
Efficient Authentication

from Hard Learning Problems

Eike Kiltz1,�, Krzysztof Pietrzak2,��, David Cash3,� � �,
Abhishek Jain4,†, and Daniele Venturi5,†

1 RU Bochum
2 CWI Amsterdam

3 UC San Diego
4 UC Los Angeles

5 Sapienza University of Rome

Abstract. We construct efficient authentication protocols and message-
authentication codes (MACs) whose security can be reduced to the
learning parity with noise (LPN) problem.

Despite a large body of work – starting with the HB protocol of Hopper
and Blum in 2001 – until now it was not even known how to construct
an efficient authentication protocol from LPN which is secure against
man-in-the-middle (MIM) attacks. A MAC implies such a (two-round)
protocol.

1 Introduction

Authentication is among the most basic and important cryptographic tasks. In
the present paper we construct efficient (secret-key) authentication schemes from
the learning parity with noise (LPN) problem. We construct the first efficient
message authentication codes (MACs) from LPN, but also simpler and more
efficient two-round authentication protocols that achieve a notion called active
security. Prior to our work, the only known way to construct an LPN-based MAC
was via a relatively inefficient generic transformation [17] (that works with any
pseudorandom generator), and all interactive LPN-based protocols with security
properties similar to our new protocol required at least three rounds and had a
loose security reduction. Our constructions and techniques diverge significantly
from prior work in the area and will hopefully be of independent interest.

The pursuit of LPN-based authentication is motivated by two disjoint con-
cerns, one theoretical and one practical. On the theoretical side, the LPN prob-
lem provides an attractive basis for provable security [3, 4, 6, 22, 18, 27]. It is

� Funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt Founda-
tion and the German Federal Ministry for Education and Research.

�� Supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Starting
Grant (259668-PSPC).

� � � Supported by NSF CCF-0915675. Research done while visiting CWI Amsterdam.
† Research done while visiting CWI Amsterdam.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 7–26, 2011.
c© International Association for Cryptologic Research 2011

8 E. Kiltz et al.

closely related to the well-studied problem of decoding random linear codes, and
unlike most number-theoretic problems used in cryptography, the LPN problem
does not succumb to known quantum algorithms. On the practical side, LPN-
based authentication schemes are strikingly efficient, requiring relatively few
bit-level operations. Indeed, in their original proposal, Hopper and Blum [18]
suggested that humans could perform the computation in their provably-secure
scheme, even with realistic parameters. The efficiency of LPN-based schemes also
makes them suitable for weak devices like RFID tags, where even evaluating a
blockcipher may be prohibitive.

Each of our theoretical and practical motivations, on its own, would be suffi-
ciently interesting for investigation, but together the combination is particularly
compelling. LPN-based authentication is able to provide a theoretical improve-
ment in terms of provable security in addition to providing better efficiency than
approaches based on more classical symmetric techniques that are not related
to hard problems. Usually we trade one benefit for the other, but here we hope
to get the best of both worlds.

Before describing our contributions in more detail, we start by recalling au-
thentication protocols, the LPN problem, and some of the prior work on which
we build.

Authentication protocols. An authentication protocol is a (shared-key)
protocol where a prover P authenticates itself to a verifier V (in the context of
RFID implementations, we think of P as the “tag” and V as the “reader”). We
recall some of the common definitions for security against impersonation attacks.
A passive attack proceeds in two phases, where in the first phase the adversary
eavesdrops on several interactions between P and V , and then attempts to cause
V to accept in the second phase (where P is no longer available). In an ac-
tive attack, the adversary is additionally allowed to interact with P in the first
phase. The strongest and most realistic attack model is a man-in-the-middle at-
tack (MIM), where the adversary can arbitrarily interact with P and V (with
polynomially many concurrent executions allowed) in the first phase.

The LPN problem. Briefly stated, the LPN problem is to distinguish from
random several “noisy inner products” of random binary vectors with a random
secret vector.

More formally, for τ < 1/2 and a vector x ∈ Z
�
2, define the distribution

Λτ,�(x) on Z
�
2 × Z2 by (r, rTx ⊕ e), where r ∈ Z

�
2 is uniformly random and

e ∈ Z2 is selected according to Berτ , the Bernoulli distribution over Z2 with
parameter τ (i.e. Pr[e = 1] = τ). The LPNτ,� problem is to distinguish an oracle
returning samples from Λτ,�(x), where x ∈ Z

�
2 is random and fixed, from an

oracle returning uniform samples. It was shown by Blum et al. [4] that this is
equivalent to the search version of LPN, where one needs to compute x given
oracle access to Λτ,�(x) (cf. [21, Thm.2] for precise bounds). We note that the
search and decision variants are solvable with a linear in � number of samples
when there is no noise, i.e. when τ = 0, and the best algorithms take time 2�/ log �

when τ > 0 is treated as a constant [5, 6, 23].

Efficient Authentication from Hard Learning Problems 9

Authentication protocols from LPN. Starting with the work of Hopper
and Blum [18], several authentication protocols based on the LPN problem have
been proposed. Their original elegant protocol is simple enough for us to recall
right away. The shared secret key is a binary vector s ∈ Z

�
2. The interaction

consists of two messages. First V sends a random challenge r ∈ Z
�
2, and then P

answers with the bit z = rTs ⊕ e, where e ∈ Z2 is sampled according to Berτ .
Finally, the verifier accepts if z = rTs.

This basic protocol has a large completeness error τ (as V will reject if e = 1)
and soundness error 1/2 (as a random r, z satisfies rT·s = z with probability 1/2).
This can be reduced via sequential or parallel composition. The parallel variant,
denoted HB, is illustrated in Figure 1 (we represent several r with a matrix R
and the noise bits are now arranged in a vector e). The verifier accepts if at
least a τ ′ fraction (where τ < τ ′ < 1/2) of the n basic authentication steps are
correct.

The 2-round HB protocol is provably secure against passive attacks, but ef-
ficient active attacks are known against it. This is unsatisfying because in sev-
eral scenarios, and especially in RFID applications, an adversary will be able
to mount an active attack. Subsequently, Juels and Weis [19] proposed an ef-
ficient 3 round variant of HB, called HB+, and proved it secure against active
attacks. Again the error can be reduced by sequential repetition, and as shown
by Katz, Shin and Smith via a non-trivial analysis, parallel repetition works as
well [20, 21]. The protocol (in its parallel repetition variant) is illustrated in
Figure 2.

Despite a large body of subsequent work1 no improvements in terms of round
complexity, security or tightness of the reduction over HB+ were achieved: 3
round protocols achieving active security

√
ε (assuming LPN is ε-hard) are the

state of the art. In particular, Gilbert et al. [14] showed that HB+ can be broken
by a MIM attack. Several variants HB++ [9], HB∗ [11], HB-MP [24] were proposed
to prevent the particular attack from [14], but all of them were later shown to
be insecure [15]. In [16], a variant HB# was presented which provably resists the
particular attack from [14], but was shown susceptible to a more general MIM
attack [25].

Pτ,n(s ∈ Z
�
2) Vτ ′,n(s ∈ Z

�
2)

R←− R
$← Z

�×n
2

e
$← Bern

τ

z := RT · s⊕ e
z−→ verify: wt(z⊕RT · s) < τ ′ · n

Fig. 1. The HB protocol, secure against passive attacks

1 cf. http://www.ecrypt.eu.org/lightweight/index.php/HB for an incomplete list
of relevant papers.

http://www.ecrypt.eu.org/lightweight/index.php/HB

10 E. Kiltz et al.

Pτ,n(s1, s2) Vτ ′,n(s1, s2)

R1
$← Z

�×n
2

R1−→
R2←− R2

$← Z
�×n
2

e
$← Bern

τ

z := RT
1 · s1 ⊕RT

2 · s2 ⊕ e
z−→ verify:

wt(z⊕RT
1 · s1 ⊕RT

2 · s2) ≤ τ ′ · n

Fig. 2. The HB+ protocol, secure against active attacks

1.1 Our Contribution

We provide new constructions of authentication protocols and even MACs from
LPN. Our first contribution is a two-round authentication protocol secure against
active adversaries (this is mentioned as an open problem in [19]) which more-
over has a tight security reduction (an open problem mentioned in [21]). As a
second contribution, we build two efficient MACs, and thus also get two-round
authentication protocols secure against MIM attacks, from the LPN assumption.
Unlike previous proposals, our constructions are not ad-hoc, and we give a re-
duction to the LPN problem. Our authentication protocol is roughly as efficient
as the HB+ protocol but has twice the key length. Our MACs perform roughly
the same computation as the authentication protocol plus one evaluation of a
pairwise independent permutation of an ≈ 2� bit domain, where � is the length
of an LPN secret.

2-Round Authentication with Active Security. Our first contribution is
a two-round authentication protocol which we prove secure against active attacks
assuming the hardness of the LPN problem. Our protocol diverges considerably
from all previous HB-type protocols [18, 19, 21, 16], and runs counter to the
intuition that the only way to efficiently embed the LPN problem into a two-
round protocol is via an HB-type construction.

We now sketch our protocol. In HB and its two-round variants, the prover
must compute LPN samples of the form RT · s ⊕ e, where R is the challenge
chosen by the verifier in the first message. We take a different approach. Instead
of sending R, we now let the verifier choose a random subset of the bits of s to
act as the “session-key” for this interaction. It represents this subset by sending
a binary vector v ∈ Z

�
2 that acts as a “bit selector” of the secret s, and we

write s↓v for the sub-vector of s which is obtained by deleting all bits from s
where v is 0. (E.g. if s = 111000,v = 011100 then s↓v = 110). The prover then
picks R by itself and computes noisy inner products of the form RT · s↓v ⊕ e.
Curiously, allowing the verifier to choose which bits of s to use in each session
is sufficient to prevent active attacks. We only need to add a few sanity-checks
that no pathological v or R were sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [26]. In
contrast to the active-attack security proof of HB+ [21], our proof does not use

Efficient Authentication from Hard Learning Problems 11

any rewinding techniques. Avoiding rewinding has at least two advantages. First,
the security reduction becomes tight. Second, the proofs also works in a quantum
setting: our protocol is secure against quantum adversaries assuming LPN is
secure against such adversaries. As first observed by van de Graaf [29], classical
proofs using rewinding in general do not translate to the quantum setting (cf.
[31] for a more recent discussion). Let us emphasise that this only means that
there is no security proof for HB+ in the quantum setting, but we do not know
if a quantum attack actually exists.

MAC & Man-In-The-Middle Security. In Section 4, we give two construc-
tions of message authentication codes (MACs) that are secure (formally, un-
forgeable under chosen message attacks) assuming that the LPN problem is
hard. Note that a MAC implies a two-round MIM-secure authentication proto-
col: the verifier chooses a random message as challenge, and the prover returns
the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC.
That is, a MAC tag is of the form φ = (R, z = RT · fs(m) ⊕ e), where the
secret key derivation function fs(m) ∈ Z

�
2 first uniquely encodes the message m

into v ∈ Z
2�
2 of weight � and then returns s↓v by selecting � bits from secret s,

according to v. However, this MAC is not secure: given a MAC tag φ = (R, z)
an adversary can ask verification queries where it sets individual rows of R to
zero until verification fails: if the last row set to zero was the ith, then the ith
bit of fs(m) must be 1. (In fact, the main technical difficulty to build a secure
MAC from LPN is to make sure the secret s does not leak from verification
queries). Our solution is to randomize the mapping f , i.e. use fs(m,b) for some
randomness b and compute the tag as φ = π(R,RT · fs(m,b) ⊕ e,b), where
π is a pairwise independent permutation (contained in the secret key). We can
prove that if LPN is hard then this construction yields a secure MAC. (The
key argument is that, with high probability, all non-trivial verification queries
are inconsistent and hence lead to reject). However, the security reduction to the
LPN problem is quite loose since it has to guess the value v from the adversary’s
forgery. (In the context of identity-based encryption (IBE) a similar idea has been
used to go from selective-ID to full security using “complexity leveraging” [7]).
In our case, however, this still leads to a polynomial security reduction when one
commits to the hardness of the LPN problem at the time of the construction.
(See the first paragraph of §4 for a discussion).

To get a strictly polynomial security reduction (without having to commit to
the hardness of the LPN problem), in our second construction we adapt a tech-
nique originally used by Waters [30] in the context of IBE schemes that has been
applied to lattice based signature [8] and encryption schemes [2]. Concretely, we
instantiate the above MAC construction with a different secret key derivation
function fs(m,b) = s0 ⊕

⊕
i:v[i]=1 si (where v = h(m,b) and h(·) is a pairwise

independent hash). The drawback of our second construction is the larger key-
size. Our security reduction uses a technique from [8, 2] based on encodings with
full-rank differences (FRD) by Cramer and Damgard [10].

12 E. Kiltz et al.

1.2 Efficiency

Figure 3 gives a rough comparison of our new protocol and MACs with the
HB, HB+ protocols and, as a reference, also the classical tree-based GGM con-
struction [17]. The second row in the table specifies the security notion that
is (provably) achieved under the LPNτ,� assumption. λ is a security param-
eter and n denotes the number of “repetitions”. Typical parameters can be
� = 500, λ = 80, n = 250. Computation complexity counts the number of bi-
nary operations over F2. Communication complexity counts the total length of
all exchanged messages2. The last row in the table states the tightness of the
security reduction, i.e. what exact security is achieved (ignoring constants and
higher order terms) assuming the LPNτ,� problem is ε-hard.

The prover and verifier in the HB, HB+ and our new protocols have to perform
Θ(� · n) basic binary operations, assuming the LPNτ,� problem (i.e., LPN with
secrets of length �) is hard. This seems optimal, as Θ(�) operations are necessary
to compute the inner product which generates a single pseudorandom bit. We
will thus consider an authentication protocol or MAC efficient, if it requires
O(� ·n) binary operations. Let us mention that one gets a length-doubling PRG
under the LPNτ,� assumption with Θ(�2) binary operations [12]. Via the classical
GGM construction [17], we obtain a PRF and hence a MAC. This PRF, however,
requires Θ(�2 · λ) operations per invocation (where λ is the size of the domain
of the PRF) which is not very practical. (Recall that � ≈ 500).

Communication vs. Key-Size. For all constructions except GGM, there is a
natural trade-off between communication and key-size, where for any constant
c (1 ≤ c ≤ n), we can decrease communication by a factor of c and increase
key-size by the factor c (cf. the full version [1] for how exactly this can be done).
For the first three protocols in the table, the choice of c does not affect the
computational efficiency, but it does so for our MACs: to compute or verify a

Construction Security Complexity Key-size Reduction
Communication Computation

HB [18] passive (2 rnd) � · n/c Θ(� · n) � · c ε (tight)
HB+ [19] active (3 rnd) � · n · 2/ c Θ(� · n) � · 2 · c √

ε

AUTH § 3 active (2 rnd) � · n · 2.1/c Θ(� · n) � · 4.2 · c ε (tight)
MAC1 § 4.1 MAC → MIM (2 rnd) � · n · 2.1/c Θ(� · n) + PIP � · 12.6 · c √ε ·Q (�)
MAC2 § 4.2 MAC → MIM (2 rnd) � · n · 1.1/c Θ(� · n) + PIP � · λ · c ε ·Q
GGM [17] PRF → MIM (2 rnd) λ Θ(�2 · λ) Θ(�) ε · λ

Fig. 3. A comparison of our new authentication protocol and MACs with the HB, HB+

protocols and the classical GGM construction. The trade-off parameter c, 1 ≤ c ≤ n
and the term PIP will be explained in the “Communication vs. Key-Size” paragraph
below. (�) See discussion in §4.

2 For MACs, we consider the communication one incurs by constructing a MIM secure
2-round protocol from the MAC by having the prover compute the tag on a random
challenge message.

Efficient Authentication from Hard Learning Problems 13

tag one has to evaluate a pairwise independent permutation (PIP) on the entire
tag of length m := Θ(� · n/c).

The standard way to construct a PIP π over Z2m is to define π(x) := a ·
x + b ∈ F2m for random a, b ∈ F2m . Thus the computational cost of evaluating
the PIP is one multiplication of two m bits values: the PIP term in the table
accounts for this complexity. Asymptotically, such a multiplication takes only
O(m log m log log m) time [28, 13], but for small m (like in our scheme) this will
not be faster than using schoolbook multiplication, which takes Θ(m2) time. For
parameters � = 500, n = 250 and trade-off c = n (which minimizes the tag-length
m) we get m ≈ 1200 for MAC1 (i.e., 1200 = 2� plus some statistical security
parameters) and m ≈ 600 for MAC2. Hence, depending on the parameters, the
evaluation of the PIP may be the computational bottleneck of our MACs.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. We will use normal,
bold and capital bold letters like x, x, X to denote single elements, vectors
and matrices over Zq, respectively. For a positive integer k, [k] denotes the set
{1, . . . , k}; [0] is the empty set. For a, b ∈ R,]a, b[= {x ∈ R ; a < x < b}. For a
vector x ∈ Z

m
q , |x| = m denotes the length of x; wt(x) denotes the Hamming

weight of the vector x, i.e. the number of indices i ∈ {1, . . . , |x|} where x[i]
= 0.
The bit-wise XOR of two binary vectors x and y is represented as z = x ⊕ y,
where z[i] = x[i]⊕y[i]. For v ∈ Z

m
2 we denote by v its inverse, i.e. v[i] = 1−v[i]

for all i. For two vectors v ∈ Z
�
2 and x ∈ Z

�
q, we denote by x↓v the vector (of

length wt(v)) which is derived from x by deleting all the bits x[i] where v[i] = 0.
If X ∈ Z

�×m
2 is a matrix, then X↓v denotes the submatrix we get by deleting the

ith row if v[i] = 0. A function in λ is negligible, written negl(λ), if it vanishes
faster than the inverse of any polynomial in λ. An algorithm A is probabilistic
polynomial time (PPT) if A uses some randomness as part of its logic (i.e. A is
probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps.

2.2 Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover
P and a verifier V , both PPT algorithms. Both hold a secret x (generated using
a key-generation algorithm KG executed on the security parameter λ in unary)
that has been shared in an initial phase. After the execution of the authentica-
tion protocol, V outputs either accept or reject. We say that the protocol has
completeness error α if for all secret keys x generated by KG(1λ), the honestly
executed protocol returns reject with probability at most α.

Passive attacks. An authentication protocol is secure against passive attacks,
if there exists no PPT adversary A that can make the verifier return accept with

14 E. Kiltz et al.

non-negligible probability after (passively) observing any number of interactions
between the verifier and prover.

Active attacks. A stronger notion for authentication protocols is security
against active attacks. Here the adversary A runs in two stages. First, she can
interact with the honest prover a polynomial number of times (with concurrent
executions allowed). In the second phase A interacts with the verifier only, and
wins if the verifier returns accept. Here we only give the adversary one shot
to convince the verifier3. An authentication protocol is (t, Q, ε)-secure against
active adversaries if every PPT A, running in time at most t and making Q
queries to the honest prover, has probability at most ε to win the above game.

Man-in-the-middle attacks. The strongest standard security notion for au-
thentication protocols is security against man-in-the-middle (MIM) attacks. Here
the adversary can initially interact (concurrently) with any number of provers
and – unlike in an active attacks – also verifiers. The adversary gets to learn
the verifiers accept/reject decisions. One can construct two-round authentica-
tion schemes which are secure against MIM attacks from basic cryptographic
primitives like MACs, which we define next.

2.3 Message Authentication Codes

A message authentication code MAC = {KG, TAG, VRFY} is a triple of algorithms
with associated key space K, message spaceM, and tag space T .
– Key Generation. The probabilistic key-generation algorithm KG takes as input

a security parameter λ ∈ N (in unary) and outputs a secret key K ∈ K.
– Tagging. The probabilistic authentication algorithm TAG takes as input a

secret key K ∈ K and a message m ∈M and outputs an authentication tag
φ ∈ T .

– Verification. The deterministic verification algorithm VRFY takes as input
a secret key K ∈ K, a message m ∈ M and a tag φ ∈ T and outputs
{accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFY(K,m, φ) = accept iff
TAG(K,m) = φ.

Completeness. We say that MAC has completeness error α if for all m ∈ M
and λ ∈ N

Pr[VRFY(K,m, φ) = reject ; K ← KG(1λ) , φ← TAG(K,m)] ≤ α.

Security. The standard security notion for a MAC is unforgeability under a
chosen message attack (uf-cma). We denote by Advuf−cma

MAC (A, λ, Q), the advan-
tage of the adversary A in forging a message under a chosen message attack for
3 By using a hybrid argument one can show that this implies security even if the

adversary can interact in k ≥ 1 independent instances concurrently (and wins if the
verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.

Efficient Authentication from Hard Learning Problems 15

MAC when used with security parameter λ. Formally this is the probability that
the following experiment outputs 1.

Experiment Expuf−cma
MAC (A, λ, Q)

K ← KG(1λ)
Invoke ATAG(K,·),VRFY(K,·,·) who can make up to Q queries to TAG(K, ·) and
VRFY(K, ·, ·).
Output 1 if A made a query (m, φ) to VRFY(K, ·, ·) where

1. VRFY(K,m, φ) = accept
2. A did not already make the query m to TAG(K, ·)

Output 0 otherwise.

We say that MAC is (t, Q, ε)-secure against uf-cma adversaries if for any A
running in time t in the experiment above, we have Advuf−cma

MAC (A, λ, Q) ≤ ε.

2.4 Hard Learning Problems

Let Berτ be the Bernoulli distribution over Z2 with parameter (bias) τ ∈]0, 1/2[
(i.e., Pr[x = 1] = τ if x ← Berτ). For � ≥ 1, Ber�τ denotes the distribution
over Z

�
2 where each vector consists of � independent samples drawn from Berτ .

Given a secret x ∈ Z
�
2 and τ ∈]0, 1

2 [, we write Λτ,�(x) for the distribution over
Z

�
2×Z2 whose samples are obtained by choosing a vector r $← Z

�
2 and outputting

(r, rT · x⊕ e) with e
$← Berτ .

The LPN assumption, formally defined below, states that it is hard to dis-
tinguish Λτ,�(x) (with a random secret x ∈ Z

�
2) from the uniform distribution.

Definition 1 (Learning Parity with Noise). The (decisional) LPNτ,� prob-
lem is (t, Q, ε)-hard if for every distinguisher D running in time t and making
Q queries,

∣
∣
∣Pr

[
x $← Z

�
2 : DΛτ,�(x) = 1

]
− Pr

[
DU�+1 = 1

]∣∣
∣ ≤ ε.

Below we define the (seemingly) stronger subspace LPN assumption (SLPN for
short) recently introduced in [26]. Here the adversary can ask for inner products
not only with the secret x, but even with A ·x⊕b where A and b can be adap-
tively chosen, but A must have sufficiently large rank. For minimal dimension
d ≤ �, a secret x ∈ Z

�
2 and A ∈ Z

�×�
2 , b ∈ Z

�
2, we define the distribution

Γτ,�,d(x,A,b) =
{

⊥ if rank(A) < d
Λτ,�(A · x⊕ b) otherwise

and let Γτ,�,d(x, ·, ·) denote the oracle which on input A,b outputs a sample
from Γτ,�,d(x,A,b).

Definition 2 (Subspace LPN). Let �, d ∈ Z where d ≤ �. The (decisional)
SLPNτ,�,d problem is (t, Q, ε)-hard if for every distinguisher D running in time
t and making Q queries,

∣
∣
∣Pr

[
x $← Z

�
2 : DΓτ,�,d(x,·,·) = 1

]
− Pr

[
DU�+1(·,·) = 1

]∣
∣
∣ ≤ ε,

16 E. Kiltz et al.

where U�+1(·, ·) on input (A,b) outputs a sample of U�+1 if rank(A) ≥ d and ⊥
otherwise.

The following proposition states that the subspace LPN problem mapping to
dimension d + g is almost as hard as the standard LPN problem with secrets of
length d. The hardness gap is exponentially small in g.

Proposition 1 (From [26]). For any �, d, g ∈ Z (where � ≥ d + g), if the
LPNτ,d problem is (t, Q, ε)-hard then the SLPNτ,�,d+g problem is (t′, Q, ε′)-hard
where

t′ = t− poly(�, Q) ε′ = ε + 2Q/2g+1.

For some of our constructions, we will only need a weaker version of the SLPNτ,�,d

problem that we call subset LPN. As the name suggests, here the adversary does
not ask for inner products with A ·x⊕b for any A (of rank ≥ d), but only with
subsets of x (of size ≥ d). It will be convenient to explicitly define this special
case. For x,v ∈ Z

�
2, let diag(v) ∈ Z

�×�
2 denote the zero matrix with v in the

diagonal, and let

Γ ∗
τ,�,d(x,v) := Γτ,�,d(x, diag(v), 0�) =

{
⊥ if wt(v) < d

Λτ,�(x ∧ v) otherwise.

Definition 3 (Subset LPN). Let �, d ∈ Z where d ≤ �. The SLPN∗
τ,�,d problem

is (t, Q, ε)-hard if for every distinguisher D running in time t and making Q
queries,

∣
∣
∣Pr

[
x $← Z

�
2 : DΓ∗

τ,�,d(x,·) = 1
]
− Pr

[
DU�+1(·) = 1

]∣
∣
∣ ≤ ε,

where U�+1(·) on input v (where wt(v) ≥ d) outputs a sample of U�+1 and ⊥
otherwise.

Remark 1. Γ ∗
τ,�,d(x,v) samples are of the form (r, rT

↓v · x↓v ⊕ e) ∈ Z
�+1
2 , where

e
$← Berτ . To compute the inner product only r↓v ∈ Z

wt(v)
2 is needed, the

remaining bits r↓v ∈ Z
�−wt(v)
2 are irrelevant. We use this observation to improve

the communication complexity (for protocols) or tag length (for MACs), by using
“compressed” samples of the form (r↓v, rT

↓v · x↓v ⊕ e) ∈ Z
wt(v)+1
2 .

3 Two-Round Authentication with Active Security

In this section we describe our new 2-round authentication protocol and prove
its active security under the hardness of the SLPN∗

τ,2�,d problem, where d =
�/(2+γ) for some constant γ > 0. (Concretely, γ = 0.1 should do for all practical
purposes).

Efficient Authentication from Hard Learning Problems 17

– Public parameters. The authentication protocol has the following public pa-
rameters, where τ, τ ′ are constants and �, n depend on the security parameter
λ.
� ∈ N length of the secret key s ∈ Z

2�
2

τ ∈]0, 1/2[parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ �/2)

– Key Generation. Algorithm KG(1λ) samples s $← Z
2�
2 and returns s as the

secret key.
– Authentication Protocol. The 2-round authentication protocol with prover
Pτ,n and verifier Vτ ′,n is given in Figure 4.

Prover Pτ,n(s ∈ Z
2�
2) Verifier Vτ ′,n(s ∈ Z

2�
2)

v←− v
$← {x ∈ Z

2�
2 : wt(x) = �}

if wt(v) 	= � abort

R
$← Z

�×n
2 ; e

$← Bernτ

z := RT · s↓v ⊕ e ∈ Z
n
2

(R,z)−−−→ if rank(R) 	= n reject
if wt(z⊕RT · s↓v) > n · τ ′ reject, else accept

Fig. 4. Two-round authentication protocol AUTH with active security from the LPN
assumption

Theorem 1. For any constant γ > 0, let d = �/(2+γ). If the SLPN∗
τ,2�,d problem

is (t, nQ, ε)-hard then the authentication protocol from Figure 4 is (t′, Q, ε′)-
secure against active adversaries, where for constants cγ , cτ > 0 that depend
only on γ and τ respectively,

t′ = t− poly(Q, �) ε′ = ε + Q · 2−cγ ·� + 2−cτ ·n = ε + 2−Θ(n) .

The protocol has completeness error 2−c′τ ·n where c′τ > 0 depends only on τ .

3.1 Proof of Completeness

For any n ∈ N, τ ∈]0, 1/2[, let

ατ,n := Pr[wt(e) > n · τ ′ : e $← Bernτ] = 2−c′′τ ·n (3.1)

denote the probability that n independent Bernoulli samples with bias τ contain
more than a τ ′ := 1/4 + τ/2 fraction of 1’s. The last equality in eq.(3.1) follows
from the Hoeffding bound, where the constant c′′τ > 0 depends only on τ .

We now prove that the authentication protocol has completeness error α ≤
2−�+n +ατ,n. The verifier performs the following two checks. In the first verifica-
tion step, the verifier rejects if the random matrix R does not have full rank. In
the full version [1] we prove that the probability of this event is ≤ 2−n. Now, let
e := z⊕RT ·s↓v denote the noise added by Pτ,n. Then, in the second verification
step, the verifier rejects if wt(e) > n · τ ′. From equation 3.1, we have that this
happens with probability ατ,n. This completes the proof of completeness.

18 E. Kiltz et al.

3.2 Proof of Security

We first define some terms that will be used later in the security proof. For
a constant γ > 0, let d = �/(2 + γ) (as in Theorem 1). Let α′

�,d denote the
probability that a random substring of length � chosen from a string of length
2� with Hamming weight �, has a Hamming weight less than d. Using the fact
that the expected Hamming weight is �/2 = d(1 + γ/2) = d(1 + Θ(1)), one can
show that there exists a constant cγ > 0 (only depending on γ), such that

α′
�,d :=

∑d−1
i=0

(
�
i

)(
�

�−i

)

(
2�
�

) ≤ 2−cγ ·�. (3.2)

For τ ′ = 1/4 + τ/2, let α′′
τ ′,n denote the probability that a random bitstring

y ∈ Z
n
2 has Hamming weight wt(y) ≤ n · τ ′. From the Hoeffding bound, it

follows that there exists a constant cτ > 0 (only depending on τ), such that

α′′
τ ′,n := 2−n ·

�n·τ ′�∑

i=0

(
n

i

)

≤ 2−cτ ·n. (3.3)

We now prove security of the authentication protocol. Consider an oracle O
which is either the subset LPN oracle Γ ∗

τ,2�,d(x, ·) or U2�+1(·), as defined in
Definition 3. We will construct an adversary BO that uses A (who breaks the
active security of AUTH with advantage ε′) in a black-box way such that:

Pr[BΓ∗
τ,2�,d(x,·) → 1] ≥ ε′ −Q · α′

�,d and Pr[BU2�+1(·) → 1] ≤ α′′
τ ′,n .

Thus BO can distinguish between the two oracles with advantage ε := ε′ − Q ·
α′

�,d − α′′
τ ′,n as claimed in the statement of the Theorem. Below we define BO.

Setup. Initially, BO samples

x∗ $← Z
2�
2 , v∗ $← {y ∈ Z

2�
2 : wt(y) = �}.

The intuition of our simulation below is as follows. Let us first assume O is
a subset LPN oracle Γ ∗

τ,2�,d(x, ·) with secret x. In the first phase we have to
produce answers (R, z) to a query v ∈ {y ∈ Z

2�
2 : wt(y) = �} by A. The

simulated answers have exactly the same distribution as the answers of an
honest prover Pτ,n(s ∈ Z

2�
2) where

s = (x∗ ∧ v∗)⊕ (x ∧ v∗) (3.4)

Thus one part of s’s bits come from x∗, and the other part is from the
unknown secret x (for which we use the oracle O). In the second phase we
give A the challenge v∗. As s↓v∗ = (x∗ ∧v∗)↓v∗ is known, we will be able to
verify if A outputs a valid forgery.

If O is the random oracle U2�+1(·), then after the first phase s↓v∗ = (x∗ ∧
v∗)↓v∗ is information theoretically hidden, and thus A cannot come up with
a valid forgery but with exponentially small probability.

Efficient Authentication from Hard Learning Problems 19

First phase. In the first phase BO invokes A who expects access to Pτ,n(s ∈
Z

2�
2) . We now specify how BO samples the answer (R, z) to a query v ∈
{y ∈ Z

2�
2 : wt(y) = �} made by A. Let

u∗ := v ∧ v∗ u := v ∧ v∗

1. BO queries its oracle n times on the input u. If the oracle’s output is ⊥
(which happens iff wt(u) < d), BO outputs 0 and stops. Otherwise let
R̂1 ∈ Z

2�×n
2 , z1 ∈ Z

n
2 denote the n outputs of the oracle.

2. Sample R̂0
$← Z

2�×n
2 and set z0 = R̂T

0 · (x∗ ∧ u∗).
3. Return (R = R̂↓v ∈ Z

�×n
2 , z = z0 ⊕ z1 ∈ Z

n
2), where R̂ is uniquely

determined by requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.
Second phase. Eventually, A enters the second phase of the active attack,

expecting a challenge from Vτ ′,n(s ∈ Z
2�
2).

1. BO forwards v∗ as the challenge to A.
2. A answers with some (R∗, z∗).
3. BO checks if

rank(R∗) = n and wt(z∗ ⊕R∗T · x∗
↓v∗) ≤ n · τ ′. (3.5)

The output is 1 if both checks succeed and 0 otherwise.

Claim 2. Pr[BU2�+1(·) → 1] ≤ α′′
τ ′,n.

Proof (of Claim). If R∗ does not have full rank then B outputs 0 by definition.
Therefore, we now consider the case where rank(R∗) = n.

The answers (R, z) that the adversary A obtains from BU2�+1(·) are indepen-
dent of x∗ (i.e., z = z0⊕ z1 is uniform as z1 is uniform). Since x∗

↓v∗ is uniformly
random and R∗ has full rank, the vector

y := R∗T · x∗
↓v∗ ⊕ z∗

is uniformly random over Z
n
2 . Thus the probability that the second verification

in eq. (3.5) does not fail is Pr[wt(y) ≤ n · τ ′] = α′′
τ ′,n.

Claim 3. Pr[BΓ∗
τ,2�,d(x,·) → 1] ≥ ε′ −Q · α′

�,d.

Proof (of Claim). We split the proof in two parts. First we show that B outputs
1 with probability ≥ ε′ if the subset LPN oracle accepts subsets of arbitrary
small size (and does not simply output ⊥ on inputs v where wt(v) < d), i.e.,

Pr[BΓ∗
τ,2�,0(x,·) → 1] ≥ ε′. (3.6)

Then we’ll upper bound the gap between the probability that B outputs 1 in the
above case and the probability that B outputs 1 when given access to the oracle
that we are interested in as:

∣
∣
∣Pr[BΓ∗

τ,2�,d(x,·) → 1]− Pr[BΓ∗
τ,2�,0(x,·) → 1]

∣
∣
∣ ≤ Q · α′

�,d. (3.7)

The claim then follows by the triangle inequality from the two equations above.

20 E. Kiltz et al.

Eq. (3.6) holds as:

– The answers (R, z) that BΓ∗
τ,2�,0(x,·) gives to A’s queries in the first phase

of the attack have exactly the same distribution as what A would get when
interacting with an honest prover Pτ,n(s ∈ Z

2�
2) where the “simulated” secret

s is defined in eq.(3.4).
To see this, recall that on a query v from A, BΓ∗

τ,2�,0(x,·) must compute n
SLPN samples (R̂, z = R̂T · (s ∧ v) ⊕ e) and then forward the compressed
version of this samples to A (that is, (R, z = RT · s↓v ⊕ e) where R = R̂↓v,
cf. Remark 1). We next show that the z computed by B indeed have exactly
this distribution. In the first step, B queries its oracle with u = v ∧ v∗ and
obtains noisy inner products (R̂1, z1) with the part of s↓v that contains only
bits from x, i.e.,

z1 = R̂T
1 · (x ∧ u)⊕ e = R̂T

1 · (s ∧ u)⊕ e.

In the second step, B samples n inner products (R̂0, z0) (with no noise) with
the part of s↓v that contains only bits from the known x∗, i.e.,

z0 = R̂T
0 · (x∗ ∧ u∗) = R̂T

0 · (s ∧ u∗).

In the third step, B then generates (R̂, R̂T · (s ∧ v) ⊕ e) from the previous
values where R̂ is defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u⊕u∗,
we get

z = z0 ⊕ z1

= R̂T
0 · (s ∧ u∗)⊕ R̂T

1 · (s ∧ u)⊕ e

= R̂T · (s ∧ v) ⊕ e

– The challenge v∗ sent to A in the second phase of the active attack is uni-
formly random (even given the entire view so far), and therefore has the
same distribution as a challenge in an active attack.

– BΓ∗
τ,2�,0(x,·) outputs 1 if eq.(3.5) holds, which is exactly the case when A’s

response to the challenge was valid. By assumption this probability is at
least ε′.

This concludes the proof of Eq. (3.6). It remains to prove eq.(3.7). Note that
Γ ∗

τ,2�,0(x, ·) behaves exactly like Γ ∗
τ,2�,d(x, ·) as long as one never makes a query

v where wt(v ∧ v∗) < d.
Since v∗ $← {y ∈ Z

2�
2 : wt(y) = �}, for any v, the probability that wt(v ∧

v∗) < d is (by definition) α′
�,d as defined in eq.(3.2). Using the union bound, we

can upper bound the probability that wt(v ∧ v∗) < d for any of the Q different
v’s chosen by the adversary as Q · α′

�,d.

3.3 Avoid Checking

One disadvantage of the protocol in Figure 4, compared to HB style protocols,
is the necessity to check whether the messages exchanged have the right from:

Efficient Authentication from Hard Learning Problems 21

Pτ,n(s ∈ Z
2�
2 ,bv ∈ Z

2�
2 ,bz ∈ Z

n
2) Vτ ′,n(s,bv,bz)

v←− v
$← Z

2�
2

R
$← Z

2�×n
2 ; e

$← Bern
τ

z := RT · (s ∧ (v ⊕ bv))⊕ bz ⊕ e
z,R−−→ if wt(

(
RT · (s ∧ (v ⊕ bv))

)⊕ bz) > n · τ ′

reject otherwise accept

Fig. 5. By blinding the values v, z with secret random vectors bv,bz we can avoid
checking whether wt(v) = � and rank(R) = n as in the protocol from Figure 4

the prover checks if v has weight �, while the verifier must make the even more
expensive check whether R has full rank. Eliminating such verification proce-
dures can be particularly useful if for example the prover is an RFID chip where
even the simple verification that a vector has large weight is expensive. We note
that it is possible to eliminate these checks by blinding the exchanged messages
v and z using random vectors bv ∈ Z

2�
2 and bz ∈ Z

n
2 respectively, as shown in

Figure 5. The security and completeness of this protocol is basically the same
as for the protocol in Figure 5. The security proof is also very similar and is
therefore omitted.

4 Message Authentication Codes

In this section, we construct two message authentication codes whose security
can be reduced to the LPN assumption. Our first construction is based on the 2-
round authentication protocol from Section 3. We prove that if the LPN problem
is ε-hard, then no adversary making Q queries can forge a MAC with probability
more than Θ(

√
ε ·Q). However, the construction has the disadvantage that one

needs to fix the hardness of the LPN problem at the time of the construction,
c.f. Remark 2. Our second construction has no such issues and achieves better
security Θ(ε ·Q). The efficiency of this construction is similar to that of the first
construction, but a larger key is required.

4.1 First Construction

Recall the 2-round authentication protocol from Section 3. In the protocol the
verifier chooses a random challenge subset v. To turn this interactive protocol
into a MAC, we will compute this v from the message m to be authenticated
as v = C(h(m,b)), where h is a pairwise independent hash function, b ∈ Z

ν
2 is

some fresh randomness and C is some encoding scheme. The code C is fixed and
public, while the function h is part of the secret key. The authentication tag φ
is computed in the same manner as the prover’s answer in the authentication
protocol. That is, we sample a random matrix R ∈ Z

�×n
2 and compute a noisy

inner product z := RT · s↓v ⊕ e, where e $← Bernτ . We note that using (R, z) as
an authentication tag would not be secure, and we need to blind these values.

22 E. Kiltz et al.

This is done by applying an (almost) pairwise independent permutation (PIP)
π – which is part of the secret key – to (R, z,b) ∈ Z

�×n+n+ν
2 .

Construction. The message authentication code MAC1 = {KG, TAG, VRFY}
with associated message spaceM is defined as follows.
– Public parameters. MAC1 has the following public parameters.

�, τ, τ ′, n as in the authentication protocol from Section 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Z

μ
2 → Z

2�
2 encoding, where ∀ x
= x′ ∈ Z

μ
2 we have wt(C(x)) = �

and wt(C(x) ⊕ C(x′)) ≥ 0.9�.
– Key generation. Algorithm KG(1λ) samples s $← Z

2�
2 , an (almost) pairwise

independent hash function h : M× Z
ν
2 → Z

μ
2 and a pairwise independent

permutation π over Z
�×n+n+ν
2 . It returns K = (s, h, π) as the secret key.

– Tagging. Given secret key K = (s, h, π) and message m ∈M, algorithm TAG
proceeds as follows.
1. R $← Z

�×n
2 , b $← Z

ν
2 , e $← Bernτ

2. v := C(h(m,b)) ∈ Z
2�
2

3. Return φ := π(R,RT · s↓v ⊕ e,b)
– Verification. On input a secret-key K = (s, h, π), message m ∈ M and tag

φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z

�×n
2 , z ∈ Z

n
2 ,b ∈ Z

ν
2). If rank(R)
= n, then return

reject
2. v := C(h(m,b))
3. If wt(z⊕RT · s↓v) > n · τ ′ return reject, otherwise return accept

Theorem 4. For μ = ν ∈ N, a constant γ > 0 and d := �/(2 + γ), if the
SLPN∗

τ,2�,d problem is (t, nQ, ε)-hard then MAC1 is (t′, Q, ε′)-secure against uf-
cma adversaries, where

t′ ≈ t, ε = min
{

ε′/2− Q2

2μ−2
,

ε′

2μ+1
− 2−Θ(n)

}

.

MAC1 has completeness error 2−cτ ·n where cτ > 0 depends only on τ .

Corollary 1. Choosing μ s.t. 2μ = Q2·24

ε′ in the above theorem, we get ε =
min{ε′/4, (ε′)2/(25Q2)− 2−Θ(n)}. The 2nd term is the minimum here, and solv-
ing for ε′ gives

ε′ :=
√

32 ·Q ·
√

ε + 2−Θ(n). (4.1)

Remark 2 (about μ). Note that to get security as claimed in the above corollary,
we need to choose μ as a function of Q and ε such that 2μ ≈ Q2 · 24/ε′ for ε′

as in eq.(4.1). Of course we can just fix Q (as an upper bound to the number
of queries made by the adversary) and ε (as our guess on the actual hardness
of SLPN∗

τ,2�,d). But a too conservative guess on μ (i.e. choosing μ too small)
will result in a construction whose security is worse than what is claimed in the
above corollary. A too generous guess on the other hand will make the security

Efficient Authentication from Hard Learning Problems 23

reduction meaningless (we don’t have any actual attacks on the MAC for large
μ though).

We now give an intuition for the proof of Theorem 4. For space reasons, a full
proof will only be given in the full version of this paper [1]. Every query (m, φ)
to VRFY and query m to TAG defines a subset v (as computed in the second
step in the definitions of both VRFY and TAG). We say that a forgery (m, φ) is
“fresh” if the v contained in (m, φ) is different from all v’s contained in all the
previous VRFY and TAG queries. The proof makes a case distinction and uses a
different reduction for the two cases where the forgery found by the adversary is
more likely to be fresh, or more likely to be non-fresh. In both cases we consider
a reduction BO which has access to either a uniform oracle O = U or a subset
LPN oracle O = Γ ∗. BO uses an adversary A who can find forgeries for the
MAC to distinguish those cases and thus break the subset LPN assumption. In
the first case, where the first forgery is likely to be non-fresh, we can show
(using the fact that a pairwise independent permutation is used to blind the
tag) that if BO’s oracle is O = U , even a computationally unbounded A cannot
come up with a message/tag pair (m, φ) that contains a non-fresh v. Thus we
can distinguish the cases O = U and O = Γ ∗ by just observing if A ever makes
a VRFY query (m, φ) that contains a non-fresh v (even without being able to
tell if (m, φ) is valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar
argument as in the proof of our authentication protocol in the last section. An
additional difficulty here is that the reduction has to guess the fresh v ∈ Z

μ
2

contained in the first forgery and cannot choose it as in the protocol. This is the
reason why the reduction looses a factor 2μ.

4.2 Second Construction

We now give the construction of another MAC based on the hardness of the
LPN problem. The main difference to MAC1 from the last subsection is the
way we generate the values s(v). In the new construction, we define s(v) :=
s0 ⊕

⊕
i:v[i]=1 si, where each si is a part of the secret key. The construction

uses ideas from Waters’ IBE scheme [30], and parts of the security reduction use
simulation tricks from [8, 2] that we need to adapt to the binary case.

Construction. The message authentication code MAC2 = {KG, TAG, VRFY}
with associated message spaceM is defined as follows.
– Public parameters. MAC2 has the following public parameters.

�, τ, τ ′, n as in the authentication protocol from Section 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness

– Key generation. Algorithm KG(1λ) samples si
$← Z

�
2 (for 0 ≤ i ≤ μ) and

chooses a pairwise independent hash function h : M× Z
ν
2 → Z

μ
2 , as well

as a pairwise independent permutation π over Z
�×n+n+ν
2 . It returns K =

(s0, . . . , sμ, h, π) as the secret key.

24 E. Kiltz et al.

– Tagging. Given secret key K = (s0, . . . , sμ, h, π) and message m ∈ M, algo-
rithm TAG proceeds as follows.
1. R $← Z

�×n
2 , b $← Z

ν
2 , e $← Bernτ

2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. Return φ := π(R,RT · s(v)⊕ e,b)
– Verification. On input a secret-key K = (s0, . . . , sμ, h, π), message m ∈ M

and tag φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z

�×n
2 , z ∈ Z

n
2 ,b ∈ Z

ν
2). If rank(R)
= n, then return

reject
2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. If wt(z⊕RT · s(v)) > n · τ ′ return reject, otherwise return accept

Theorem 5. If the SLPNτ,�,� problem is (t, nQ, ε)-hard, then MAC2 is (t′, Q, ε′)-
secure against uf-cma adversaries, where

t′ ≈ t ε = min
{

ε′/2− Q2

2μ−2
,

ε′

4Q
− 2−Θ(n)

}

.

MAC2 has completeness error 2−cτ ·n where cτ only depends on τ .

We now give an intuition for the proof of Theorem 5. For space reasons, a full
proof will only be given in the full version of this paper [1]. Similar to the proof
of Theorem 4, we distinguish fresh and non-fresh forgeries. Here the new and
interesting case is the fresh forgery. The idea is that in the reduction to the
SLPN problem we define the function s(v) = A(v) · s ⊕ b(v) (where s is the
LPN secret) such that the following holds with non-negligible probability: (i) for
each vi from the TAG queries, A(vi) has full rank � and hence the tags can be
simulated using the provided Γτ,�,�(s, ·, ·) oracle; (ii) for the first fresh forgery
we have A(v) = 0 such that s(v) is independent of s and the reduction can
check the forgery’s correctness. The above two properties allow to maintain the
simulation. The setup of the function s(·) is the crucial step and here we adapt
a technique recently introduced by Boyen [8] based on homomorphic encodings
with full-rank differences that allows us to arbitrarily control the probability
that the above simulation works.

Acknowledgements

Krzysztof would like to thank Vadim Lyubashevsky for many interesting discus-
sions on LPN while being in Tel Aviv and Eyjafjallajökull for making this stay
possible.

Efficient Authentication from Hard Learning Problems 25

References

[1] The full version of this paper will be posted on the Cryptology ePrint Archive,
http://eprint.iacr.org/

[2] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

[3] Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3), 384–
386 (1978)

[4] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

[5] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press,
New York (May 2000)

[6] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

[7] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[8] Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

[9] Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication pro-
tocol secure against some attacks. In: SecPerU, pp. 28–33 (2006)

[10] Cramer, R., Damgard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

[11] Duc, D.N., Kim, K.: Securing HB+ against GRS man-in-the-middle attack. In:
SCIS (2007)

[12] Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as se-
cure as syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

[13] Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
[14] Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB+ - a provably

secure lightweight authentication protocol. Cryptology ePrint Archive, Report
2005/237 (2005), http://eprint.iacr.org/

[15] Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good variants of hB+ are hard to find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008)

[16] Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the security and effi-
ciency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

[17] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33, 792–807 (1986)

[18] Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

[19] Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer,
Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

26 E. Kiltz et al.

[20] Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

[21] Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010)

[22] Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J.
ACM 45(6), 983–1006 (1998)

[23] Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

[24] Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51(9), 2262–2267 (2007)

[25] Ouafi, K., Overbeck, R., Vaudenay, S.: On the security of hB# against a man-in-
the-middle attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

[26] Pietrzak, K.: Subspace LWE (2010) (manuscript)
http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf

[27] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
New York (2005)

[28] Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing
7 (1971)

[29] Van De Graaf, J.: Towards a formal definition of security for quantum protocols.
PhD thesis, Monreal, P.Q., Canada, AAINQ35648 (1998)

[30] Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

[31] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf

	Efficient Authentication from Hard Learning Problems
	Introduction
	Our Contribution
	Efficiency

	Definitions
	Notation
	Authentication Protocols
	Message Authentication Codes
	Hard Learning Problems

	Two-Round Authentication with Active Security
	Proof of Completeness
	Proof of Security
	Avoid Checking

	Message Authentication Codes
	First Construction
	Second Construction

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

