aerospace industry.
TAU runs on High-Performance Computing (HPC) clusters with several
thousands of cores using MPI-based domain decomposition. In order to
make more efficient use of current multi-core CPUs and to prepare TAU
for the many-core era, a shared-memory parallelization has been added
to one of TAU’s solver to obtain a hybrid parallelization: MPI-based
domain decomposition plus multi-threaded processing of a domain.

For the edge-based solver considered, a simple loop-based approach via
OpenMP FOR directives would — due to the Amdahl trap — not deliver
the required speed-up. A more sophisticated, thread-pool-based shared-
memory parallelization has been developed which allows for a relaxed
thread synchronization with automatic and dynamic load balancing.

In this paper we describe the concept behind this shared-memory par-
allelization, we explain how the multi-threaded computation of a domain
works. Some details of its implementation in TAU as well as some first
performance results are presented. We emphasize that the concept is not
TAU-specific. Actually, this design pattern appears to be very generic
and may well be applied to other grid/mesh/graph-based codes.

1 Intro

The TAU code, which is developed at the Institute of Aerodynamics and Flow
Technology of the German Aerospace Center (DLR), is widely used in the Euro-
pean acrospace industry for Computational Fluid Dynamics (CFD), c. {. e. g. [0].
The solver is designed for unstructured grids, yet it may also be used with
(block) structured grids. MPI-based domain decomposition allows TAU to be
run on HPC clusters withseveral thousands of cores. To make more efficient use
of current multi-core CPUs and to prepare TAU for the many-core era a shared-
memory parallelization has been implemented for one of the TAU solvers. That

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 182 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Novel Shared-Memory Thread-Pool Implementation 183

solver implements an explicit Runge/Kutta scheme with geometric multigrid
acceleration for unstructured grids.

Several approaches for a shared-memory parallelization for TAU have been
evaluated, and finally, a novel solution following the thread-pool model has
been developed. This thread-pool model allows the concurrent processing of
tasks subject to dependencies among the tasks. In addition to temporal data
dependencies and the concept of mutual completion of processed data, this so-
lution incorporates also mutual exclusion among tasks to prevent data races.
The concept allows for a significantly relaxed thread synchronization compared
to bulk-synchronous models. It features an automatic load balancing and allows
to implement a straightforward overlap of communication and computation in
TAU. The implementation shows a very good performance for the TAU solver.
However, the used methodology is not specific to the TAU solver and should be
applicable to a wide range of programs that work on unstructured or structured
grids/meshes/graphs.

1.1 Motivation

Due to the electric capacity of a CPU chip, the higher the clock frequency, the
higher the voltage needs to be — and the higher the thermal power to be dealt
with. Since an effective solution of this problem is not available, clock rates no
longer increase. Moore’s law, however, is still valid: the number of transistors per
chip doubles roughly every one and a half years. The CPU manufacturer’s policy
to further increase the theoretical peak performance of their chips: multi-core
chips. Though we see an exponential growth in explicit parallelism, this change
in the hardware is not at all reflected in HPC software: With a moderate number
of cores per socket there has been simply no need to adapt the parallelization.
Due to the large number of cores per socket in modern CPU designs, however,
the picture is changing: One MPI process per core has become a problem. For
CFD, the more MPI processes are used, the smaller the average computational
load per MPI process and the more MPI communication is needed to synchronize
the flow variables across the processes. The time for this synchronization is to be
considered serial. Hence, simply by Amdahl’s law, there is a maximum number
of MPI processes (and hence cores) that can be reasonably used.

Shared-memory parallel (multi-threaded) computation of the domains sug-
gests itself as a possible way to increase the scalability. When all cores of a CPU
are used to process one domain, the number of domains drops from the number
of cores to the corresponding number of sockets. Even though the idea of such
a hybrid (2-level) parallelization is straightforward, this approach requires the
shared-memory parallel computation of the domains to be sufficiently efficient.
It turns out that this is quite a challenge for CFD on unstructured grids.

1.2 Outline

In the following sections we describe how the proposed shared-memory parallel
computation of the (MPI-) domains works and give some implementation details

184 J. Jéagerskiipper and C. Simmendinger

and first performance results. We start with a brief introduction to the TAU code
in Sec. 2l In particular, the original MPI parallelization of TAU via domain de-
composition is explained. In Sec.[Blwe describe the concept of the shared-memory
implementation. As the tasks to be processed by the threads show not only tem-
poral dependencies, but also data dependencies, a simple loop-based paralleliza-
tion via OpenMP is precluded. The tasks hence are processed asynchronously
using mutual exclusion to prevent data races (asynchronous subject to the de-
pendencies between the tasks). To efficiently handle temporal dependencies we
employ the concept of mutual completion.

The relaxed synchronization of the threads improves the scaling considerably:
The accumulation of load imbalances, which occur at every synchronization point
in the multi-threaded program flow, is drastically reduced since global synchro-
nization is replaced by dynamic local synchronization.

We think that our approach would be applicable to many other numerical
codes which use a multi-threaded task parallel approach. Details of how this
concept has been actually implemented in the TAU code are given in Sec. @ and
first performance results are presented in Sec. Bl Finally, we conclude in Sec.
and give an outlook how to further improve the performance of the shared-
memory parallelization presented.

2 The DLR TAU Code

The TAU code is a 3D-flow solver that simulates compressible external flows
(steady or time-accurate) on unstructured grids using finite-volume discretiza-
tion via the Reynolds-averaged Navier-Stokes equations (RANS). TAU features
several turbulence models (Spalart/Allmaras, SST, RSM, etc.) as well as hy-
brid RANS/LES capabilities. It supports central spatial discretization (namely
JST) as well as several upwind schemes. Moreover, the user may choose be-
tween cell-vertex and cell-centered metric. The most frequently used TAU solvers
are Runge/Kutta and LU-SGS. Here we focus on the explicit Runge/Kutta
solver with geometric multigrid, cell-vertex metric, central discretization, and
a Spalart/Allmaras turbulence model, which requires one equation for the eddy
viscosity in addition to the five equations for mass, impulse and energy. As a
consequence, the number of degrees of freedom (DoF) is given by 6 times the
number of grid points. Each edge in the grid corresponds one-to-one to a face in
the so-called dual grid. This dual grid comprises control volumes around the grid
points. The calculation of the fluxes between these control volumes, which are
also called dual cells, is the main computational task in the scenario considered
here. To integrate the fluxes for all dual cells, we could loop over all points and
for each point we would loop over the faces of its surrounding dual cell. Recall
however that each face in the dual corresponds one-to-one to an edge in the
original grid. Thus, in this hypothetical implementation we would touch each
edge twice: Once for each of the two end points of the edge.

For a more efficient access to main memory, the current implementation of
TAU loops over the edges instead (c. f. [2]): For each edge, i.e., for each face in

A Novel Shared-Memory Thread-Pool Implementation 185

the dual grid, the respective value for the two points are updated. Using this
“edge-based” scheme, the number of point-data loads is halved compared to a
loop over the dual cells. Though TAU is edge-based, naturally, there are also
point loops. The main computational load, however, is caused by edge loops.

MPI Parallelization via Domain Decomposition

TAU’s parallelization is based on a domain decomposition: the grid is cut into
several pieces (domains) by means of a partition of the point set, which may
be obtained using a graph partitioning software like Chaco ([4]), Zoltan (|3]),
(Par)Metis ([5]), etc. Each edge connecting two points in different domains has
to be doubled, so that an edge as well as the two incident points exist in both
domains (overlap). This adds a number of points to each domain, which are called
“ghost points”. Furthermore, the total number of edges in all domains equals the
number of edges in the original grid plus the number of edges cut during domain
decomposition. The flow values at a ghost point must be kept in sync with the
corresponding data at the original point. This is done using message passing,
namely MPI. MPI-based domain decomposition can be considered the standard
parallelization concept for grid-based numerical codes that are run on modern
HPC architectures, c. f. [§].

Obviously, the more edges are cut for domain decomposition, the more data
has to be passed around via MPI to keep the domains, namely the evolving flow
solution at the discretization points, synchronized. The time for this (usually
bulk-synchronous) synchronization via MPI plus the inherent load imbalance
due to an imperfect partitioning can be considered a serial part of the algorithm
(—Amdahl’s law). Nevertheless, TAU’s MPI parallelization scales well, c. f. [I].

As a consequence, for any fixed size CFD problem, there is a maximum number
of domains that can be effectively used to compute this problem. A further
increase of the number of domains eventually results in the parallel efficiency to
drop until increasing the number of domains no longer speeds up the calculation
at all (limit of scalability). If the number of domains is increased even further, the
wall-clock time to solve this problem actually starts to increase. The scalability
limit does not only depend on the CFD problem, but also on the cluster used —
and on the application, of course.

MPI-synchronized domains 4+ multi-threaded processing of domains

To increase the number of usable compute cores without increasing the number
of domains, each domain must be computed on multiple cores. For the shared-
memory parallel computation of a single domain with multiple threads, however,
data parallelism becomes an issue: If, in an edge loop, two edges incident to a
common point are processed concurrently (to update their two points, respec-
tively), the update of the shared point may result in a data race: One of the two
updates for this point can get lost. We hence not only need an efficient multi-
threaded processing of edges, but also the prevention of data races. We need

186 J. Jéagerskiipper and C. Simmendinger

mutual exclusion among the updates of the same point. In principle this can be
achieved in several different ways as we will detail now.

3 The Shared-Memory Parallelization — Generic Concept

We cousider a given grid /mesh /graph consisting of a number of points and edges.
Each edge connects two points. The number of edges incident to a point may
vary, i. e., the connectivity may be regular (like for structured grids), yet it
may also be irregular (unstructured girds). Note that whether this is an original
graph or one obtained by domain decomposition makes no difference. Usually,
the graph is very sparse as there may be several millions of points, yet each point
has a very limited number of neighbors, say in the range of tens. Let us consider
an algorithm that contains a large number of loops over both, edges as well as
points: When passing over the edges, data associated with each edge’s two points
may be read and also updated. As a consequence, data races are possible when
two edges incident to a common point are processed concurrently. Such data
races must be prevented to ensure a correct behavior of the program. There are
several obvious approaches to do so.

A critical section per point to ensure mutual exclusion of access to data as-
sociated with a point. This requires one mutex/lock variable per point, which
has to be aquired whenever the point’s data is read or written. Pthreads,
OpenMP, or system libraries provide adequate functionality. Intrinsic func-
tions for locked memory accesses provided by compilers may be used for a
custom implementation.

Atomic updates of point data so that each read-update-write sequence
touching a value associated with a point is atomic. For x86 architectures,
“lock cmpxchg8b” may be used for an atomic update of a double-precision
floating-point value (as it is done by most compilers for “omp atomic” direc-
tives).

Obviously, both approaches result in a huge number of locked memory accesses.
Nevertheless, these two simple approaches were prototypically implemented in
TAU. As expected, the very frequent use of locked memory access turns out
a severe performance problem. If all edges incident to a point are exclusively
processed by the same thread, no data races are possible for this point. Conse-
quently, one may consider the following approach

Partition of the edge set into as many subsets as threads are concurrently
running. Each edge is mapped to a particular thread. For points exclusively
touched by edges processed by a single thread, no data races are possible.
So mutual exclusion of point data accesses must be provided only for points
that are incident to edges processed by two or more different threads.

We call a point “critical” if it is incident to edges processed by different threads
so that mutex is necessary. The partition of the edges should be such that the
total number of critical points is minimized. In addition, the number of edges

A Novel Shared-Memory Thread-Pool Implementation 187

processed by each threads should be as balanced as possible to obtain a good
load balance. Moreover, the number of critical points touched by each thread
should be as balanced as possible. As one might notice, these are quite a number
of constraints on the partition of the edge set. In addition to the imbalances
due to the edge partition not being perfect, also varying waiting times for locked
memory access result in a load imbalance among the n threads when they process
the n edge sets in parallel. Despite these load-balancing issues, whenever a point
is to be updated within a parallelized edge loop we must know whether this point
is critical or not. A prototype implementation in TAU showed that, even though
this additional information may be stored without additional memory space (for
instance by using signed integers for the point indices and taking the sign bit as
an indicator) so that the memory access pattern is not changed, the branching
between critical and non-critical points leads to a considerable overhead.

Each edge set spans/induces a subgraph. Note that critical points belong to
two or more subgraphs. Assume for a moment that two of the n edge sets are
such that the corresponding subgraphs are disjoint. Then these two edge sets
can be concurrently processed by two threads without the need to prevent data
races. In general, no data races can occur as long as only disjoint subgraphs
are concurrently processed. Then each point — in particular the formerly critical
ones — is accessed by at most one thread at a time. We thus finally refine the
above model towards the following approach:

Asynchronous dependencies-driven parallel processing of a large num-
ber of small subgraphs. This model enables a dynamic load-balancing among
threads. Moreover, by ensuring mutual exclusion among subgraphs sharing
(a) common point(s), no data races can occur. So there is no need to tell
between critical points and non-critical ones, which drastically reduces the
number of locked memory accesses as well as the overhead of branching.

Assume, just as an example, that there are 10n subgraphs so that on aver-
age each of the n threads processes 10 dynamically allocated subgraphs per
point/edge loop. Consider the processing of a subgraph s in a loop a task. Then
we have task dependencies like “subgraph s must have been processed in the
1th loop before s is processed in loop i+1”. With this, we actually implemented
a thread-pool pattern: In each loop the threads process tasks, i. e. subgraphs,
that need to be processed at that stage of the program, i. e. for which the
temporal data dependencies are met[] Furthermore, our task-dispatching logic
incorporates the mutual exclusion of tasks for neighboring subgraphs to prevent
data races In other words, the neighborhood structure of the subgraphs in-
duce “mutex dependencies” among the tasks. No explicit thread synchronization
is necessary since the threads synchronize automatically via the dispatching of

! This is somewhat similar to what the “SMP Superscalar” (“SMPSs”) programming
model/environment provides [79], yet in a bottom-up, loop-based approach, rather
than the top-down function annotation in SMPSs.

2 This is dissimilar to SMPSs, as (to our knowledge) SMPSs does not provide explicit
locking of neighbouring data segments.

188 J. Jéagerskiipper and C. Simmendinger

tasks subject to the temporal/mutex dependencies. Finally note that balanced
sizes of the subgraphs are no longer that crucial. Instead, the processing of a sub-
graph should exclude as few as possible other subgraphs from being processed in
parallel. So, the neighborhood structure of the subgraphs is most crucial here.

4 The Shared-Memory Parallelization — Implementation
Details for TAU

In the TAU solver to be modified, a partitioning of the edge set, namely a col-
oring of the edges, already exists — yet for a different reason than described
in the preceding section. Originally, the edge coloring was introduced to pre-
vent data races when a long sequence of edges is processed concurrently on a
vector processor. When vector-processor-based supercomputers were superseded
by commodity clusters based on the omnipresent x86 architecture, this coloring
was repurposed to maximize cache utilization. Even with the memory controller
integrated into the CPU this cache optimization is absolutely critical to TAU’s
(serial) performance.

4.1 Cache Blocking in TAU

The TAU solver considered in this paper is memory-bound on current x86 ar-
chitectures. To lower the number of loads from main memory per flop, the data
layout is optimized with respect to cache utilization: The edges are sorted such
that edges incident to the same point follow as closely as possible (temporal
blocking of point-data access). Essentially we use space-filling Hilbert curves in
this approach. In addition, the points are sorted such that, when accessing the
points indirectly while looping over the edges, data associated with subsequently
accessed points are close in the memory (spatial blocking). The temporal block-
ing is supposed to minimize the number of loads from main memory, whereas
the spatial blocking is supposed to make use of the prefetching mechanisms of
the hardware’s memory/cache subsystem. With this strategy, TAU shows very
good cache utilization. TAU is still memory-bound, though.

To enable a TAU programmer to split up a large edge loop into several routines
(to improve code structure, readability, maintenance, expandability), so-called
“colors” exist in TAU. Each color consists of a number of subsequent edges (in
optimized order, c. f. the temporal blocking above) such that all the point data
touched by these edges (which are spatially blocked, c. f. above) fit into the
L2 cache. Note that this coloring is actually a partition of the edge set. A loop
over the edges is equivalent to a nested loop over the colors followed by a loop
over each color’s edges. Code in the body of an edge loop may be split up into
several routines on a per-color basis. Then only in the first routine the point
data touched by the current color are loaded from main memory. For subsequent
routines called for the color, this data is already cached. For commonplace x86
systems, the cache coloring in TAU enables L2-cache-local processing of an edge
loop despite the code being split across several routines, possibly in different
compilation units.

A Novel Shared-Memory Thread-Pool Implementation 189

4.2 Modification of the Colors in TAU to Suite the Hybrid
Parallelization Concept

Recall that the coloring in TAU is based on space-filling curves. Unfortunately,
this results in a bad neighborhood structure among the subgraphs induced by
the colors: there are too many colors with too many neighbors. As our concept
for the shared-memory parallel processing of subgraphs described in Sec. B re-
quires mutual exclusion among neighboring subgraphs, the coloring needs to be
adjusted appropriately — without changing cache performance to the worse.

Recall that the subgraphs should be such that each subgraph touches as few as
possible other subgraphs. Furthermore, the subgraphs should be balanced w. r. t.
the number of points, whereas the number of edges per subgraph is of minor
importance. These requirements perfectly fit graph-partitioning algorithms; for
instance Sandia’s “Chaco” (cf. [4]) may be used to obtain the colors.

Actually, there are different types of colors since there are three types of points
in TAU: points that lie in the physical boundaries of the computational domain,
ghost points (forming the halo of a domain obtained by domain decomposition
for MPI parallelization), and the rest of the points, which we call “inner points”.
Correspondingly, there are four color types: inner colors, boundary-touching col-
ors, halo-touching colors, and boundary-+halo-touching colors. This enables us
to overlap the processing of physical boundaries and the synchronization of ghost
points via MPI with the processing of inner colors — subject to mutex and tem-
poral data dependencies, of course. This integrates nicely with the thread-pool
model since the processing of domain/physical boundaries at a particular stage
in the program can be considered tasks just as well.

4.3 Minimally Invasive Implementation of the Task Dispatching

As TAU is a production code (validated by/for its customers), the numerics
cannot be easily changed just to better suite TAU’s parallelization. The shared-
memory parallelization that has been added (cf. above) is designed such that
it would yield exactly the same results as the originally serial code if floating-
point arithmetic was exact. With the thread-pool-based parallel processing of
the colors, the order in which the edges/points are processed may change from
loop to loop. As a consequence, the limited precision of floating-point operations
can — at least in principle — result in numerical differences. For the TAU solver
considered, however, merely negligible differences are observed, if any.

Besides the consistency of the numerical behavior, the following aspect of
software development /engineering has been very important: The shared-memory
parallelization was supposed to change the code as little as possible, preferably
transparent to the programmers. The proposed model indeed allows for an almost
transparent implementation: As a loop over the edges was already split, namely
done by a nested loop over the colors and the color’s edges, respectively, the task
dispatching was easily integrated (using C-code-like syntax): In

for(color=colorhead; color != NULL; color=color->next)
for (eidx=color->start; eidx < color->stop; eidx++)
{ /* process edge with index eidx */ 1};

190 J. Jéagerskiipper and C. Simmendinger

merely the first line must be changed into
for(color=get_color (grid); color!=NULL; color=get_color (grid))

The task dispatching logic is completely encapsulated in the newly introduced
get_color () function, which returns an appropriate color as long as there are
colors left to be processed at that stage, else NULL. Note that get_color() may
block if, at a given stage, for all colors left at that stage a neighboring color is
being processed. To loop over the points, an additional while loop is introduced:

for(pidx=0; pidx < grid->npoints; pidx++)
{ /* process point with index pidx */ };

must be replaced by

while(get_point_range(grid, &pidx, &pstop))
for(; pidx < pstop; pidx++)
{ /* process point with index pidx */ };

The newly introduced get_point_range() function simply uses get_color()
to obtain a color to be processed and with it a point range (each point is asso-
ciated with exactly one color). The really nice thing with this implementation
is that there is no need to change the bodies of point/edge loops — at least in
principle. Naturally, when porting a loop, care has to be taken that no data is
unintentionally shared. Thread-local storage (TLS) may be necessary. When, for
instance, a maximum of a given value at the points is to be computed, TLS is
only the half way: The maximum is to be determined as the maximum of the
threads’ local maxima, necessitating an explicit change in the code. Nonetheless,
with this implementation of the concept, only a limited number of changes in
the code are necessary to enable multi-threading.

In order to overlap the MPI communication (to synchronize the ghost points)
with computation, this_thread_syncs_halo () is introduced. This function re-
turns TRUE for exactly one of the threads. In case TRUE is returned, this
function may block until no halo-touching color is processed and then keeps
tasks for halo-touching colors from being dispatched until the domains’ halos
are synchronized. Meanwhile the other threads continue to process tasks for non-
halo-touching colors. A similar mechanism is used to overlap the single-threaded
processing of physical boundaries with the processing of inner colors.

5 First Performance Results

The TAU RANS-solver considered is an explicit 3-stage Runge/Kutta scheme
with multigrid acceleration; cell-vertex metric, central discretization (JST), scalar
dissipation, Spalart/Allmaras turbulence model are used. We get right to the
point: How does the pure shared-memory parallelization face against the pure
MPI parallelization. This test was run on a single-CPU machine running SLES 11
with an Intel 6-core Westmere EP X5670 with 2-way SMT enabled. Unfortu-
nately, no Intel compiler was available, so gcc 4.3.3 with full optimization was

A Novel Shared-Memory Thread-Pool Implementation 191

25 Iy
g 20 e 4
8% 15—\ e 333

c
8g / §8
29 10 2%.‘-‘;
3 51— 1
0 0

1 234 [Emle e
——MPI ref. | 18,15 . ‘ . 4,455 4,652
\—®—threaded | 19,16 10,247,404 5855 5,000)4,486 4,014
|——speed-up | 1,000 | 1,872 | 2,588 | 3,273 | 3,833 | 4,272 | 4,774 |

Fig. 1. Pure shared-memory parallelization (green) vs. pure MPI parallelization (blue)
for an Intel Westmere 6-core CPU with 2-way SMT (X5670). Wall-clock time for 50
iterations vs. #threads or #domains, respectively; “speed-up” referes to “threaded”.

used. Pinning of threads/MPI-processes to physical (logical) cores was applied
when running 1 to 6 (12) threads/MPI-processes. The grid has 100,592 points
(95,344 tetras and 163,625 prisms), i. e. about 17,000 points per physical core.
As Fig. [[l shows, the modified coloring slightly affects the serial performance
(no multigrid). The wall-clock time increases by 5-6 % when comparing the
shared-memory version (actually, the hybrid one) running single-threaded vs.
the base-line/MPI-only TAU with a single domain. Performance measurements
using LIKWID [I1] indicate that cache utilization might be the reason. When
comparing 6 threads for one domain vs. 6 domains (MPI processes), the shared-
memory version is neck and neck with the original MPI version, it is off by less
than 1%. As expected, the MPI version fails to utilize the 2-way SMT when
running with 12 domains. For the shared-memory version, however, a speed-up
of 1.117 is observed when using 12 threads (pinned to the 12 logical cores, re-
spectively). The reason might be a better pipeline utilization and latency-hiding
effects. Thus, the shared-memory version outperforms the base-line MPI version
by about 10% for this particular setting. This clearly demonstrates the potential
of the concept proposed (as well as of its implementation in TAU). According
to measurements using LIKWID, the shared-memory parallelized TAU using
12 hardware threads obtains a sustained performance of 8.5 GFlop/s (double
precision) for the X5670 (recall that CFD on unstructured grids is considered).
The main reason to add shared-memory parallel processing of domains to
TAU, however, was to extend TAU’s scalability, i. e., to use more cores more
effectively. And indeed, the shared-memory parallelization enables us to effec-
tively utilize more cores. The test depicted in Fig. Bl was run on the C2A2S%E
cluster located at the Braunschweig site of the German Aerospace Center, which
comprises 648 compute nodes, each with two Intel X5670, connected via QDR
Infiniband. The grid used has 13 mio points. Unfortunately, the 2-way SMT of
the CPUs is disabled, affecting the performance of the multi-threading, cf. above.
The hybrid version of TAU uses one domain (MPI process) per socket, whereas

192 J. Jéagerskiipper and C. Simmendinger

20 reference 4W = + -]
hybrid 4W ——

reference 2V = + -
hybrid 2V —— .4

15
Iinear 44444444
reference w/o MG = + -
‘\ hybrid w/o MG ——

(%]
=
S
S 10 Py <
= 9 N R e e i
3 8
3 7~ e
T 6 S~ Tt
] ~ . Tl T 2
® 5 = RS S
X RN
8 4 T~
o S
s i,

3 -

2

50 100 200

#Nodes of C?A%S%E II

Fig. 2. Strong scaling of TAU. Reference, i. e. MPI only, in blue dashes vs. hybrid
in solid red. Grid with 13 mio points on a 2-socket 6-core Westmere (X5670, 2-way
SMT disabled) system with QDR Infiniband interconnect (50% blocking). Wall-clock
time for 50 iterations vs. #nodes used. 3-stage explict Runge/Kutta with 4W multigrid
(top), 2V (middle), and no multigrid (bottom).

for the base-line TAU we have one domain per core, i. e. 12 domains per node. As
Fig. @ shows, the hybrid parallelization significantly increases TAU’s scalability
— at least when using 4W multigrid, which is preferable practice to do. (The
improved scalability can be noticed already for 2V.) For the base-line TAU, for
4W multigrid scalability flattens off at 100 nodes (1200 cores): Using 200 nodes
(2400 cores) instead does not result in a noticeable speed-up. In contrast, the
hybrid parallel version scales well: The speed-up obtained when using 200 nodes
instead of 100 nodes is almost as large as for 50 nodes to 100 nodes. In short
words, the hybrid can run 50 iterations in 5.5 seconds, whereas the MPI-only
version needs 8.9 seconds — a speed-up of over 1.6 in wall-clock time. Unfortu-
nately, 2-way SMT is disabled, and besides that, more than 200 nodes of the
HPC cluster could not be acquired to max out the speed-up attainable for this
real-world CFD problem. Nevertheless, this test clearly proves that the hybrid-
parallel TAU scales significantly better than its base-line using MPI only.

6 Conclusion and Outlook

As shown by the first, preliminary results described in the preceding section, the
concept, proposed for shared-memory parallelization of grid-based CFD solvers
works well — at least its implementation in the TAU solver considered. Naturally,
further tests are needed, in particular for other CPUs. We plan tests on AMD’s
Magny Cours and on IBM’s Power?7. It will be interesting to see how these relate
to Intel’s Westmere considered in the tests presented here.

A Novel Shared-Memory Thread-Pool Implementation 193

Even though the implementation here was done for the TAU CFD solver, the

concept is not TAU-specific, but rather can be applied to a large number of appli-
cations. For example for a stencil based code A[i] = B[i—1]+ B[i+1], the concept
of dependencies among subgraphs translates to dependencies of thread chunks
in OpenMP-parallel FOR loops. Whether or not A[é] of the thread chunk can
be calculated, for example, simply depends on whether or not the neighbouring
index elements B[i — 1] and B[i + 1] have already been computed (temporal data
dependency). We are currently porting this thread-pool-based parallelization for
a stencil-based block-structured CFD turbo machinery code, c. f. [10].

References

10.

11.

. Alrutz, T.: Investigation of the parallel performance of the unstructured DLR-TAU-

code on distributed computing systems. In: Deane, E. (ed.) Parallel Computational
Fluid Dynamics, pp. 509-516. Elsevier, Amsterdam (2005)

. Alrutz, T., Simmendinger, C., Gerhold, T.: Efficiency enhancement of an unstruc-

tured CFD-code on distributed computing systems. In: Proc. ParCFD (2009)

. Devine, K., Boman, E., Riesen, L., Catalyurek, U., Chevalier, C.: Getting started

with Zoltan: A short tutorial. In: Proc. Dagstuhl Seminar Combinatorial Scientific
Computing, Also Sandia National Labs Tech Report SAND2009-0578C (2009)

. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:

Proc. 1995 ACM/IEEE Conference on Supercomputing (CDROM), ACM, New
York (1995)

. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Comp. 20, 359-392 (1998)

. Kroll, N., Fassbender, J.K. (eds.): MEGAFLOW — Numerical Flow Simulation

for Aircraft Design Results of the second phase of the German CFD initiative
MEGAFLOW presented during its closing symposium at DLR, Braunschweig, Ger-
many, December 10-11. Notes on Numerical Fluid Mechanics and Multidisciplinary
Design, vol. 89. Springer, Heidelberg (2005)

. Marjanovié¢, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication

and computation by using a hybrid MPI/SMPSs approach. In: Proc. 24th ACM
Int’l Conference on Supercomputing, pp. 5-16 (2010)

. Mavripilis, D.: Parallel performance investigation of an ustructured mesh Navier-

Stokes solver. The Int’l Journal of High Performance Comp. 2(16), 395-407 (2002)

. Planas, J., Badia, R., Ayguadé, E., Labarta, J.: Hierarchical task-based program-

ming with StarSs. Int. J. High Perform. Comput. Appl. 23, 284-299 (2009)
Simmendinger, C., Kiigeler, E.: Hybrid parallelization of a turbomachinery CFD
code: performance enhancements on multicore architectures. In: Proc. ECCOMAS-
CFD (2010)

Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented
tool suite for x86 multicore environments. CoRR, abs/1004.4431 (2010)

	A Novel Shared-Memory Thread-Pool Implementation for Hybrid Parallel CFD Solvers
	Intro
	Motivation
	Outline

	The DLR TAU Code
	The Shared-Memory Parallelization – Generic Concept
	The Shared-Memory Parallelization – Implementation Details for TAU
	Cache Blocking in TAU
	Modification of the Colors in TAU to Suite the Hybrid Parallelization Concept
	Minimally Invasive Implementation of the Task Dispatching

	First Performance Results
	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

