
 

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 74–89, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

A Strategy for Efficient Crawling of Rich Internet 
Applications 

Kamara Benjamin1, Gregor von Bochmann1, Mustafa Emre Dincturk1, 
Guy-Vincent Jourdan1, and Iosif Viorel Onut2 

1 SITE, University of Ottawa. 800 King Edward Avenue, 
K1N 6N5, Ottawa, ON, Canada 

2 Research and Development, IBM® Rational® AppScan® Enterprise, IBM, 1 Hines Rd, Ottawa, 
ON, Canada 

{bochmann,gvj}@site.uottawa.ca, 
{kbenj067,mdinc075}@uottawa.ca, 

vioonut@ca.ibm.com 

Abstract. New web application development technologies such as Ajax, Flex 
or Silverlight result in so-called Rich Internet Applications (RIAs) that provide 
enhanced responsiveness, but introduce new challenges for crawling that cannot 
be addressed by the traditional crawlers. This paper describes a novel crawling 
technique for RIAs. The technique first generates an optimal crawling strategy 
for an anticipated model of the crawled RIA by aiming at discovering new 
states as quickly as possible. As the strategy is executed, if the discovered 
portion of the actual model of the application deviates from the anticipated 
model, the anticipated model and the strategy are updated to conform to the 
actual model. We compare the performance of our technique to a number of 
existing ones as well as depth-first and breadth-first crawling on some Ajax test 
applications. The results show that our technique has a better performance often 
with a faster rate of state discovery.  
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1   Introduction 

Web Applications have been used for nearly as long as the Web itself. In the 
formative years, a Web Application was an application running entirely on the server 
side, and which used a dynamically created web page rendered inside a classical web 
browser as a client. Following the model of static Web sites, these web applications 
used the usual GET and POST HTTP requests to communicate between the client and 
the server, and each response sent by the server was meant as a complete replacement 
of the currently displayed client side. These applications were not very user-friendly 
due to the lack of flexibility at the client side, but they were pretty similar to static 
web sites in terms of crawling (except for possible user inputs): it was sufficient to 
scan the current page to find out what the possible next states could be, and the 
current state was entirely defined by the last server response. Crawling these web 
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applications was easy, and many commercial tools can do it, e.g. for the purpose of 
automated testing, usability assessment, security evaluation or simply content 
indexing. 

This situation was first modified with the widespread support in Web browsers for 
scripting languages such as JavaScript, and the ability given to these scripts by 
browsers to modify directly the current page (the current DOM). After this, it was no 
longer true that the state of the client could be inferred simply from the last server 
response, since script embedded in this response could have modified the state, 
perhaps based on user input. This new situation seriously impaired the ability of 
existing tools to truly crawl these applications. But it was the introduction of another 
possibility for these scripts that was a real challenge for crawlers: the ability for 
scripts to asynchronously exchange messages with the server (still using GET and 
POST commands) without having to reload the page entirely. This technique, most 
commonly used with Ajax, means that these Web Applications can really be seen as 
two programs running concurrently in the server and the browser, communicating by 
asynchronous message exchanges. We call these types of Web Applications “Rich 
Internet Applications” (RIAs). To the best of our knowledge, there are no tools today 
to efficiently and systematically crawl RIAs. Some academic tools have been 
developed [11,17] but the results are not entirely satisfactory yet. Some large 
commercial software do require crawling abilities, such as vulnerabilities scanners 
(e.g. see [3] for a recent survey of security scanners), but again their ability to really 
crawl RIAs is very limited in practice. 

It is important to note that the difficulties introduced by RIAs for crawling have a 
much deeper impact than preventing security testing tools to perform well. First, 
crawling is the basis for indexing, which is necessary for searching. Our inability to 
crawl RIAs means that these RIAs are not properly indexed by search engines, 
arguably one of the most important features of the Web.1 Second, because RIAs are 
often more user-friendly than simple sites and provide an enhanced experience for 
end-users, a growing number of web authoring tools automatically add RIA-type code 
(usually Ajax) into the produced site. So the problem extends much beyond advanced 
Web Applications. Even the most classical Web site, built without any programming 
ability by some content editor, might end up being non-crawlable and thus non-
searchable. This is clearly an important problem that must be addressed. This paper is 
a first step in this direction. For simplicity, we only consider Ajax based RIAs in the 
following, but the same concepts can be applied to other technologies. 

The paper is organized as follows: in Section 2, we provide a general overview of 
our crawling strategy. In Section 3, we give a high-level description of the set of 
algorithms we have developed for this purpose. In Section 4, we show how all of 
these algorithms are tied together to lead to our crawling strategy. In Section 5, we 
provide experimental results obtained with our prototype, compared with existing 
tools and other, simpler crawling strategies. Related works is reviewed in Section 6, 
and we conclude in Section 7 with some future research directions. 
                                                           
1  To observe the current RIA crawling capabilities of the search engines, we created various 

experimental RIAs, each with 64 states reachable via AJAX calls. To date, Google and Ya-
hoo visited our applications: neither was able to explore beyond the initial state! 
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2   Overview of Strategy 

The purpose of crawling a RIA is to infer automatically an accurate model of the 
application. We conceptualize the model of the application as a Finite State Machine. 
The states of the state machine are the distinct DOMs that can be reached on the client 
side and a transition is an event execution (e.g. any JavaScript event such as onClick, 
onMouseOver, onSubmit etc.) on the current DOM. To produce an accurate and 
useful model, the crawling strategy must satisfy certain requirements. First, the 
produced model must be complete. That is, the model must represent all reachable 
states and all transitions. In addition to the event being executed, the next state of a 
transition may depend on other data, such as user inputs and variable values. 
Therefore, building a complete model requires capturing all the states and all such 
events along with the relevant data. Second, the model must be built in a deterministic 
way. That is, crawling the application twice under the same conditions (including 
server-side data) should always produce the same model. Third, the model should be 
produced efficiently. By this, we mean that the model construction strategy should 
produce as much of the model as possible within the shortest amount of time. 
Crawling an application may take a very long time, and even can be infinite 
theoretically; thus it may not be practical or even feasible to wait until the crawling 
ends. In such a case, if the crawl is stopped before it is complete, the partial model 
produced should contain as much information as possible. 

Satisfying the completeness requirement is not too difficult on its own. There are 
several simple strategies that will achieve this. One must simply be careful not to 
overlook any of the intermediate states [4], even though most state-of-the-art crawling 
strategies fail to meet this requirement, usually on purpose since it is considered to 
take too much time. The determinism requirement is also not very difficult to achieve, 
although many RIAs may not easily provide the necessary uniform responses to the 
same requests. The efficiency requirement is obviously the most challenging one. 
Even the most simple-minded strategies, such as enumerating and executing one by 
one all possible orderings of events enabled at the state being explored, may satisfy 
the first two requirements, but not the efficiency requirement. Considering a single 
state with n enabled events, there are n! possible different orders for executing these 
events, so blindly executing events in every possible order is not efficient. However, 
note that this simple strategy makes no hypothesis about the application beforehand, 
so there is actually not much room for generating a more efficient strategy as such. 

To generate an efficient strategy, we use the following methodology which we call 
“model-based crawling”: 

• First, general hypotheses regarding the behavior of the application are elaborated. 
The idea is to assume that, in general, the application will usually behave in a 
certain way, described by the hypotheses. With these hypotheses, one can 
anticipate what the final model (or part of it) will be, if they are indeed valid. The 
crawling activity is thus morphed from a discovery activity (“what is the model?”) 
into a confirmation activity (“is the anticipated model correct?”). Note that the 
hypotheses do not need to be actually valid. 

• Once reasonable hypotheses have been specified, an efficient crawling strategy can 
be created based on these hypotheses. Without any assumptions about the behavior 
of the application, it is impossible to have a strategy that is expected to be efficient. 
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But if one anticipates the behavior, then it becomes possible to draw an efficient 
strategy to confirm the hypothesis. In our case, we provide a crawling strategy that 
is in fact optimal for our hypotheses. 

• Finally, a strategy must also be established to reconcile the predicted model with 
the reality of the application that is crawled. Whenever the application’s behavior 
doesn’t conform to the hypotheses, some corrective actions must be taken to adapt 
the model and to update the crawling strategy. In our case, we always assume that 
the part of the application that has not yet been crawled will obey the initial set of 
hypotheses, and the crawling strategy is adapted accordingly. 

The event-based crawling strategy exposed in this paper follows this methodology. To 
form an anticipated model, we make following two hypotheses only:  

• H1: The events that are enabled at a state are pair-wise independent. That is at a 
state with a set {e1,e2,…, en} of n enabled events, executing a given subset of these 
events leads to the same state regardless of the order of execution.  

• H2: When an event ei is executed at state s, the set of events that are enabled at the 
reached state is the same as the events enabled at s except for ei.  

We believe that these hypotheses are usually reasonable for most of the web 
applications in the sense that executing different subsets of events is more likely to 
lead to new states, whereas executing a given subset of events in different orders is 
more likely to lead to the same state. More precisely, it is obviously not always the 
case that concurrently enabled events are independent of each other, and that 
executing an event will not enable new ones or disable existing ones. Still, it is 
reasonable to assume that, in general, the events that are concurrently enabled are 
“roughly” independents, as a whole. In fact, if a client state tends to have a large 
number of events, then it seems reasonable to expect that many of these events are 
independent of each other, and so even if the hypotheses are often violated for chosen 
pairs of events, they are usually verified overall. And of course, when this is not the 
case, the expected model and the corresponding strategy is updated without throwing 
away the whole strategy.  

  

Fig. 1. Hypercube of dimension 4 
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With these hypotheses, the expected model for a state with n enabled events is a 
hypercube of dimension n. There are 2n possible subsets of n events and a hypercube 
is a partial order of all possible subsets ordered by inclusion. Figure 1 shows an 
example hypercube of dimension n = 4. In a hypercube of dimension n, each of the 2n 
states is characterized by a subset of n events executed to reach it. Each edge 
corresponds to a transition that is triggered by execution of one of the events. There 
are n! different paths from the bottom state to the top state. Each one of them 
represents an order of execution containing n events.  

Based on the hypercube hypothesis, a strategy should be generated. To satisfy our 
efficiency requirement, the strategy must aim at visiting each state in the expected 
model as soon as possible. Once each state has been visited, then the strategy com-
pletes the crawl by aiming at efficiently traversing every transition that has not yet 
been traversed. In the following section, we introduce an algorithm that generates an 
optimal strategy which completes crawling in (n choose (n/2))*⌈n/2⌉ paths instead of 
going over n! paths. What is more only (n choose (n/2)) of these paths are enough to 
visit all the states in the hypercube. Both numbers are optimal. 

Another important factor for the efficiency of the crawling algorithm is the choice 
of the state equivalence relation. Equivalence relation is used to determine whether a 
state should be regarded as being the same as another, already known. This avoids 
exploring the same state multiple times. Our crawling algorithm assumes that some 
appropriate equivalence relation is provided. Different equivalence relations can be 
employed depending on the purpose of model. For example, for security scanning, an 
equivalence relation that ignores text content of pages may be appropriate whereas for 
indexing the text must be taken into account. An in-depth discussion of this topic is 
beyond the scope of this paper, but it is important to note that the equivalence 
function we are working with is assumed to be a real equivalence relation (from the 
mathematical viewpoint) and that this function should at least be coherent with state 
transitions, that is, two equivalent states must at least have the same set of embedded 
URLs (an exception can be made if some specific parts of the page are ignored during 
the crawl, e.g. a part containing ads for example. URLs and events embedded into the 
ignored parts can also be ignored) and the same set of events. One obvious such 
equivalence relation is simple equality. Throughout this paper ≈ is used to denote the 
equivalence relation that is provided to the crawling algorithm. 

3   Minimal Transition Coverage (MTC) of a Hypercube 

In this section, we present an algorithm to find a minimal set of paths that traverse 
each transition in a given hypercube. We call such a set a Minimal Transition 
Coverage (MTC) of the hypercube. Since we also want to be able to visit each state of 
the hypercube as early as possible, we need more than just any MTC; we need one 
that will also reach all the states as fast as possible. For this reason, our MTC 
algorithm can be constrained by a set of disjoint chains of transitions given as input. 
Each chain of the constraint set will be included in one of the produced MTC chains� 
When the produced MTC is constrained with a minimal set of chains that visit each 
state in the hypercube, the resulting MTC is exactly what we are aiming for: a 
minimum number of paths containing every possible transition of the hypercube and 
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including as a subset a minimum number of paths visiting every state. We then simply 
have to give priority to the paths visiting the states to obtain our strategy. 

In [5], it was stated that a Minimal Chain Decomposition (MCD) of a hypercube, 
which is the minimal set of paths visiting every state of the hypercube, could be used 
as part of a crawling strategy. Here, we use an MCD as a constraint for MTC to 
generate our strategy. First, we give a short review of the MCD for completeness. 

3.1   Minimal Chain Decomposition 

Since a hypercube represents a partially ordered set, a path in the hypercube consists 
of pair-wise comparable elements. A path is also called as a chain of the order. 
Finding a set of chains covering every element of the order is known as chain 
decomposition of the order. A minimal chain decomposition of the order is a chain 
decomposition containing the minimum number of chains (see [1] for an overview of 
the concepts). In 1950, Dilworth proved that the cardinality of any minimal chain 
decomposition is equal to the maximum number of pairwise incomparable elements 
of the order, also known as the width of the order [9]. For a hypercube of size n, the 
width is (n choose n/2). An algorithm that can be used for decomposing a hypercube 
is given in [8]. Below we present the algorithm as it is exposed in [12] (adapted to our 
hypercube definition). 

Definition (adapted from [12]): The Canonical Symmetric Chain Decomposition 
(CSCD) of a hypercube of dimension n is given by the following recursive definition: 
1. The CSCD of a hypercube of size 0 contains the single chain (Ø). 
2. For n ≥ 1, the CSCD of a hypercube of dimension n contains precisely the 

following chains: 

• For every chain A0 < … < Ak in the CSCD of a hypercube of dimension n – 1 
with k > 0, the CSCD of a hypercube of dimension n contains the chains: 

A0 < … < Ak < Ak ∪ {n} and 
                                    A0 ∪ {n} < … < Ak-1∪ {n}. 

• For every chain A0 of length 1 in the CSCD of a hypercube of dimension n - 1, 
the CSCD of a hypercube of dimension n contains the chain:  

                             A0 < A0 ∪ {n} 

3.2   MTC Algorithm 

In the rest of this paper, we represents a chain C as alternation of states and events in 
the form C = s1 - e1 - s2 - e2 - s3 - … - em - sm+1. Each chain starts and ends with a state. 
The first state in C is noted by first(C) and the last state in C is noted by last(C). Each 
event ei in C corresponds to a transition (si – ei – si+1) from si to si+1. The length of the 
chain C is defined to be the number of states in C and denoted as |C|. prefC(si) denotes 
the chain that is the prefix of C such that last(prefC(si)) is si. suffC(si) denotes the chain 
that is the suffix of C such that first(suffC(si)) is si. Two chains C1 and C2 can be 
concatenated if last(C1) = first(C2). The resulting chain is represented as C1+ C2. 

For a given hypercube of dimension n, we present an algorithm to generate an 
MTC in three stages. The algorithm allows MTC to be optionally constrained by a set 
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(CC) of disjoint chains of the transitions. We call level 0 the bottom of hypercube, 
level n the top of the hypercube and level ⌊n/2⌋ middle of the hypercube. 

Upper Chains Stage: In this stage, a set of chains (CU) covering all the transitions 
above the middle of the hypercube is calculated. For each transition leaving a state at 
the middle level, a chain is constructed by extending the transition toward the top of 
the hypercube. Let U be the chain that is currently being constructed and s be last(U). 
Initially, U is a chain containing only the middle level state. Then we pick an 
unvisited transition (t = s - e - s') leaving s and attempt to extend U with t. If t is not 
part of any constraint chain then we can extend U with t. Otherwise t is included in a 
constraint chain C∈CC. There can be two cases,  

• If |U| = 1 or s is first(C)  extend U with suffC(s). 
• Otherwise we cannot use t to extend U. So, we mark t as not usable and we attempt 

to extend U by picking another unvisited transition. 

The extension of U continues until no transition can be found to extend it further. 

Lower Chains Stage: In this stage, a set of chains (CD) covering all the transitions 
below the middle level of the hypercube is calculated. This stage is simply the 
symmetric of the upper chains stage. 

Chain Combination Stage: In the final stage, the chains in CU and CD are combined 
into larger chains. Note that, when the hypercube has an odd dimension, the number 
of transitions entering a middle-level state is one less than the number of transitions 
leaving it. In that case, for some upper chains, we cannot find a lower chain to 
combine with. For this reason, in this stage we iterate over the lower chains and try to 
combine each with an upper chain. After all lower chains combined, any uncombined 
upper chains are simply added to the resulting set. Again the only consideration while 
combining a lower chain with an upper chain is to keep every constraint chain as it is. 
That is, if is a constrain chain C∈CC has a prefix in the lower half and a suffix in the 
upper half, then the lower chain D containing the prefix of C can only be combined 
with the upper chain U containing the suffix of C and vice versa.  

Note that, the number of chains in an MTC of a hypercube of size n equals (n 
choose (n/2))*⌈n/2⌉ which is the number of states in the middle level (or the width of 
the hypercube) multiplied by the number of transitions leaving each middle level 
state. 

4   Overall Strategy for Crawling RIAs 

There are two methods for reaching new client states while crawling a RIA. One is 
through making synchronous HTTP requests to the server via URLs embedded in the 
DOM. The other is executing events in the DOM. An overall strategy for crawling 
RIAs should be a mix of these two and possibly running them alternatingly. For lack 
of space, we do not ellaborate here on the traditional, URL crawling part of the 
strategy, nor on the way we alternate between URL crawling and event crawling (see 
[4] for some details), and focus on event-based crawling only. 
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During URL-based crawling, whenever a page with a non-empty set of events is 
discovered, it is forwarded to the event based crawler for exploration. If such a state 
(called a base state) has n events, then the expected model we use to generate the 
crawling strategy is a hypercube of dimension n based on that state. To explore the 
states reachable from a base state s, a strategy Chains(s) that consists of a set of chains 
is generated. Let MTC(s) denote a set of MTC chains constrained by an MCD of the 
hypercube based on s. To generate the “initial” strategy, we use MTC(s) as a basis. 
Note that the chains in MTC(s) may not be executed in their original form because a 
chain in MTC(s) does not necessarily start at the base state s. To be able to begin 
executing events in a chain C∈MTC(s), we have to reach the state first(C). For this 
reason each C must be prepended with a (possibly empty) transfer chain, denoted 
T(first(C)), from the base state s to first(C). Any chain can be used as a transfer chain 
for C as long as it starts from the base state s and reaches first(C). Thus the initial 
event execution strategy for the hypercube based on state s will simply be the set 
Chains(s) = {C' = T(first(C))+C | C∈MTC(s)}. After, we begin exploration of the 
base state s, by executing the chains in Chains(s). Since we aim to reach every state 
first, we execute the chains that contain MCD chains first. 

Executing a chain simply means executing the events of the chain one after the 
other. After an event is executed, if the state reached is a new state then this state is 
scanned and the newly found URLs are added to the traditional crawler. Then, we 
need to check if the state reached has the expected characteristics. If it is not, the 
current strategy and expected model must be revised.  

The expected characteristics of a reached state are determined by the model 
hypotheses (in our case H1 and H2). H1 has two possible violations (non-mutually 
exclusive)  

• Unexpected Split: In this case, we are expecting to reach a state that has already 
been visited but the actual state reached is a new state. 

• Unexpected Merge: In this case, we unexpectedly reach a known state. 

H2 can also be violated in two ways (non- mutually exclusive) 

• Appearing Events: There are some enabled events that were not expected to be 
enabled at the reached state. 

• Disappearing Events: Some events that were expected to be enabled at the reached 
state are not enabled. 

When a violation occurs, the revision method creates a brand new strategy (still based 
on the original hypotheses) for the state causing violations and updates any chain in 
the existing strategy that is affected by the violations. As a result, the strategy will 
again be valid for the actual model of the application discovered so far. In the 
following, we give an outline (see Figure 2) and a high-level overview of the revision 
method, details can be found in [4]. 

Consider a hypercube based on state s1 and the strategy Chains(s1) currently used 
for s1. Let the current chain be C = s1 - e1 - s2 - … - si - ei - si+1 - … - sn in Chains(s1) 
and let si be the current state. According to C we execute the event ei at si. Let s' be the 
actual state reached after this execution.  
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First we have to make sure that s' is a state that is in accordance with the expected 
model. What we expect s' to be depends on whether si+1 is a known state or not. si+1 is 
a known state if we executed a chain C'≠C in Chains(s1) such that prefC'(si+1) executes 
exactly the events {e1,e2,…,ei} in any order without any violations. If this is the case 
then we expect s' to be equivalent to si+1. Otherwise we expect s' to be a new state 
without any appearing/disappearing events. If the expectations are met, from now on 
we regard si+1 in the strategy as s'. 

If s' is as we expected, the current strategy is still valid but it can be revised by 
removing some redundant chains. This is possible when C is our first attempt to visit 
si+1 and it turns out that we had already been in s'. This is either because s' was 
reached through a base state different than s1 or s' was reached through s1 but the first 
time s' was reached there was an appearing/disappearing event violation. In either 
case, since s' has already been discovered, there must be an existing strategy to 
explore it. Hence all the chains having the prefix prefC(si+1) are redundant and can be 
removed from Chains(s1). 

 

                       
Fig. 2. Revising the Crawling Strategy after executing an event 

In case s' is not as expected, revision procedure checks for an alternative way to 
complete the remaining portion of C as much as possible. In order to do that, we first 
look for an alternative path among the remaining chains in Chains(s1) to reach the 
minimum indexed state sk (i < k < n) in suffC(s1) without traversing the problematic 
transition (si - ei - si+1). If a chain C'' has such a prefix then we can use that prefix to 
reach sk and execute suffC(sk) after that. That is, we add a new chain 
prefC''(sk)+suffC(sk) to the strategy. Note that if sk is the last state in C'' then to 
eliminate redundancy we can remove C'' from the strategy as it is covered completely 

Procedure reviseStrategy 
Let C = s1 - e1 - s2- … - si – ei – si+1 - … - sn be the current chain
  ei be the event that has just been executed in C 
  s' be the state reached by executing event ei at si 
 
If s' meets the expected model characteristics then 
- If the current model contains s such that s' ≈ s then 
- - remove from Chains(s1) all chains containing prefC(si+1); 
- stop procedure reviseStrategy 
 
Else // s' does not meet the expected model characteristics 
- For each C' in Chains(s1) such that prefC'(si+1) = prefC(si+1) 
- - Let sk be the first state of C' after si that belongs to another 
  chain C'' of Chains(s1) that does not include si-ei-si+1, if 
  any 
- - - add the chain prefC''(sk)+suffC'(sk) to Chains(s1); 
- - - remove C'' from Chains(s1) if sk is its last state 
- - remove C' from Chains(s1) 
- If this is the first time s' is visited, generate the crawling 
 strategy for s' based on the hypercube hypothesis, with 
 T(s') = prefC(si)+(si-ei-s') 
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in the newly added chain. Also we should remove C from the strategy as it is now 
handled by newly added chain. This revision should be applied not only to C but to 
any chain C' having the prefix prefC(si+1), since C' will face the same violation. 

After all affected chains are updated, we check if we need to generate a strategy for 
s'. If s' is a state that has been discovered before, then we do not have to do anything 
as we must have already generated a strategy for s' at the time it was first discovered. 
Otherwise, a strategy (Chains(s')) should be generated for a new hypercube based on 
s'. Note that, currently the only known way to reach s' is using chain prefC(si)+(si - ei - 
s'). For this reason, newly generated hypercube is actually an extension to the existing 
one and belongs to the same projection based on the state s1. Hence each chain in 
Chains(s') is added into Chains(s1) using prefC(si)+(si - ei - s') as a transfer chain to 
reach s'. 

5   Experimental Results 

To assess the efficiency of our crawling algorithm, we have implemented a prototype 
tool (see [4] for detatils).We present results showing the performance of our prototype 
compared with a prototype of major commercial software for testing web 
applications, an open source crawling tool for Ajax applications (Crawljax) [17] as 
well as pure breadth-first and depth-first crawling.  

To evalute a method, we first check if it achieves a complete crawl. For the ones 
that can crawl all the test applications completely, we record the total number of event 
executions and the total number of reloads required before discovering all the states 
and all the transitions separately. The collected data gives us the total number of event 
executions and reloads required to complete the crawl and an idea about how quickly 
a method is able to discover new states and transitions. 

 

Fig. 3. Models of some test applications 



84 K. Benjamin et al.  

 

The results were obtained using six Ajax test applications. (See Figure 1 and 3 for 
the models). Five of them were developed by us and one is a publicly available test 
application. We designed the applications to reflect different characteristics of the 
web applications as well as some extreme cases like a perfect hypercube or a 
complete graph. The first application, called H4D, has the model of a 4 dimensional 
hypercube (16 states, 32 transitions). Since hypercube is the expected model, H4D is 
a best case for our strategy. The second application NH1(8 states, 12 transitions) 
slightly deviates from the hypercube structure. The third and the fourth applications, 
NH2 (13 states, 15 transitions) and NH3 (24 states, 32 transitions), also deviate from 
the hypercube structure. The fifth application, PrevNext (9 states, 16 transitions) 
represents a model that is encountered in many Ajax applications. States of PrevNext 
are linked by previous and next events. The last application AjaxNews2 (8 states, 80 
transitions) is a publicly available test site [11]. It is in the form of a news reader with 
8 different articles. It allows users to browse articles by previous and next buttons as 
well as to go directly to an article via clicking titles listed on a menu.  

In an effort to minimize any influence that may be caused by considering events in 
a specific order, the events at each state are randomly ordered for each crawl. Also, 
each application is crawled 10 times with each method and the average of these 10 
crawls are used for comparison.  

Only depth-first, breadth-first and our algorithm successfully discovered all the 
states and all the transitions for all the applications. The commercial product protoype 
could not achieve a complete crawl for any of the applications. That is because it did 
not apply a specific strategy for crawling RIAs but blindly executed the events on a 
page once (in the sequence that they appear) without handling DOM changes which 
may add or remove events to the DOM. This is an example of a very naïve approach. 
Crawljax could crawl some completely but not most of them. (This is because 
Crawljax decides which events to execute at the current state using the difference 
between the current state and the previous state. That is, if a state transition leaves an 
HTML element with an attached event unchanged, then that event is not executed at 
the current state although it is still likely that this event could have led to a different 
state when executed in the current state). Table 1 shows the number of states 
discovered by each tool. 

Table 1. Number of states discovered by Crawljax, Commercial software and our tool 

States Discovered by 
Application Total States 

Commercial Crawljax Our Tool 
H4D 16 5 11 16 
NH1 8 4 8 8 
NH2 13 3 6 13 
NH3 24 3 14 24 
PrevNext 9 3 3 9 

For each test application and for each method, we present the number of transitions 
and reloads required to visit all the states (and traverse all the transitions) of the 
application. Figures 5a and 5b shows the total transitions and total reloads required 

                                                           
2  http://www.giannifrey.com/ajax/news.html 
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for discovering states, respectively. Figure 6a and 6b shows the total transitions and 
total reloads required for traversing all transitions. For compactness we use boxplots 
that should be interpreted as follows. The top of vertical lines show the maximum 
number required to discover all the states (or all transitions).The lower edge of the 
box, the line in the box and the higher edge of the box indicate the number required to 
discover a quarter, half and 3 quarters of all the states (or transitions) in the 
application, respectively. We will use the position of this box and the middle line to 
assess whether a method is able to discover new states (or transitions) faster than 
others.  

As Figure 5a shows for H4D, NH1, NH2 and NH3 our method discovered all the 
states using the least number of transitions. For PrevNext, depth-first required slightly 
fewer transitions than ours and for AjaxNews breadth-first required significantly 
fewer transitions. Since the underlying model of AjaxNews is a complete graph, it is 
an optimal case for breadth-first. Hence it was not surprising to see breadth-first 
discovering all states using minimal amount of transitions. Looking at the figure to 
assess the rate of state discovery measured by the number of transitions, we conclude 
that our method discovers states at a faster rate, except for AjaxNews. Even for 
AjaxNews, our algorithm discovered more than half of all the states at a rate 
comparable to breadth-first. 

 

 
Fig. 5. a. Transitions for state discovery               b. Reloads for state discovery 

Figure 5b contains the boxplots of the number of reloads required before 
discovering all states. It is clear that, our method uses, if not fewer, a comparable 
number of reloads to depth-first. For H4D and AjaxNews, our method uses 
significantly less reloads than the others. Looking at the figure to assess the rate of 
state discovery measured by the number of reloads, conclusion is that our method is 
able to discover states at higher rates than other mehtods except AjaxNews for which 
the rate is slightly lower than depth-first. 
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Figure 6a contains the boxplots showing for each application and for each method 
the number transitions executed before having traversed all transitions. Comparing the 
number of transitions used to be able to traverse all the transitions (note that this is the 
number of transitions executed to complete the crawl), we see that for H4D and NH1 
our method is the best, for PrevNext depth-first and our method are even and for NH2 
and NH3 depth-first uses less transitions. For AjaxNews breadth-first uses the fewest 
transitions as expected. Comparing the rate of executing unexecuted transitions, for 
all the applications except PrevNext, our method uses fewer transitions to execute the 
majority of transitions. For PrevNext, depth-first has a slightly better rate but the rate 
is better for ours for more than half of the transitions before depth-first slightly takes 
over. Note also that, for AjaxNews our method has a significanty higher rate.  

Lastly, Figure 6b shows the number of reloads required before executing all 
transitions. Looking at the total number of reloads required to complete the crawl, for 
H4D, NH1 and AjaxNews our method was the best, for PrevNext depth-first and our 
method are even and for NH2 and NH3 depth-first used slightly fewer reloads. 
Comparing the rates, in order to execute the majority of the transitions, our method 
required fewer reloads for all the applications except PrevNext, for which depth-first 
and our algorithm have similar results. 

 

 
Fig. 6. a. Transitions for new transitions              b. Reloads for new transitions 

As an overall evaluation based on these results, we make following remarks. Our 
approach can extract a correct model of an application regardless of its model. In 
terms of the total number of transitions and reloads, our approach was the most 
consistent. That is, for all the cases it was either the best or very close to the best. It 
was never the worst. This is because, our approach tries to balance the good 
characteristics of the depth-first and breadth-first approaches. It tries, like depth-first, 
to maximize the chain length and thus reduce the number of reloads. Also it tries, like 
breadth-first, to cover the breadth of the application quickly. As we aimed, our 
strategy has a better rate of discovering new states and transitions. 
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6   Related Work 

We survey here only research focusing on crawling RIAs, for general crawling see 
[2,7,13]. Although limited, several papers have been published in the area of crawling 
RIAs, mostly focusing on Ajax applications. For example [10,11,15] focus on crawl-
ing for the purpose of indexing and search. In [16], the aim is to make RIAs accessi-
ble to search engines that are not Ajax-friendly. In [18] focus is on regression testing 
of AJAX applications whereas [6] is concerned with security testing. 

The works that contain the modeling aspect seem to agree on representing models 
using finite state machines [14,15,17]. Usually states are defined using the DOM 
structure and the transitions are based on the events that lead to changes in the DOM 
[15,17]. In [14], however the states, as well as the events to consider, are abstracted 
by observing DOM changes in the given execution traces of the application. 

As a crawling strategy, [15] uses breadth-first crawl. In order to reduce the number 
of Ajax requests, whenever a specific Ajax request is made for the first time, the re-
sponse from the server is cached. Later, if there is a need to call the same function 
with the same parameters for execution of some event, the cashed response is used 
instead of making an actual request. This assumes calling the same function with the 
same parameters always produces the same response regardless of the current state. 
Therefore it provides no guarantee to produce a correct model. In [17], a depth-first-
based method is described and implemented in Crawljax. As we have explained in 
Section 5, this method, too, is incapable of producing a complete model. 

7   Conclusion and Future Work 

In this paper, we have presented a general model-based strategy for crawling RIAs. 
Our solution aims at finding all the client states as soon as possible during the crawl 
but still eventually finds all the states. Experimental results show that our solution is 
correct and provides good results on a set of experimental sites: although our solution 
is not always the best one, it is the only one that works always and seems to always 
provide one of the best results in terms of efficiency. We believe that these are very 
encouraging results, but more must be done. We are currently working on the 
following enhancements: 

First, we must extend our experimental results to include large number of real 
RIAs. We believe that the results will in fact be even more favorable when crawling 
sites such as Facebook or Google Calendar, because these sites are not going to have 
the extreme patterns of our test sites, that sometimes favor one crawling technique 
over the other. 

Second, a possible criticism of our solution may be the computation of the strategy 
based on the hypercube hypothesis ahead of time. Because of the explosion of the size 
of a hypercube model, this approach may not be practical. Although we have already 
addressed this issue by generating chains one at a time, as required during the crawl, 
for simplicity we prefered to explain our solution by using pre-computed chains. We 
plan to explain the details of the on-the-fly chain generation technique in a separate 
contribution.  
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A third enhancement would be to look at other models, beyond the hypercube. Our 
model-based crawling methodology can be used with any models, and we are 
currently investigating which other models could be efficiently used. 

Finally, a fourth direction would be to enhance the model with the notion of 
“important” states and events, that is, some states would have priority over others and 
some events would be more important to execute than others. Again, we believe that 
our model-based crawling strategy can be adjusted to deal with this situation. 
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