
Towards a Game Theoretic View of

Secure Computation

Gilad Asharov1,�, Ran Canetti2,��, and Carmit Hazay3

1 Department of Computer Science, Bar-Ilan University, Israel
asharog@cs.biu.ac.il

2 Department of Computer Science, Tel-Aviv University, Israel
canetti@tau.ac.il

3 Department of Computer Science, Aarhus University, Denmark
carmit@cs.au.dk

Abstract. We demonstrate how Game Theoretic concepts and formal-
ism can be used to capture cryptographic notions of security. In the re-
stricted but indicative case of two-party protocols in the face of malicious
fail-stop faults, we first show how the traditional notions of secrecy and
correctness of protocols can be captured as properties of Nash equilibria
in games for rational players. Next, we concentrate on fairness. Here we
demonstrate a Game Theoretic notion and two different cryptographic
notions that turn out to all be equivalent. In addition, we provide a sim-
ulation based notion that implies the previous three. All four notions
are weaker than existing cryptographic notions of fairness. In particular,
we show that they can be met in some natural setting where existing
notions of fairness are provably impossible to achieve.

1 Introduction

Both Game Theory and the discipline of cryptographic protocols are dedicated
to understanding the intricacies of collaborative interactions among parties with
conflicting interests. Furthermore, the focal point of both disciplines is the same,
and is algorithmic at nature: designing and analyzing algorithms for parties in
such collaborative situations. However, the two disciplines developed very differ-
ent sets of goals and formalisms. Cryptography focuses on designing algorithms
that allow those who follow them to interact in a way that guarantees some basic
concrete properties, such as secrecy, correctness or fairness, in face of adversarial,
malicious behavior. Game Theory is more open-ended, concerning itself with un-
derstanding algorithmic behaviors of “rational” parties with well-defined goals
in a given situation, and on designing rules of interaction that will “naturally”
lead to behaviors with desirable properties.

Still, in spite of these differences, some very fruitful cross fertilization be-
tween the two disciplines has taken place (see e.g. [26,8]). One very natural

� Supported by the European Research Council as part of the ERC project LAST.
�� Supported by the Check Point Institute for Information Security, BSF, ISF, and

Marie Curie grants.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 426–445, 2011.
c© International Association for Cryptologic Research 2011

Towards a Game Theoretic View of Secure Computation 427

direction is to use cryptographic techniques to solve traditional Game Theoretic
problems. In particular, the works of Dodis et al. [7], Ismalkov et al. [25,24],
Abraham et al. [1] and Halpern and Pass [23] take this path and demonstrate
how a mutli-party protocol using cryptographic techniques can be used to replace
a trusted correlation device or a mediator in mechanism design.

Another line of research is to extend the traditional Game Theoretic for-
malisms to capture, within the context of Game Theory, cryptographic concerns
and ideas that take into account the fact that protocol participants are compu-
tationally bounded, and that computational resources are costly [7,23,21].

Yetanother lineofwork is aimedatusingGameTheoretic conceptsandapproach
to amend traditional cryptographic goals such as secure and fair computation.A fo-
cal point in this direction has been the concept of rational fair exchange of secrets
(also known as rational secret sharing) [22,19,29,27,28,30,9,3]. Here the goal is to
design a protocol for exchanging secrets in a way that “rational players”will be “in-
terested” in following theprotocol,where it is assumed thatplayers are interested in
learning the secret inputs of the other playerswhile preventing others from learning
their own secrets. In fact, it is assumed that the participants have specific prefer-
ences and some quantitative prior knowledge on these preferences of the partici-
pants is known to the protocol designer. Furthermore, such prior knowledge turns
out to be essential in order to get around basic impossibility results [3,6].

These ingenious works demonstrate the benefit in having a joint theory of
protocols for collaborative but competing parties; but at the same time they
underline the basic incompatibility in the two formalisms. For instance, the (pri-
marily Game Theoretic) formalisms used in the works on rational secret sharing
do not seem to naturally capture basic cryptographic concepts, such as semantic
security of the secrets. Instead, these works opt for more simplistic notions that
are not always compatible with traditional cryptographic formalisms. In partic-
ular, existing modeling (that is used both by constructions and by impossibility
results) treats the secret as an atomic unit and consider only the case where
the parties either learnt or did not learn the secret entirely. Unlike traditional
cryptographic modeling, the option where partial information about the secret
is leaked through the execution is disregarded.

This work. We relate the two formalisms. In particular we show how Game The-
oretic formalism and concepts can be used to capture traditional cryptographic
security properties of protocols. We concentrate on the setting of two-party pro-
tocols and fail-stop adversaries. While this setting is admittedly limited, it does
incorporate the core aspects of secrecy, correctness and fairness in face of mali-
cious (i.e., not necessarily “rational”) aborts.

In this setting, we first show Game Theoretic notions of secrecy and cor-
rectness that are equivalent, respectively, to the standard cryptographic notions
of secret and correct evaluation of deterministic functions in the fail-stop set-
ting (see e.g [12]). We then turn to capturing fairness. Here the situation turns
out to be more intricate. We formulate a natural Game Theoretic notion of
fairness, and observe that it is strictly weaker than existing cryptographic no-
tions of fair two-party function evaluation. We then formulate new cryptographic

428 G. Asharov, R. Canetti, and C. Hazay

notions of fairness that are equivalent to this Game Theoretic notion, and a
simulation-based notion of fairness that implies the above three. Furthermore,
we show that these new notions can indeed be realized in some potentially mean-
ingful settings where traditional cryptographic notions are provably unrealizable.

The results in more detail. The basic idea proceeds as follows. We translate a given
protocol into a set of games, in such a way that the protocol satisfies the crypto-
graphic property in question if and only if a certain pair of strategies (derived from
the protocol) are in a (computational) Nash equilibrium in each one of the games.
This allows the cryptographic question to be posed (and answered) in Game The-
oretic language. More precisely, given a protocol, we consider the (extensive form
with incomplete information) game where in each step the relevant party can de-
cide to either continue running the protocol as prescribed, or alteratively abort the
execution. We then ask whether the pair of strategies that instruct the players to
continue the protocol to completion is in a (computational)Nash equilibrium.Each
cryptographicproperty is then captured by an appropriate set of utilities and input
distributions (namely, distributions over the types). In particular:

Secrecy. A given protocol is secret (as in, e.g. [12]) if and only if the strategy that
never aborts the protocol is in a computational Nash equilibrium with respect
to the following set of utilities and distributions over the types. For each pair
of values in the domain, we define a distribution that chooses an input for one
party at random from the pair. The party gets low payoff if the two values
lead to the same output value and yet the other party managed to guess which
of the two inputs was used. It is stressed that this is the first time where a
traditional cryptographic notion of secrecy (in the style of [16]) is captured in
Game Theoretic terms. In particular, the works on rational secret sharing do
not provide this level of secrecy for the secret. (Indeed, the solution approaches
taken there need the secret to be taken from a large domain.)

Correctness. A protocol correctly computes a deterministic function if and only if
the strategy that never aborts the protocol is in a computational Nash equilibrium
withrespect to the setofutilitieswhere theparties gethighpayoffonly if theyoutput
the correct function value on the given inputs (types), or abort before the protocol
starts; in addition, the players get no payoff for incorrect output.

Fairness. Here we make the bulk of our contributions. We first recall the basic
setting: Two parties interact by exchanging messages in order to valuate a func-
tion f on their inputs. The only allowed deviation from the protocol is abortion,
in which event both parties learn that the protocol was aborted. Consequently, a
protocol in this model should specify, in addition to the next message to be sent,
also a prediction of the output value in case the execution is aborted. (Although
the setting makes sense for any function, it may be helpful to keep in mind the
fair exchange function, where the output of each party is the input of the other.)

Current notions of fairness for two party protocols in this model (e.g., [20,18])
require there to be a point in the computation where both parties move from a
state of no knowledge of the output to a full knowledge of it. This is a strong
notion, which is impossible to realize in many situations. Instead, we would like

Towards a Game Theoretic View of Secure Computation 429

to investigate more relaxed notions of fairness, which allow parties to gradually
learn partial information on their desired outputs - but do so in a way that is
“fair”. Indeed, such an approach seems reasonable both from a game theoretic
point of view (as a zero-sum game) and from a cryptographic point of view via
the paradigm of gradual release (see e.g. [4,15,11,20,3] and the references within).

A first thing to note about such a notion of fairness is that it is sensitive to
the potential prior knowledge that the parties may have on each other’s inputs.
Indeed, a “gradual release” protocol that is “fair” without prior knowledge may
become “unfair” in a situation where one of the parties has far more knowledge
about the possible values of the inputs of the second party than vice versa.

We thus explicitly model in our security notions the knowledge that each
party has on the input of the other party. That is, we let each party has, in
addition to its own input, some additional information on the input of the other
party. Furthermore, to simplify matters and put the two parties on equal foot-
ing, we assume that the information that the parties have on the input of the
other consists of two possible values for that input. That is, each party receives
three values: its own input, and two possible values for the input of the other
party. Indeed, such information naturally captures situations where the domain
of possible inputs is small (say, binary). The formalism can also be naturally
extended to deal with domains of small size which is larger than two.

We first sketch our Game Theoretic notion. We consider the following set of
distributions over inputs (types): Say that a quadruple of elements (a0, a1, b0, b1)
in the domain of function f is valid if for all i ∈ {0, 1}, f(a0, bi) �= f(a1, bi) and
f(ai, b0) �= f(ai, b1). For each valid quadruple of values in the domain, we define
a distribution that chooses an input for one party at random from the first
two values, and an input for other party at random from the other two values.
The utility function for a party is the following: When the party aborts the
protocol, each party predicts its output. If the party predicts correctly and the
other one does not, then it gets payoff +1. If it predicts incorrectly and the
other party predicts correctly then it gets payoff -1. Else, it gets payoff 0. We
say that a protocol is Game Theoretically Fair if the strategy that never aborts
the protocol is in a computational Nash equilibrium with respect to the above
utility, applied to both parties, and any distribution from the above family.

We then consider three different cryptographic notions of fairness and inves-
tigate their relationships with the above Game Theoretic notion.

– First, we formulate a simple “game based” notion of fairness that limits
the gain of an arbitrary (i.e., not necessarily “rational”) fail-stop adversary
in a game that closely mimics the above Game Theoretic interaction. The
main difference between the notions is that in the cryptographic setting the
adversary is arbitrary, rather than rational. Still, we show that the notions
are equivalent.

– Next, we show that this notion in fact corresponds to the natural concept
of gradual release. That is, say that a protocol satisfies the gradual release
property if at any round the probability of any party to predict its output
increases only by a negligible amount. We show that a protocol is fair (as in

430 G. Asharov, R. Canetti, and C. Hazay

the above notions) if and only if it satisfies the gradual release property. We
note that the notion of gradual release is in essence the basis of the classic
protocols of Beaver, Goldwasser and Levin [4,15]. It has also been a key
tool in the work of Asharov and Lindell [3]. Due to lack of space we do not
present the definition of gradual release here; see full version [2] for a formal
description.

– Then, we formulate an ideal-model based notion of fairness that allows for
gradual release of secrets. In this notion the ideal functionality accepts a
“sampling algorithm” M from the ideal-model adversary. The functionality
then obtains the inputs from the parties and runs M on these inputs, and
obtains from M the outputs that should be given to the two parties. The
functionality then makes the respective outputs available to the two parties.
(Ie, once the outputs are available, the parties can access them at any time.)
The correctness and fairness guarantees of this interaction clearly depend on
the properties of M . We thus require that M be both “fair” and “correct”,
in the sense that both parties get correct output with roughly equal (and
substantial) probability. We then show that the new simulation based defini-
tion implies the gradual release notion. (We note that the converse does not
necessarily hold with respect to secure computation in the fail-stop model,
even disregarding fairness).

A positive result. Finally, we consider the realizability of this notion. Here, we
first assert that the impossibility results of Cleve and Asharov and Lindell [6,3]
hold even with respect to the new notions, as long as both parties are required to
receive an output. We then observe that our notion is meaningful even in the case
where the parties are not guaranteed to always learn the correct output when
played honestly. Surprisingly, in cases where the parties learn the correct out-
put with probability one half or smaller (i.e., correctness holds with probability
between 0 and 1/2), our simulation-based notion of fairness is in fact achievable
with no set-up or trusted third parties. We demonstrate a family of two-party
protocols, parameterized by this correctness probability, that realize the new
notion of fairness. For instance, for the case that correctness is guaranteed with
probability one half, we design a fair protocol where with probability one half
both parties obtain the correct output, and with probability one half both parties
obtain an incorrect value. An alternative protocol makes sure that each party
obtains a correct output with probability one half, and at each execution exactly
one party obtains the correct output value. These scenarios were not known to
be achievable before (not even by [18]), and may prove to be useful.

On the definitional choices. One question that comes to mind when considering
our modeling is why use plain Nash equilibria to exhibit correspondence between
cryptographic notions and Game Theoretic ones. Why not use, for instance,
stronger notions such as Dominant Strategy, Survival Under Iterated Deletions,
or Subgame Perfect equilibria. It turns out that in our setting of two party
computation with fail-stop faults, Nash equilibria do seem to be the concept that
most naturally corresponds to cryptographic secure protocols. In particular, in

Towards a Game Theoretic View of Secure Computation 431

the fail-stop case any Nash equilibrium is sub-game perfect, or in other words
empty threats do not hold (see more discussion on this point in the next section).

Future work. One interesting challenge is extending the results of this work to
the Byzantine case. For one, in the Byzantine case there are multiple crypto-
graphic notions of security, including various variants of simulation based no-
tions. Capturing these notions using Game Theoretic tools might shed light on
the differences between these cryptographic notions. In particular, it seems that
here the Game Theoretic formalism will have to be extended to capture arbitrary
polynomial time strategies at each decision point.In particular, it seems likely
that more sophisticated Game Theoretic solution concepts such as sub-game
perfect equilibria and computational relaxations thereof [21,31] will be needed.

Another challenge is to extend the notions of fairness presented here to address
also situations where the parties have more general, asymmetric a priori knowledge
on each other’s inputs, and to find solutions that use minimal trust assumptions on
the system. Dealing with the multi-party case is another interesting challenge.

Organization. Section 2 presents cryptographic and Game Theoretic “solution
concepts”. Section 4 presents results regarding fairness: (i) the game theoretic
notion, (ii) the equivalent cryptographic definition, (iii) a new simulation based
definition and, (iv) the study of the fairness definition. The gradual release prop-
erty, its relation to fairness and some more details are found in the full version [2].

2 The Model and Solution Concepts

We review some basic definitions that capture the way we model protocols (or,
equivalently, strategies), as well as the solution concepts we will consider — both
the cryptographic and the game theoretic ones. While most of these definitions
are known, some are new to this work.

2.1 Cryptographic Definitions

We review some standard cryptographic definitions of security for protocols.

The Fail-Stop setting. The setting that we consider in this paper is that of two-
party interaction in the presence of fail-stop faults. In this setting both parties
follow the protocol specification exactly, with the exception that any one of the
parties may, at any time during the computation, decide to stop, or abort the
computation. Specifically, it means that fail-stop adversaries do not change their
initial input for the execution, yet, they may arbitrarily decide on their output.

Cryptographic Security. We present game based definitions that capture the
notions of privacy and correctness. We restrict attention to deterministic func-
tions. By definition [12], the view of the ith party (i ∈ {0, 1}) during an execution
of π on (x0, x1) is denoted viewπ,i(x0, x1, n) and equals (xi, r

i, mi
1, ..., m

i
t), where

ri equals the contents of the ith party’s internal random tape, and mi
j represents

the jth message that it received.

432 G. Asharov, R. Canetti, and C. Hazay

Definition 1 (Privacy). Let f and π be as above. We say that π privately
computes f if the following holds:
1. For every non-uniform ppt adversary A that controls party P0{

viewπ,A(z),0(x0, x1, n)
}

x0,x1,x′
1,y,z∈{0,1}∗,n∈N

c≡ {
viewπ,A(z),0(x0, x

′
1, n)

}
x0,x1,x′

1,z∈{0,1}∗,n∈N

where |x0| = |x1| = |x′
1| and f(x0, x1) = f(x0, x

′
1).

2. For every non-uniform ppt adversary A that controls party P1

{
viewπ,A(z),1(x0, x1, n)

}
x0,x′

0,x1,z∈{0,1}∗,n∈N

c≡ {
viewπ,A(z),1(x′

0, x1, n)
}

x0,x′
0,x1,z∈{0,1}∗,n∈N

where |x0| = |x′
0| = |x1| and f(x0, x1) = f(x′

0, x1).

Definition 2 (Correctness). Let f and π be as above. We say that π correctly
computes f if for all sufficiently large inputs x0 and x1 such that |x0| = |x1| = n,
we have that Pr[outputπ,i ∈ {⊥◦{0, 1}∗, f(x0, x1)}] ≥ 1−μ(n), where outputπ,i �=
⊥ denotes the output returned by Pi upon the completion of π whenever the
strategy of the parties is continue, and μ is a negligible function.

2.2 Game Theoretic Definitions

We review the relevant concepts from Game Theory, and the extensions needed
to put these concepts on equal footing as the cryptographic concepts. Tradition-
ally, a 2-player (normal form, full information) game Γ = ({A0, A1}, {u0, u1})
is determined by specifying, for each player Pi, a set Ai of possible actions and
a utility function ui : A0 × A1 �→ R. Letting A

def= A0 × A1, we refer to a tuple
of actions a = (a0, a1) ∈ A as an outcome. The utility function ui of party Pi

expresses this player’s preferences over outcomes: Pi prefers outcome a to out-
come a′ if and only if ui(a) > ui(a′). A strategy σi for Pi is a distribution on
actions in Ai. Given a strategy vector σ = σ0, σ1, we let ui(σ) be the expected
utility of Pi given that all the parties play according to σ. We continue with a
definition of Nash equilibria:

Definition 3 (Nash equilibria for normal form, complete information
games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let σ = σ0, σ1 be a pair
of strategies as above. Then σ is in a Nash equilibrium if for all i and any strategy
σ′

i it holds that ui(σ′′
0 , σ′′

1) ≤ ui(σ), where σ′′
i = σ′

i and σ′′
1−i = σ1−i.

The above formalism is also naturally extended to the case of extensive form
games, where the parties take turns when taking actions. Another natural ex-
tension is to games with incomplete information. Here each player has an addi-
tional piece of information, called type, that is known only to itself. That is, the
strategy σi now takes as input an additional value xi. To extend the notion of
Nash equilibria to deal with this case, it is assumed that an a priori distribution
on the inputs (types) is known and fixed.

Towards a Game Theoretic View of Secure Computation 433

Definition 4 (Nash equilibria for extensive form, incomplete informa-
tion games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let D be a distribu-
tion over ({0, 1}∗)2. Also, let σ = σ0, σ1 be a pair of extensive-form strategies as
described above. Then σ is in a Nash equilibrium for D if for all i and any strat-
egy σ′

i it holds that ui(x0, x1, σ
′′
0 (x0), σ′′

1 (x1)) ≤ ui(x0, x1, σ0(x0), σ1(x1)), where
(x0, x1) is taken from distribution D, σi(x) denotes the strategy of Pi with type
x, σ′′

i = σ′
i and σ′′

1−i = σ1−i.

Extensions for the cryptographic model. We review the (by now standard) ex-
tensions of the above notions to the case of computationally bounded players.
See e.g. [7,26] for more details. The first step is to model a strategy as an (in-
teractive) probabilistic Turing machine that algorithmically generates the next
move given the type and a sequence of moves so far. Next, in order to capture
computationally bounded behavior (both by the acting party and, more impor-
tantly, by the other party), we move to an asymptotic treatment. That is, we
consider an infinite sequence of games. The third and last step is to relax the no-
tion of “greater or equal to” to “not significantly less than”. This is intended to
compensate for the small inevitable imperfections of cryptographic constructs.
That is, we have:

Definition 5 (Computational Nash equilibria for extensive form, in-
complete inf. games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let
D = {Dn}n∈N be a family of distributions over ({0, 1}∗)2. Let σ = σ0, σ1 be a
pair of ppt extensive-form strategies as described above. Then σ is in a Nash equi-
librium for D if for all sufficiently large n’s, all i and any ppt strategy σ′

i it holds
that ui(n, x0, x1, σ

′′
0 (n, x0), σ′′

1 (n, x1)) ≤ ui(n, x0, x1, σ0(n, x0), σ1(n, x1)) + μ(n),
where (x0, x1) is taken from distribution Dn, σi(x, n) denotes the strategy of Pi

with type x, σ′′
i = σ′

i and σ′′
1−i = σ1−1, and μ is a negligible function.

Our setting. We consider the following setting: At each step, the relevant party
can make a binary decision: Either abort the computation, in which case the other
party is notified that an abort action has been taken, or else continue running
the protocol π scrupulously. The traditional Game Theoretic modeling of games
involving such “exogenous” random choices that are not controllable by the
players involves, introduces additional players (e.g., “Nature”) to the game. In
our case, however, the situation is somewhat different, since the random choices
may be secret, and in addition each player also has access to local state that
is preserved throughout the interaction and may affect the choices. Specifically,
an action may specify a (potentially randomized) algorithm and a configuration.
The outcome of taking this action is that an output of running the said algorithm
from the said configuration, is appended to the history of the execution, and the
new configuration of the algorithm is added to the local history of the player.
More formally:

Definition 6. Let π = (P0, P1) be a two-party protocol (i.e., a pair of Inter-
active Turing Machines). Then, the local history of Pi (for i ∈ {0, 1}), during

434 G. Asharov, R. Canetti, and C. Hazay

an execution of π on input (x0, x1) and internal random tape ri, is denoted by
historyπ,i(x0, x1, n) and equals (xi, r

i, mi
1, . . . , m

i
t), where mi

j represents its jthmes-
sage. The history of π during this execution is captured by (m0

1, m
1
1), ..., (m

0
t , m

1
t)

and is denoted by historyπ. The configuration of π at some point during the inter-
action consists of the local configurations of P0, P1.

Fail-stop games. We consider games of the form Γπ,u = ({A0, A1}, {u0, u1}),
where A0 = A1 = {continue,abort}. The decision is taken before the sending
of each message. That is, first the program πi is run from its current configura-
tion, generating an outgoing message. Next, the party makes a strategic decision
whether to continue or to abort. A continue action by player i means that the
outgoing message generated by πi is added to the history, and the new configu-
ration is added to the local history. An abort action means that a special abort
symbol is added to the configurations of both parties and then both π0 and π1

are run to completion, generating local outputs, and the game ends. We call such
games fail-stop games.

The utility functions in fail-stop games may depend on all the histories: the
joint one, as well as the local histories of both players. In the following sections,
it will be convenient to define utility functions that consider a special field of
the local history, called the local output of a player Pi. We denote this field
by outputπ,i. Denote by σcontinue the strategy that always returns continue.
The basic Game Theoretic property of protocols that we will be investigating is
whether the pair of strategies (σcontinue, σcontinue) is in a (computational) Nash
equilibrium in fail-stop games, with respect to a given set of utilities and input
distributions. That is:

Definition 7 (Nash protocols). Let D be a set of distribution ensembles over
pairs of strings, and let U be a set of extensive-form binary utility functions. A
two-party protocol π is called Nash Protocol with respect to U ,D if, for any u ∈ U
and D ∈ D, the pair of strategies σ = (σcontinue, σcontinue) is in a computational
Nash equilibrium for the fail-stop game Γπ,u and distribution ensemble D.

On subgame perfect equilibria and related solution concepts. An attractive solu-
tion concept for extensive form games (namely, interactive protocols) is subgame
perfect equilibria, which allow for analytical treatment which is not encumbered
by “empty threats”. Furthermore, some variants of this notion that are better
suited to our computational setting have been recently proposed (see [21,31]).
However, we note that in our limited case of fail-stop games any Nash equilib-
rium is subgame perfect. Indeed, once one of the parties aborts the computation
there is no chance for the other party to “retaliate”, hence empty threats are
meaningless. (Recall that the output generation algorithms are not strategic,
only the decision whether to abort is.)

3 Privacy and Correctness in Game Theoretic View

In this section we capture the traditional cryptographic privacy and correctness
properties of protocols using Game Theoretic notions. We restrict attention to

Towards a Game Theoretic View of Secure Computation 435

the fail-stop setting and deterministic functions with a single output. (Fairness
aside, private computation of functions with two distinct outputs can be reduced
to this simpler case; see [12] for more details.)

Privacy in Game Theoretic view. Our starting point is the notion of private
computation. A protocol is private if no (fail-stop) PPT adversary is able to
distinguish any two executions where the adversary’s inputs and outputs are the
same, even when the honest party uses different inputs in the two executions.
Our goal, then, is to define a set of utility functions that preserve this property
for Nash protocols. We therefore restrict ourselves to input distributions over
triples of inputs, where the input given to one of the parties is fixed, whereas
the input of the other party is uniformly chosen from the remaining pair. This
restriction captures the strength of cryptographic (semantic) security: even if a
party knows that the input of the other party can only be one out of two possible
values, the game does not give it the ability to tell which is the case. We then
have a distribution for each such triple.

We turn to defining the utility functions. At first glance it may seem that one
should define privacy by having each party gain whenever it learns something
meaningful on the other party’s private input. Nevertheless, it seems that it is
better to make a partylose if the other party learns anything about its secret
information. Intuitively, the reason is that it must be worthwhile for the party
who holds the data to maintain it a secret. In other words, having the other party
gain any profit when breaking secrecy is irrelevant, since it does not introduce
any incentive for the former party to prevent this leakage. (Note however that
here the utility of a party depends on events that are not visible to it during the
execution.) The following definition formalizes the above.

Definition 8 (Distribution ensemble for privacy). The distribution ensem-
ble for privacy for P0 for a two-party function f is the ensemble Dp

f = {Dp
f,n}n∈N

where Dp
f,n = {Da0,a1,b}a0,a1,b∈{0,1}n,f(a0,b)=f(a1,b), and Da0,a1,b outputs (x, b),

where x
R← (a0, a1).

Distribution ensembles for privacy for P1 are defined analogously.
Let π be a two-party protocol computing a function f . Then, for every n, a, b, c

as above and for every ppt algorithm B, let the augmented protocol for privacy
for π, with guess algorithm B, be the protocol that first runs π, and then runs
B on the local state of π and two additional auxiliary values. We assume that B
outputs a binary value. This value is interpreted as a guess for which of the two
auxiliary values is the input value of the other party.

Definition 9 (Utility function for privacy). Let π be a two-party protocol
and f be a two party function. Then, for every a0, a1, b such that f(a0, b) =
f(a1, b), and for every guessing algorithm B, the utility function for privacy for
party P0, on input x ∈ {a0, a1}, is defined by:

up
0(historyπp

Aug,B,1(x, b, n), a0, a1, b) �→
{−1 if guessπp

Aug,B,1 = g and x = ag

0 otherwise

436 G. Asharov, R. Canetti, and C. Hazay

The utility function for party P1 is defined analogously. Note that if the history
of the execution is empty, ie, no message has been exchanged between the parties,
and the inputs of the parties are taken from a distribution ensemble for privacy,
then up

0 equals at least −1/2. This is due to the fact that P1 can only guess
x with probability at most 1/2. Therefore, intuitively, it will be rational for
P0 to participate in the protocol (rather than to abort at the beginning) only
if (and only if) the other party cannot guess the input of P0 with probability
significantly greater than 1/2. The definition of Game-Theoretic privately is as
follows:

Definition 10 (Game-Theoretic private protocols). Let f and π be as
above. Then, we say that π is Game-Theoretic private for party P0 if πp

Aug,B is
a Nash protocol with respect to up

0, u
p
1 and Dp

f and all valid ppt B.

Game-Theoretic private protocol for P1 is defined analogously. A protocol is
Game-Theoretic private if it is Game-Theoretic private both for P0 and for P1.

Theorem 11. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly (cf. Definition 2). Then, π is Game-
Theoretic private if and only if π privately computes f in the presence of fail-stop
adversaries.

The proof can be found in the full version [2].

Correctness in Game Theoretic view. We continue with a formulation of a utility
function that captures the notion of correctness as formalized in Definition 12.
That is, we show that a protocol correctly computes a deterministic function if
and only if the strategy that never aborts the protocol is in a computational Nash
equilibrium with respect to the set of utilities specified as follows. The parties
get high payoff only if they output the correct function value on the given inputs
(types), or abort before the protocol starts; in addition, the players get no payoff
for incorrect output. More formally, we introduce the set of distributions for
which we will prove the Nash theorem. The distribution ensemble for correctness
is simply the collection of all point distributions on pairs of inputs:

Definition 12 (Distribution ensemble for correctness). Let f be a deter-
ministic two-party function. Then, the distribution ensemble for correctness is the
ensemble Dc

f = {Dc
n}n∈N where Dc

n = {Da,b}a,b∈{0,1}n, and Da,b outputs (a, b)
w.p. 1.

Note that a fail-stop adversary cannot affect the correctness of the protocol as
it plays honestly with the exception that it may abort. Then, upon receiving an
abort message we have the following: (i) either the honest party already learnt
its output and so, correctness should be guaranteed, or, (ii) the honest party
did not learn the output yet, for which it outputs ⊥ together with its guess for
the output (which corresponds to a legal output by Definition 2). Note that this
guess is different than the guess appended in Definition 9 of utility definition for
privacy, as here, we assume that the protocol instructs the honest party how to

Towards a Game Theoretic View of Secure Computation 437

behave in case of an abort. Furthermore, an incorrect protocol in the presence of
fail-stop adversary implies that the protocol is incorrect regardless of the parties’
actions (where the actions are continue or abort).

This suggests the following natural way of modeling a utility function for
correctness: The parties gain a higher utility if they output the correct output,
and lose if they output an incorrect output. Therefore, the continue strategy
would not induce a Nash Equilibrium in case of an incorrect protocol, as the
parties gain a higher utility by not participating in the execution. More formally:

Definition 13 (Utility function for correctness). Let π be a two-party fail-
stop game as above. Then, for every a, b as above the utility function for correctness
for party P0, denoted uc

0, is defined by:

– uc
0(historyφ

π,0) = 1.

– uc
0(outputπ,0, a, b) �→

{
1 if outputπ,0 = f(a, b)
0 otherwise

where historyφ
π,0 denotes the case that the local history of P0 is empty. (Namely,

P0 does not participate in the protocol).

Intuitively, this implies that the protocol is a fail-stop Game if it is correct and
vice versa. A formal statement follows below. uc

1 is defined analogously, with
respect to P1.

Theorem 14. Let f be a deterministic two-party function, and let π a two-party
protocol. Then, π is a Nash protocol with respect to uc

0, u
c
1 and Dc

f if and only if
π correctly computes f in the presence of fail-stop adversaries.

The proof can be found in the full version [2].

4 Exploring Fairness in the Two-Party Setting

Having established the notions of privacy and correctness using Game Theoretic
formalism, our next goal is to capture fairness in this view. However, this turns
out to be tricky, mainly due to the highly “reciprocal” and thus delicate nature
of this notion. To illustrate, consider the simplistic definition for fairness that
requires that one party learns its output if and only if the second party does.
However, as natural as it seems, this definition is lacking since it captures each
party’s output as an atomic unit. As a result, it only considers the cases where
the parties either learnt or did not learn their output entirely, and disregards the
option in which partial information about the output may be gathered through
the execution. So, instead, we would like to have a definition that calls a protocol
fair if at any point in the execution both parties gather, essentially, the same
partial information about their respective outputs.

Motivated by this discussion, we turn to the Game Theoretic setting with
the aim to design a meaningful definition for fairness, as we did for privacy and
correctness. This would, for instance, allow investigating known impossibility
results under a new light. Our starting point is a definition that examines the

438 G. Asharov, R. Canetti, and C. Hazay

information the parties gain about their outputs during the game, where each
party loses nominatively to the success probability of the other party guessing
its output. (This is motivated by the same reasoning as in privacy). In order to
obtain this, we first define a new set of utility functions for fairness for which we
require that the game would be Nash; see Section 4.1 for the complete details.

Having defined fairness for rational parties, we wish to examine its strength
against cryptographic attacks. We therefore introduce a new game-based defini-
tion that formalizes fairness for two-party protocols and is, in fact, equivalent to
the Game Theoretic definition; see Theorem 21.

We then introduce in Section 4.3 a new notion of simulation based definition
for capturing security of protocols that follow our game-based notion of fairness,
specified above. This new notion is necessary as (gamed-based) fair protocols
most likely cannot be simulatable according to the traditional simulation based
definition [12]. We consider the notion of “partial information” in the ideal world
alongside preserving some notion of privacy. We then prove that protocols that
satisfy this new definition are also fair with respect to game-based definition.

Finally, we consider the realizability of our notion of fairness. We then observe
that our notion is meaningful even in the case where parties are not guaranteed to
always learn the output when both parties never abort. Somewhat surprisingly,
in cases where the parties learn the output with probability one half or smaller,
our notion of fairness is in fact achievable with no set-up or trusted third parties.
We demonstrate two-party protocols that realize the new notion in this settings.
We also show that whenever this probability raises above one half, our notion of
fairness cannot be realized at all.

4.1 Fairness in Game Theoretic View

In this section we present our first definition for fairness that captures this no-
tion from a Game Theoretic view. As for privacy and correctness, this involves
definitions for utility functions, input distributions and a concrete fail-stop game
(or the sequence of games). We begin with the description of the input distri-
butions. As specified above, the input of each party is picked from a domain of
size two, where all the outputs are made up of distinct outputs. More formally,

Definition 15 (Collection of distribution ensembles for fairness). Let
f be a two-party function. Let (x0

0, x
1
0, x

0
1, x

1
1, n) be an input tuple such that:

|x0
0| = |x1

0| = |x0
1| = |x1

1| = n, and for every b ∈ {0, 1} it holds that:

– f0(x0
0, x

b
1) �= f0(x1

0, x
b
1) (in each run there are two possible outputs for P0).

– f1(xb
0, x

0
1) �= f1(xb

0, x
1
1), (in each run there are two possible outputs for P1).

Then, a collection of distribution ensembles for fairness Df
f is a collection of dis-

tributions Df
f = {Dx0

0,x1
0,x0

1,x1
1,n}x0

0,x1
0,x0

1,x1
1,n such that for every (x0

0, x
1
0, x

0
1, x

1
1, n)

as above, Dx0
0,x1

0,x0
1,x1

1,n is defined by

(x0, x1)← Dx0
0,x1

0,x0
1,x1

1,n(1n), where x0
R← (x0

0, x
1
0) and x1

R← (x0
1, x

1
1).

Towards a Game Theoretic View of Secure Computation 439

Next, let πB be the protocol, where B = (B0,B1). By this notation, we arti-
ficially separate between the protocol and the predicting algorithms in case of
prematurely abort. More precisely, in the case that P0 prematurely aborts, P1

invokes algorithm B1 on its input, its auxiliary information and the history of
the execution, and outputs whatever B1 does. B0 is defined in a similar manner.
In fact, we can refer to these two algorithms by the instructions of the parties
regarding the values they need to output after each round, capturing the event
of an early abort. We stress these algorithms are embedded within the proto-
col. However, this presentation enables us to capture scenarios where one of the
parties follow the guessing algorithm as specified by the protocol, whereas, the
other party follows an arbitrary algorithm. That is, we can consider protocols
πB′ (with B′ = (B̃0,B1)) that are equivalent to the original protocol πB except
for the fact that P0 guesses its output according to B̃0 instead of B0.

We describe the fairness game ΓπB,uf for some B = (B0,B1). The inputs of the
parties, x0, x1, are selected according to some distribution ensemble Dx0

0,x1
0,x0

1,x1
1

as defined in Definition 15. Then, the parties run the fail-stop game, where their
strategies instruct them in each step whether to abort or continue. In case that
a party Pi aborts, the outputs of both parties are determined by the algorithms
(B0,B1). Let outputπB′ ,i denote the output of Pi in game πB′ , then a utility
function for fairness is defined by:

Definition 16 (Utility function for fairness). Let f be a deterministic two-
party function, and let π be a two-party protocol. Then, for every x0

0, x
1
0, x

0
1, x

1
1, n

as above (cf. Definition 15), for every pair of strategies (σ0, σ1) and for every
ppt B̃0, the utility function for fairness for party P0, denoted by uf

0, is defined
by:

uf
0(σ0, σ1) �→

{
1 if outputπf

B′ ,0 =f0(x0, x1)∧ outputπf
B′ ,1 �= f1(x0, x1)

−1 if outputπf
B′ ,0 �=f0(x0, x1)∧ outputπf

B′ ,1 = f1(x0, x1)
0 otherwise

where x0, x1 are as in Definition 15 and B′ = (B̃0,B1). Moreover, the utility for
P1, uf

1 = 0.

Since the utility function of P1 is fixed, only P1 has no incentive to change its
strategy. Moreover, we consider here the sequence of games where P1 always
guesses its output according to B1, the “original” protocol. This actually means
that P1 always plays as honest, in the cryptographic point of view. We are now
ready to define a protocol that is Game-Theoretic fair for P1 as:

Definition 17 (Game-Theoretic fairness for P1). Let f and πB be as above.
Then, we say that πB is Game-Theoretic fair for party P0 if ΓπB′ ,(uf

0,uf
1)

is a Nash

protocol with respect to (uf
0, u

f
1) and Df

f and all ppt B̃0, where B′ = (B̃0,B1).

Similarly, we define Game-Theoretic fair for party P0, where here we consider all
the protocols πB′ , for all ppt B̃1 and B′ = (B0, B̃1), and the utilities functions
are opposite (that is, the utility for P0 is fixed into zero, whereas the utility
of P1 is modified according to its guess). We conclude with the definition for
Game-Theoretic protocol:

440 G. Asharov, R. Canetti, and C. Hazay

Definition 18 (Game-Theoretic fair protocol). Let f and π be as above.
Them. we say that π is Game-Theoretic fair protocol if it is Game-Theoretic
fair for both P0 and P1.

4.2 A New Indistinguishability-Based Definition of Fairness

We now define a game-based definition (or, an indistinguishability definition) for
fairness in cryptographic settings. Again, as in the game-theoretic settings, we
assume that the protocol instructs the party what to output in case of abortion.
Our definition tests the protocol in a “fail” environment, where each party has
two possible inputs and its effective input is chosen uniformly at random from
this set. Moreover, both parties know the input tuple and the distribution over
the inputs. Before introducing the game-based definition, we first introduce non-
trivial functionalities, to avoid functionalities that one of the parties may know
the correct output without participating.

Definition 19 (Non-trivial functionalities.). Let f be a two-party function.
Then, f is non trivial if for all sufficiently large n’s, there exists an input tu-
ple (x0

0, x
1
0, x

0
1, x

1
1, n) such that |x0

0| = |x1
0| = |x0

1| = |x1
1| = n and {f0(x0, x

b
1),

f0(x0, x
b
1)}b∈{0,1}, {f1(xb

0, x
0
1), f1(xb

0, x
1
1)}b∈{0,1} are distinct values.

We are now ready to introduce our formal definition for fairness:

Definition 20 (Game-based definition for fairness.). Let f be a non-trivial
two-party function, and let π be a two-party protocol. Then, for every input tuple
(cf. Definition 19) and any ppt fail-stop adversary A, we define the following
game:
Game Fairπ,A(x0

0, x
1
0, x

0
1, x

1
1, n):

1. Two bits b0, b1 are picked at random.
2. Protocol π is run on inputs xb0

0 for P0 and xb1
1 for P1, where A sees the view

of Pi∗ .
3. Whenever A outputs a value y, P1−i∗ is given an abort message. (At this

point, P1−i∗ would write its guess for f1−i∗(xb0
0 , xb1

1 , n) on its output tape.)
4. The output of the game is:

– 1 if (i) y = f0(xb0
0 , xb1

1 , n) and (ii) P1−i∗ does not output f1(xb0
0 , xb1

1 , n).
– −1 if (i) y �= f0(xb0

0 , xb1
1 , n) and (ii) P1−i∗ outputs f1(xb0

0 , xb1
1 , n).

– 0 in any other possibility (both parties output correct outputs, or both
parties output incorrect outputs).

We say that π fairly computes f if for every ppt adversary A, there exists a
negligible function μ(·) such that for all sufficiently large inputs it holds that,

E(Fairπ,A(x0
0, x

1
0, x

0
1, x

1
1, n)) ≤ μ(n)

At first sight it may seem that Definition 20 is tailored for the fair exchange
function, i.e., when the parties trade their inputs. This is due to the fact that
the parties’ output completely reveal their inputs. Nevertheless, we note that
the definition does not put any restriction on f in this sense, and is aimed
to capture fairness with respect any nontrivial function. We continue with the
following theorem:

Towards a Game Theoretic View of Secure Computation 441

Theorem 21. Let f be a two-party function and let π be a protocol that com-
putes f correctly. Then, π is Game-Theoretic fair (in the sense of Definition 18),
if and only if π fairly computes f in the presence of fail-stop adversaries, (in the
sense of Definition 20).
The proof for this Theorem can be found in the full version [2].

4.3 A New Notion of Simulation Based Fairness

We formulate a new simulation-based notion of fair two party computation. The
goal is to capture in a simulation-based way the same concept captured by the
previous notions in this section. That is, we wish to allow the parties to obtain
“partial information” on each other’s secrets, as long as the gain of information
is “essentially the same” for both parties.

The basic idea is to consider an ideal functionality (namely, a trusted party)
which, in addition to obtaining from the parties their own inputs and a priori
information on the input of the other party, also obtains from the ideal adversary
(i.e., the simulator), a sampling ppt machine M . The functionality then runs M
on the inputs of the parties and sends the parties the outputs that M returns.
In order for our definition to make sense in the fair setting, we require that
M should be “fair” in the sense that the values obtained by the parties are
correlated with their respective outputs in essentially the same way.

For lack of space, we only sketch the highlights of this definition. See full
details in [2]. We make the following requirements from the machine M :

1. Correctness: We require that y′
0 = f0(x0, x), y′

1 = f1(x′, x1) for some
x, x′, where x0, x1 are the inputs of the parties that were sent to the trusted
party and y′

0, y1 are M ’s outputs. Namely, the sampling machine can never
output a value for some party that is uncorrelated with its input.

2. Fairness: we require that there exists a negligible function μ(·) such that
for all sufficiently large n’s it holds that:

∣
∣
∣
∣Pr [yi∗ = fi∗(x0, x1)]− 1

2

∣
∣
∣
∣ ≤ Pr [y1−i∗ = f1−i∗(x0, x1)]− 1

2
+ μ(n) (1)

where (y0, y1) = M(x0, x1, z0, z1, r), the adversary controls party i∗ and the
probability is taken over the random coins of M .

The definition of security is now the standard one:

Definition 22. Protocol π is said to securely compute f if for every ppt adver-
sary A in the real model, there exists a ppt simulator S in the ideal model, such
that:

{nidealf,S(x)}x∈{0,1}∗ ≡ {realπ,A(x)}x∈{0,1}∗

where the ideal execution uses any (adversatively chosen) sampling machine M
that satisfies the above requirements.

Theorem 23. Let f , π be as above. Then, if π is simulatable (in the sense of
Definition 22), then π is fair with respect to the Game-Based (in the sense of
Definition 20).

442 G. Asharov, R. Canetti, and C. Hazay

4.4 The Feasibility of Our Definition

In this section, we study our new game-based cryptographic definition of fairness
in a cryptographic context. Our starting point is any correct protocol, where both
parties learn their output if playing honestly. We then show, that by relaxing
the (negligibly close to) perfect completeness requirement, which implies that
the parties should (almost) always learn their output if playing honestly, we can
fully characterize the set of two-party protocols according partial correctness.
Informally,

1. In case correctness holds with probability that is non-negligibly greater than
1/2, we present an impossibility result, saying that there does not exists
a fair protocol with this probability of correctness. This implies that the
difficulties in designing fair protocols are already embedded within the fail-
stop setting. Stating differently, these difficulties already emerge whenever
early abort is permitted.

2. On the positive side, in case correctness holds with probability that is smaller
equals to 1/2, we show how to design a fair protocol that meets our notion
of fairness. Specifically, we present a family of such protocols, parameterized
by this probability of correctness. The implications of this is that there may
be still hope for the fail-stop setting with respect to designing fair protocols.

An impossibility result. In this section we demonstrate that our game-based
definition for fairness cannot be achieved for protocols that guarantee correctness
with probability greater than 1/2. Before turning to our main theorem we present
a definition of an α-correct protocol.

Definition 24. Let f be a non-trivial two-party function, and let π be a two-
party protocol. We say that the protocol π is a α-correct for f if there exists
a negligible function μ(·) such that for all sufficiently large x0, x1, n such that
|x0| = |x1| = n,
∣
∣Pr[outputπ,0(x0, x1) = f0(x0, x1) ∧ outputπ,1(x0, x1)=f1(x0, x1, n)]− α

∣
∣ ≤ μ(n)

where outputπ,i(x0, x1) denote the output of party Pi when invoked on input xi,
while P1−i is invoked on x1−i, and both parties are honest.

Our theorem of impossibility:

Theorem 25. Let f be a non-trivial two-party function. Then, for every non-
negligible function ε(·) and every α > 1/2+ε(n), there does not exist an α-correct
protocol which is also fair (in the sense of Definition 20), with a polynomial round
complexity.

A positive result. Interestingly, we show that for relaxed correctness (i.e.,
lower equal than 1/2), there do exist non-trivial functionalities that can be com-
puted fairly in this setting. In the following, we present a fair protocol in which
either both parties learn the correct output together, or alternatively neither

Towards a Game Theoretic View of Secure Computation 443

party obtains a correct result. The case where in each execution exactly one
party learns its correct output can also be achieved with fairness. More gener-
ally, denote by α the probability in which both parties should learn their outputs.
Then, we show that for every α ≤ 1/2, there exists an α-correct protocol that
is also fair, even in the non-simultaneous channel model. This relaxation is nec-
essary to obtain fairness, as higher α values set a threshold for achieving this
property (as shown in Section 4.4). Intuitively, the fact that each party does not
know whether it has the correct output implies that a corrupted party would
not have any incentive to abort after learning its output, since it does not give
the honest party any new information anyway.

The protocol. The protocol is invoked over tuples of inputs with the distribution
of choosing each input randomly out of a known pair. Let x0

0, x
1
0, x

0
1, x

1
1 denote

such an input tuple and denote by xtrue
0

def= f0(xb0
0 , xb1

1), xfalse
0

def= f0(xb0
0 , x1−b1

1),
xtrue

1
def= f1(xb0

0 , xb1
1), and xfalse

1
def= f1(x1−b0

0 , xb1
1).

Then, function fα; formally defined below, sets the output of the parties such
that both learn the correct output with probability α, as required from an α-
correct protocol. Moreover, the parties realize function fα via protocol πα

abort,
which is secure-with-abort.

The Ideal Functionality fα

– Input: P0 inserts b0, x
0
0, x

1
0, x

0
1, x

1
1. P1 inserts b1, x

0
0, x

1
0, x

0
1, x

1
1.

– The function:
• Toss a coin σ that equals 0 with probability 2α, and equals 1 with

probability 1 − 2α.
• If σ = 0 (parties learn same output) do:

∗ Toss another coin τ0 uniformly at random from {0, 1}.
∗ If τ0 = 0: set the output of P0, P1 to be (xtrue

0 , xtrue
1), respectively.

∗ If τ0 = 1: set the output of P0, P1 to be (xfalse
0 , xfalse

1), respectively.
• If σ = 1 (parties learn true and false outputs) do:

∗ Toss another coin τ1 uniformly at random from {0, 1}.
∗ Set the output of Pτ1 to be xtrue

τ1 .
∗ Set the output of P1−τ1 to be xfalse

1−τ1 .

In the protocol, the parties compute the function fα using security-with-abort.
At the end of this computation, the adversary is the first to see the output. In
case that the adversary deicides to abort, the honest party guesses its output at
random from the two optional outputs. Intuitively, fairness is achieved since both
parties learn the correct output with the same probability (1/2). On the other
hand, in case where both parties play honestly, there is a correlation between the
two outputs, as required from an α-correct protocol. For a full description of the
protocol, together with a proof for the following theorem, see the full version [2].

444 G. Asharov, R. Canetti, and C. Hazay

Theorem 26. Let f be a non-trivial two-party function. Then, for every 1/2 ≥
α ≥ 0, protocol πα is an α-correct protocol in the fα-hybrid model, and is sim-
ulatable (in the sense of Definition 22).

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed Computing Meets
Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty
Computation. In: PODC, pp. 53–62 (2006)

2. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure
Computation (full version) (in ePrint)

3. Asharov, G., Lindell, Y.: Utility Dependence in Correct and Fair Rational Secret
Sharing. Journal of Cryptology 24(1), 157–202 (2011)

4. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
FOCS, pp. 468–473 (1989)

5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

6. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors are Faulty.
In: 18th STOC, pp. 364–369 (1986)

7. Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic
Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130.
Springer, Heidelberg (2000)

8. Dodis, Y., Rabin, T.: Cryptography and Game Theory. In: Algorithmic Game
Theory. Cambridge University Press, Cambridge (2007)

9. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in
Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

10. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)
11. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness

and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

12. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987)

14. Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

15. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

16. Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

17. Goldwasser, S., Micali, S., Rachoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Computing 18(1), 186–208 (1989)

18. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC, pp. 413–422 (2008)

19. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

Towards a Game Theoretic View of Secure Computation 445

20. Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

21. Gradwohl, R., Livne, N., Rosen, A.: Sequential Rationality in Cryptographic Pro-
tocols. In: FOCS, pp. 623–632 (2010)

22. Halpern, J., Teague, V.: Efficient Rational Secret Sharing in Standard Communi-
cation Networks. In: 36th STOC, pp. 623–632 (2004)

23. Halpern, J., Pass, R.: Game Theory with Costly Computation. In: ICS, pp. 120–142
(2010)

24. Izmalkov, S., Lepinski, M., Micali, S.: Verifiably Secure Devices. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)

25. Izmalkov, S., Micali, S., Lepinski, M.: Rational Secure Computation and Ideal
Mechanism Design. In: 46th FOCS, pp. 585–595 (2005)

26. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future
Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008)

27. Kol, G., Naor, M.: Games for exchanging information. In: 40th STOC, pp. 423–432
(2008)

28. Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Ex-
changing Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

29. Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in
Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 180–197. Springer, Heidelberg (2006)

30. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an Honest Minority
and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009)

31. Pass, R., Shelat, A.: Renegotiation-Safe Protocols. In: Innovations in Computer
Science, ICS 2011 (2011)

	Towards a Game Theoretic View of Secure Computation
	Introduction
	The Model and Solution Concepts
	Cryptographic Definitions
	Game Theoretic Definitions

	Privacy and Correctness in Game Theoretic View
	Exploring Fairness in the Two-Party Setting
	Fairness in Game Theoretic View
	A New Indistinguishability-Based Definition of Fairness
	A New Notion of Simulation Based Fairness
	The Feasibility of Our Definition

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

