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Abstract. Given an n-bit to n-bit MAC (e.g., a fixed key blockcipher) with MAC
security € against ¢ queries, we design a variable-length MAC achieving MAC
security O(eq poly(n)) against queries of total length gn. In particular, our con-
struction is the first to break the “birthday barrier” for MAC domain extension
from noncompressing primitives, since our security bound is meaningful even for
q = 2" /poly(n) (assuming ¢ is the best possible O(1/2™)). In contrast, the pre-
vious best construction for MAC domain extension for n-bit to n-bit primitives,
due to Dodis and Steinberger [[11], achieved MAC security of O(eq*(log q)?),
which means that g cannot cross the “birthday bound” of on/2,

1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers, such as
AES. In this paper, we will concentrate on the question of designing variable-input-
length (VIL) message authentication codes (MACs) from block ciphers. This question
is very well studied, as we survey below. However, with few exceptions, most existing
constructions and their analyses make the following two assumptions: (a) Pseudoran-
domness: the block cipher is modeled as a pseudorandom permutation (PRP); and (b)
Secrecy of Intermediate Results: the attacker only learns the input/output behavior
of the corresponding VIL-MAC, but does not learn any of the intermediate results. As
observed by Dodis et al. [9, 10, [11], each of these assumptions might either be unnec-
essarily strong, or simply too unrealistic in the following two scenarios.

DOMAIN EXTENSION OF MACS. This is our main question. Since the desired MAC
primitive only needs to be unpredictable, it would be highly desirable to only assume
that the block cipher is unpredictable as well, as opposed to pseudorandom. Indeed, it
seems that assuming the block cipher is unpredictable is a much weaker assumption than
assuming full pseudorandomness: to break the latter, all one needs to do is to predict one
bit of “random-looking” information about the block cipher with probability just a little
over 1/2, while the former requires one to fully compute the value of the block cipher
on a new point with non-trivial probability. For example, in the non-uniform model,
any block cipher (in fact, even non-trivial pseudorandom generator) with an n-bit key
can be very efficiently distinguished from random with advantage 2-"/2 [8,11]. To the
best of our knowledge, no such lower bounds are known for breaking unpredictability,
meaning that close to 27" MAC security might be possible for such a block cipher.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 323 2011.
(© International Association for Cryptologic Research 2011



324 Y. Dodis and J. Steinberger

To put it differently, while we hope that existing block ciphers are actually PRPs, it
seems quite reasonable to assume that their MAC security could be noticeably better
than their PRP security. Thus, if we can design a VIL-MAC whose security is tightly
related to the unpredictability of the block cipher, this VIL-MAC might be more secure
than the MAC whose analysis assumes the pseudorandomness of the cipher.

Of course, one might hope that existing block-cipher based VIL-MACs, such as
CBC-MAC [5, 26] and HMAC [3, I6] (whose compression function, under the hood,
also uses a block cipher), are already secure when the block cipher is unpredictable.
Unfortunately, as detailed in Dodis et al. [9, [10, [11] (see especially [11]]), this is not
the case: with few exceptions mentioned shortly, standard constructions are completely
insecure when instantiated with unpredictable block ciphers, — often despite having
simple proofs of security when one models the block cipher as a PRP.

RESILIENCE TO SIDE-CHANNELS. Even if the block cipher is a very good PRP, in
practice many cryptographic implementations fall prey to various forms of side-channel
attacks [[13,115, 116,117, 28], where the physical realization of a cryptographic primitive
can leak additional information, such as the computation-time, power-consumption, ra-
diation/noise/heat emission etc. Thus, hardware people are paying special attention to
securing block ciphers, such as AES, against such side-channel attacks. Although this
might be a daunting task, it appears reasonable that specialized hardware implementa-
tions of AES might be pretty resistent to common forms of side-channel attacks. On the
other hand, when the block cipher is used in some more complicated application, such
as the design of a VIL-MAGC, it might be hard or impractical to design a specialized
“leakage-resilient” implementation for each such application, instead of doing so for a
single, fixed-length building block (such as AES). Motivated by these considerations,
Dodis et al. [9, 110, [11] proposed the model where the internals of the block cipher im-
plementation are assumed secure, as usual, but all the external input/output behavior of
the block cipher could potentially leak to the attacker (say, via side-channel attack).

To give this model a name while simultaneously making it more general, we say that a
construction of a (deterministic) MAC P using some lower level keyed primitive(s) f is
transparent (w.r.t. f), if (a) the key for P only consists of one of more keys for f; (b) when
making a query M to P, the attacker notonly gets P (M), butalso gets all the input/output
pairs for every call to f made during the evaluation of P(M). Since P is deterministic
and all keys reside “inside” f, this indeed provides the attacker with the entire transcript
of P(M), short of what is happening during the calls to f. Coming back to our setting,
we are interested in building a transparent VIL-MAC out of a block cipher. As we will
see, this question is highly non-trivial even if the block cipher is assumed pseudorandom,
let alone unpredictable. Indeed, as observed by [9, (10, [11]], most existing VIL-MACs,
including CBC-MAC [5,126]] and HMAC [3, |6]], are completely insecure when the inter-
mediate results are leaked, even when instantiated with a PRP.

OUR MAIN RESULT. Motivated by these applications, we ask the same question as
Dodis et al. [9, 10, 11], which simultaneously addresses both of the above concerns.
Question 1. Can one build a transparent VIL-MAC P out of a block cipher f which is
only assumed unpredictable?

As already mentioned, most standard VIL-MACs built from block ciphers fail to ad-
dress either MAC-preservation or transparency (even with a PRP). So we turn to the
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known secure approaches. As it turns out, all of them followed the principle of An and
Bellare [2] of first constructing a compressing Weakly Collision Resistant (WCRﬂ hash
function F' from m to n bits, for some fixed m > n, then iterating this fixed-length WCR
F using some variant of the Merkle-Damgard transform, and finally composing the out-
put with a freshly keyed block cipher. As argued by Preneel and van Oorschot [27], any
construction of this kind can achieve at most birthday security. Translated to the MAC-
preservation setting, even if our original MAC f cannot be forged with probability € using
q queries, the resulting VIL-MAC P cannot have security greater than O(e¢?), meaning
that ¢ cannot cross 27/2 evenis e is assumed to be (the best possible) 1/2™.

Interestingly, even achieving birthday security turns out to be challenging when the
block cipher is only assumed unpredictable. The first secure construction of Dodis and
Puniya [[10], based on the Feistel network, only achieved security O(c¢%). The bound
was then improved to O(eq*) by Dodis, Pietrzak and Puniya [9] using the “enhanced
CBC” construction. Finally, Dodis and Steinberger [11] showed (nearly) birthday se-
curity O(qu) using a new analysis of the Shrimpton-Stam [29] compression function.
All these constructions were also transparent.

We ask the question if it is possible to build (hopefully, transparent) VIL-MACs from
block ciphers with beyond birthday security. Most ambitiously, if f cannot be forged
with probability € using g queries, we would like to build a VIL-MAC P with security
close to O(eq), meaning our security is meaningful even for values of ¢ approaching
2™, provided ¢ is assumed to be (the best possible) 1/2™. As our main result, we answer
this question in the affirmative. Informally (see Sectiond] for more details),

Theorem 1. There exist fixed polynomials a(n) and b(n) and a construction P of a
transparent VIL-MAC from an n-bit block cipher f, such that the ratdd of Pisa(n) and
the MAC security &' of P against q' queries of total length gqn is at most O(b(n)qe),
where € is the MAC-security of [ against q queries. In particular, this bound is mean-
ingful for q (and q') approaching 2.

OTHER RELATED WORK. Aswe mentioned, the question of achieving beyond-birthday
security for building VIL-MACs from unpredictable block ciphers was open prior to our
work. In fact, the only domain extension results for MACs with beyond birthday secu-
rity we obtained just recently by Yasuda [31] and Lee and Steinberger [18]. However,
both results started with a shrinking MAC from strictly more than 2n to n bits. As we
will see below, building such shrinking MACs (with beyond birthday security) from
unpredictable block ciphers is highly non-trivial, and will be one of the key challenges
we resolve on route to proving our main result. (However, we note that our result does
nof] simply reduce to building a 2n to n bit MAC from an n-bit to n-bit MAC.)
Another related area is that of for building VIL pseudorandom functions (PRFs)
with beyond birthday security from PRPs, or more generally, fixed-length PRFs.
In particular, several such constructions were found by [, 4, 20, 123, 24, 25]. However,
it is easy to see that none of them work either for the MAC domain extension, or even

"' WCR security states that it is infeasible to find collisions in F' given oracle access to F'.

2 Defined as the average number of calls to the block cipher f per n-bit input block.

3 We cannot just build (say) a beyond birthday 3n to n bit MAC and then compose it with the
beyond birthday VIL-MAC constructions of [[18,31], as each construction would lose a factor
of ¢ in exact security, resulting in already known “birthday” security O(eg?).
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for building VIL-MAC:S (let alone PRFs) when the intermediate computation results are
leaked. For example, the corollary of our main result, giving a transparent VIL-MAC
from a (g, £p)-secure PRP with security £,,, + O(g/2"), appears to be new.

Perhaps the closest work to ours is a paper of Maurer and Tessaro [[22], who showed
how to build a variable-length random oracle from an n-to-n bit random oracle. Their
construction, analyzed in the indifferentiability framework of [7, [21]], has fixed poly-
nomial rate (just like our construction) and security 2! =" for any § > 0. However,
the two settings appear incomparable. On the one hand, the Maurer-Tessaro paper has
to build an “indifferentiability simulator” for their setting (which required “input ex-
traction” not required in our setting). However, they assumed a truly random function,
and could use various probability calculations in deriving their result. In our setting,
the block cipher is only unpredictable, and we have to make an explicit reduction to
unforgeability, which makes matters substantially more delicate.

1.1 Outline of Our Construction

Our construction is quite involved, although we abstract it into several self-contained
layers. As a side benefit, some of these layers (see below) are of potentially independent
interest, and could be used for other purposes.

STEP 1: REDUCING TO 3n-T0-2n WCR AND 2n-TO-n MAC. First, we notice that
the above mentioned birthday limitation [27] of the An-Bellare approach no longer
holds provided we build a WCR hash function F' from m to 2n bits (for some m > 2n,
say m = 3n). Namely, “birthday on 2n bits” might still give good enough security 2.
However, even if we succeed in doing so with beyond birthday security (which will
be one of our key results), we now also have to build a “final” MAC G from 2n to n
bits. Thus, using known techniques but with different parameters (see Lemma [Il and
Figure[T)), our problem reduces to building beyond birthday WCR F from 3n to 2n bits
and a beyond birthday MAC G from 2n to n bits.

STEP 2: REDUCING TO COVER-FREE FUNCTIONS. It so turns out that both of these
tasks—i.e. the construction of the WCR function F' and the construction of the MAC
G—can be achieved from a more powerful (keyed) primitive which we introduce, called a
cover-free function. Informally, akeyed function g from {0, 1}™ (recall, we will have m =
3n) to ({0,1}™)* (for some parameter t), where g(s) = (21(5), ..., z:(s)) € ({0,1}")?,
is called cover-free (CF) if, given oracle access to g, it is infeasible to produce a sequence
of (distinct) queries s1, $2, ..., 54 € {0,1}™ such that, for some 1 < j < ¢, z¢(s;) €
{ze(s1),...,2e(sj—1)} forall £ € [¢]. In other words, for each new query s, one of the
coordinates of g(s;) must be “uncovered” by previous coordinates of that index. The
case t = 1 corresponds to the standard m to n bit WCR security, however better (and in
particular beyond-birthday) cover-free security can be achieved with larger values of ¢.

First, as depicted on the left side of Figure[2l we can compose a CF g with ¢ indepen-
dently keyed block ciphers f1, ... f:, by setting G(s) = f1(z1) @ ... @ fi(z:), where
9(s) = (z1,...,2:). We show that the resulting G is easily seen to be a secure MAC
from m bits to n bits. More precisely, the MAC security of G is tightly related to the
CF security of g and the MAC security of f (see Lemma[2). Intuitively, a new forgery
for G will give a new forgery for at least one of the f,’s, by the CF security of g. Since
m = 3n > 2n, this already gives us the needed 2n to n bit MAC.
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More interestingly, as depicted on the right side of Figure[2] we show how to compose
a CF function g with 2¢ independently keyed block ciphers fi,... f+, fi,..., f{ (in a
variant of the “double-pipe” mode of [[19]) to get a WCR function F' from m bits to 2n
bits. Moreover, the WCR security of F' will be “roughly” O(e’ + g¢), where ¢’ is the CF
security of g and ¢ is the MAC security of f (see Lemma[3). Thus, as long as we can build
CF g with security &’ close to O(ge), the WCR security of F' will also be such. The proof of
this result critically uses the bin-filling bin-guessing games of Dodis and Steinberger [[11].

Summarizing the discussion above, our task of building a VIL-MAC P thus reduces
to building a CF function g with security ' =~ O(ge) where ¢ is the MAC security of the
underlying n-bit to n-bit primitive f. We also wish to build the CF function g with ¢ as
small as possible (which is relevant since the efficiency of P, including the size of the
key, is proportional to t). See Lemmal4l

STEP 3: BUILDING CF FUNCTIONS. This is, by far, the most involved part of our con-
struction. The inspiration for this construction came from the afore-mentioned paper of
Maurer and Tessaro [22], who showed how to build a VIL random oracle from an n-to-n
bit random oracle. As we mentioned already, the setting of [22] is incomparable to our
setting, especially since we cannot assume that our block cipher is (pseudo)random.
However, our actual construction of CF functions is quite similar to the correspond-
ing “cover-free” layer of the construction of [22], although we made some changes
(actually, simplifications) to the construction of [22], and our analyses are completely
different. Our CF construction has three layers which we informally call combinatorial,
cryptographic and algebraic. An impatient reader can look at Figure [3] for a concrete
example (with ¢ = 3 and other notation explained below).

STEP 3A: USING INPUT-RESTRICTING FAMILIES. This purely combinatorial step is
precisely the same as in [22], and is also the most expensive step of our construction.
We will use an unkeyed function E from {0, 1} to ({0,1}")" (here r is a parameter)
called an input-restricting function family (IRFF; see Definition[]). Intuitively, an IRFF
has the property that after any g queries s; ... s4 to £, the number () of new inputs s
for which the r-tuple E(s) is covered by the union of E(s1), ..., E(sq) is “not much
larger” than ¢, and this should be true even when ¢ is almost 2™. Recall, our final goal
is to ensure that it is hard to produce any such new input s. While IRFFs do not (and
cannot!ﬂ quite get us there, they ensure that there are not that many choices for the
attacker of which new inputs to “cover” by old inputs.

We discuss the known constructions of IRFFs in Sectiond], but mention that the con-
structions of IRFFs are completely combinatorial, and closely related to constructions
of certain types of highly unbalanced bipartite expander graphs. While well-studied,
these types of expander graphs are not yet completely understood, and in particular the
“extreme” setting of parameters relevant to our case has not been the object of much
attention. Therefore, although the existence of IRFFs with “good parameters” is known
(and lead to the asymptotic bound claimed in Theorem [I)), the concrete constructions
are pretty inefficient. Nevertheless, as these parameters and efficiency are improved by
future research in computational complexity, so will our final construction.

4 Because they do not have a key and do not rely on any computational assumptions.
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STEPS 3B-C: ADDING CONFUSION AND MIXING. Recall, IRFFs convert our input s
into an r-tuple (. . .., 2, ). To get the final ¢-tuple (z1, . . ., z¢) for our CF function g, we
can imagine repeating the following two-step precedure (steps 3b and 3c) ¢ times, each
time with a freshly keyed block cipher F' (so the total number of block cipher keys for g
will be t). First, we pass all r values x1, . . ., x, through the block cipher F (“confusion
step”), getting the values y;. . .., y,. This is the cryptographic “confusion” layer. Then
we algebraically “mix” all 2r values (z1 ... %, y1 . . . yr) through a fixed, degree-r mul-
tivariate polynomial p (see Equation[3)). This gives us one of the ¢ outputs values 27 . . . z;.

The intuition for these last two steps is hard to explain (and, indeed, our analysis is
quite involved). At a high level, the confusion step (evaluating F(x1) ... F(z,)) is cer-
tainly needed to make a reduction to unforgeability, while the mixing step uses the fact
that low-degree polynomials have few roots, so a “non-trivial” collision on the output
of p will enable one to guess one of the values gy, we are trying to forge. Of course, the
difficulty is to make a successful guess for when and where the non-trivial collision to p
will happen, with probability roughly 1/Q), where (Q is the guarantee given by IRFF (so
@ is close to ). It turns out, there is a trivial strategy to make such a guess with “birth-
day” probability 1/Q? =~ 1/¢?, even when t = 1. Of course, such probability is too low,
and this is why we repeat steps 3b-c ¢ times, for an appropriately chosen parameter t.
We then show that the required guessing strategy can be reduced to the analysis of two
bin-filling bin-guessing games. The relevance of such games to the domain extension
of MACs was first introduced by Dodis and Steinberger [11]. Unfortunately, these two
games are significantly more complicated than the game of [[11] or than the game used
in the proof of Lemma[3l Nevertheless, as our most involved technical step, we show
that both games can be won with probability roughly 1/(Q - Q*/*). Thus, by choosing
t > log Q (say, t = n), we get the desired bound O(1/Q) = O(1/q).

EFFICIENCY. Our final VIL-MAC construction uses 5¢ keys for f, where we recall that
the minimal value of ¢ ~ log ¢ < n. Theoretically, we can reduce key material down
to a single key for f, by “keying” f via fixed, reserved input bits. Namely, to simulate
(at most) 5n keys this way we need to reserve [log,(5n)] bits of input (and “truncate”
the same number of bits in the output), effectively reducing the block length of the
construction from n down to n’ = n — [log,(5n)]. Due to the output truncation, we
now also need to guess the missing [log,(5n)] output bits not returned by our forger,
incurring an (acceptable) additional O(n) degradation of the security bound.

Our final VIL-MAC also achieves rate roughly proportionalto O(rt) = O(rn). Achiev
ing a low value of r (coming from the combinatorial IRFF part) is more problematic (see
Section[), although existentially one can also make » = O(n). So the best rate we can
hope to achieve using our approach is O(n?). Therefore, we primarily view our result as
an important feasibility result, much like the result of Maurer and Tessaro [22]. Never-
theless, our feasibility opens the door for future, potentially more efficient constructions.

2 Preliminaries

A keyed function family is amap f : {0,1}"* x Dom(f) — {0,1}" where Dom(f) C
{0,1}*. The strings in {0, 1}" are the keys of f and we write fi(z) for f(k,z) for
k € {0,1}* and x € Dom(f).
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For MACs we consider the following game, where A is a halting adversary with
oracle access to fj:

Game Forge(A, f):
k{0,135 (2,y) « A%
If v € Dom(f), fr(z) = y and x was not a query of A then A
wins, otherwise A looses.
We define the insecurity of f as a MAC to be

InSec’? (T, q, p) = max Pr[A wins Forge(A, f)]

where the maximum is taken over all adversaries A making at most ¢ queries of total
combined length at most p (after padding, if any) and of “running time” at most 7'. The
“running time” is defined to be the total running time of the experiment, including the
time necessary to compute the answers to A’s queries. Moreover we “bill” the final ver-
ification query fi(z) (and its length) to A (so that A must in fact make ¢ — 1 queries if
x € Dom(f); seen another way, we ask A to verify its own forgery, if it attempts one).
When f has fixed input length (i.e. Dom(f) = {0, 1} for some m € N) then pisafunc-
tion of ¢ and it is convenient to elide the last argument, writing InSec’;*(T’, ¢) instead
of InSec’s*“(T', ¢, ).

The weak collision resistance or “wcr” security of a function family f is measured
as the maximum advantage of an adversary in finding a collision for a randomly keyed
member of f when given oracle access to this member. We write InSec}“" (7', ¢) for the
maximum such advantage over all adversaries A making at most ¢ queries of running
time at most 7. (Here we do not measure the total query length, as we will only measure
the wer security of fixed input length constructions.) We skip a formal pseudocode-
based definition of this standard notion, but mention that the adversary must make the
queries verifying its collision, not merely output a colliding pair.

Given a block length n and a message x, we let Pad,, () be a suffix-free encoding
of x of length a multiple of n bits (for example, the standard Merkle-Damgéard padding
of x, which appends the length of x as the last blockﬁ). Furthermore, given two keyed
compression functions F' : {0, 1} x {0,1}3" — {0,1}*", G : {0,1}"2 x {0,1}*" —
{0, 1}™ we define a keyed function MD[F, G] : {0,1}"*t%2 x {0,1}* — {0,1}" by

MDIF, Gli: k3 (2) = Gs (Frr (|| Fir (mp—1 - - - Fiz (21[]0%™) -+ -)))

where Pad,,(z) = 15 --- 2 and each x; has n bits, for all k¥ € {0,1}%1 k% €
{0,1}"2 (see Fig. ).
The proof of the following (standard) lemma is given in in the full version [12]:

Lemma 1. Let F: {0,117 x{0,1}3" — {0,1}2", G : {0,1}"2x{0,1}2" — {0,1}",
and consider MD[F, G) as a function of key space {0, 1}*1752_ Then, for q = u/n,

InSecy151p,; (T G, 1) < InSecy® (T, q) + InSec;™ (T, q)

Informally speaking, Lemma[lreduces our task to building, from an n-bit to n-bit prim-
itive f, compression functions F' and G such that F' has beyond-birthday wcr security

5 This limits the message length to at most 2" blocks, but this is not a serious limitation for
practical values of n.
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Fig. 1. A high-level view of our construction MD[F, G]. The input z is padded in a suffix-free
manner into n-bit blocks 1, ..., zp. All wires shown carry n-bit values. F; KEoC {0, 1}3" —
{0,1}*" and Gy : {0,1}*" — {0,1}" are compression functions keyed by independent keys
kT, k.

and G has beyond-birthday mac security, where these securities must be based only the
mac security of f (i.e., breaking the wer security of F' must imply breaking the mac
security of f, and breaking the mac security of G must likewise imply breaking the
mac security of f).

To the latter end we introduce in this paper the notion of a cover-free keyed function
family g : {0,1}* x {0,1}™ — ({0, 1}™)!. Here t is a parameter of the definition and
we write the output of gx () as (2¥(x), ..., 2F(z)) € ({0,1}")! where z¥(z) € {0,1}"
for each 4; later we will simply write (z1(z), ..., z:(x)) when the dependence on a key
k is understood. In the cover-free game, an adversary adaptively queries g on distinct
points s1, S2,... € {0,1}", and wins if for some j each block of output of gi(s;) is
“covered” by a previous output, in the sense that 2 (s;) € {z(s;) i < j}, 1 <<t
The following game formalizes this:

Game Cover(4, g):
k—{0,1}%
If A% makes distinct queries s1, ..., sq € {0,1}™ to gi such that
28 (s;) € {28 (s;) 1 i < j}, 1 <<t forsomej < g,
Then A wins; Otherwise, A looses.

We define the cover-free (CF) insecurity of g as

InSec,”" (T, q) := max Pr[A wins Cover(A4, g)]

where the maximum is taken over all adversaries A making at most ¢ queries and of run-
ning time at most 7', with the same conventions as above on the running time. We (infor-
mally) say that a function family is cover-free to mean it has small cover-free insecurity.

Given a (cover-free) function family g : {0,1}* x {0,1}" — ({0,1}")" where
the ¢-th block of gy, is given by the function 2z} : {0,1}™ — {0,1}" and a function
family f : {0,1}* x {0,1}" — {0,1}" we define the composed function family
fog:{0, 11" 5 {0,1}™ — {0,1}" by

t

(f 0 9)khr ke (5) = EP Fre (26 (s))

(=1
where k£ € {0,1}" and kq,...,k € {0, 1}"”"/, and kkq - - - k; is a shorthand for the
concatenation of k, k1, . .., k;. See Figure 2l We also define a parallel composition
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Fig. 2. On the left, the composition (f o g)kk,...k, : {0,1}™ — {0, 1}". On the right, the parallel
composition (fog)kkl,,,ktk/l,,,k; :{0,1}™ — {0,1}*>".

fog:{0,1}+25" 5 £0 1} — {0,1}2" of f and g, defined by

(fo Dby keky -k (8) = (f © @rekey -k, (S)|(f © 9y oobr (5)-

In other words, f o g is simply the concatenation of two functions f o g instantiated with
the same g-key but independent f-keys.

Recall that our construction MD[F, ] takes as parameters keyed compression func-
tions F: {0, 1}%1x {0,1}*" — {0,1}?>" and G : {0, 1}"2 x {0,1}?" — {0, 1}". Given
a cover-free function family g : {0, 1}" x {0,1}3" — ({0,1}")" and a function family
£:{0,1}% x {0,1}" — {0,1}", we will set k1 = k + 2tx’, ko = k + tr, and define

Fiz(s) = (fog)k; (s) (1)
Gz (r) = (fog)kz (0"[|r) )

forall s € {0,1}", r € {0,1}?", kf € {0,1}"1, k3 € {0,1}"2. The specification
of our construction is thus now reduced to defining the cover-free function family g.
We note that the n-bit to n-bit function family f is a parameter of the scheme (not
constructed from any lower-level primitive) whereas g must be instantiated from f, and
its cover-free security reduced to the mac security of f; see the next section for details
on the construction of g.

Recall that, by Lemma [Il we are interested in bounding InSecy“ (T, q) and
InSec;*“(T', q) in terms of InSec}**(T', q). Towards this goal, we give two lemmas
that upper bound InSec¥s; (7', ¢) and InSec’5, (T, ¢) as a function of InSec;”" (T, )
and InSec’s**(T', ¢). The proofs of both lemmas are given in the full version [12].

Lemma 2. Let g : {0,1}* x {0,1}™ — ({0,1}")?, f : {0, 1}"”"/ x {0,1}" — {0, 1}™
Then

InSec’s; (T, q) < InSec™ (T, q) +t - InSec’?*“(T', q).
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Lemma 3. Let g : {0,1}" x {0,1}™ — ({0,1}")¢, f : {0, 1}’””/ x {0,1}" — {0,1}™
Then

InSec’S (T, q) < InSec;™ (T, q) + 2tqlog q - InSec’* (T + O(q), q).

(We note that, unlike Lemmas [1] and 2] the proof of Lemma [3 is not a triviality. In
particular, it requires the analysis of a balls-and-bins game of the type used in [11].)
Combining Lemmas[I] 2land 3] we directly obtain:

Lemma 4. Let g : {0,1}% x {0,1}*" — ({0,1}")¢, f: {0,1}* x {0,1}" — {0,1}"
andlet F, G be as in (M), @). Then, if ¢ = pu/n,

InSec\i151p.; (T, G jt) < 2-InSec”™ (T, q) + (2tqlog g + ) - InSec’t** (T + 0(q),q)

LemmaMlreduces our problem to constructing the cover-free function family g from the
function family f such that InSec;,”"*" (7', ¢) can be bounded in terms of InSec*“(7’, ¢).
This is the topic of the next section, and the paper’s main technical achievement.

When a keyed function is built from a smaller primitive, where the function’s key
consists of a finite set of keys for the smaller primitive (which is potentially called
several times with different keys), the notions of MAC, WCR and cover-free securities
naturally extend to a transparent model, where the adversary receives a full transcript
of the function’s computation at each query, up to calls to the primitive (namely, calls to
the lower-level primitive appear as oracle calls in the transcript, so as not to reveal the
primitive’s keys). In fact, all results and proofs of this paper can be (easily) interpreted
and are valid in this stronger “transparent” model. However, to keep the presentation
simple, we will not further remind this from here on.

3 Building Cover-Free Function Families from MACs

This section contains our main result, the construction of a cover-free function family
based on n-bit to n-bit primitives, that achieves beyond-birthday security assuming only
good MAC security from the primitives. We note in passing that an unkeyed function g :
{0,1}™ — ({0,1}™)* cannot be cover-free against information-theoretic adversaries
unless ¢2™ > 2™ or unless ¢ is as large as the desired query security, which gives values
of ¢ that are too large to be practical for most settings.

Our construction uses the notion of an input-restricting function family (IRFF), in-
troduced by Maurer and Tessaro [22]. The following definition is slightly modified for
our purposes.

Definition 1. Let K = K (n) < 2™ and let m > n. A (m,n,r, 8, K)-IRFF is a set £ of
Sfunctions En, ..., E. : {0,1}™ — {0, 1}" such that (i) v > 2 and Ey(s) # En:(s) for
all s € {0,1}™and all h # I, (ii) for all s # s’ € {0,1}™ there exists h € {1,...,r}
such that Ey(s) # En(s'), and (iii) for any subsetU C {0, 1}" such that |[U| < rK we
have

[{s € {0,1}™ : Ey(s) €U forall h =1...r}| < 5U|.
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B_’L
Bl
B—l

Fig. 3. Illustration of the cover-free function Z%;;! : {0,1}™ — ({0,1}")" for parameters
r = 2, t = 3. Additional wires not shown on the diagram carry the input of each F" to the ¢-th
copy of p.

The constructions of input-restricting function families are discussed in Section ]

Our cover-free function family is also adapted from [22]. The construction takes
as parameters m > n as well as integers 7,t > 1 and a (m,n,r,d, K)-IRFF & =
{E1,...,E.}. Let F! ... F! be n-bit to n-bit primitives (later to be instantiated as
members of function family f : {0,1}* x {0,1}"™ — {0, 1}™, possibly fixed-key block-
ciphers). The construction also uses a (concrete, unkeyed) function p : {0,1}?™" —
{0, 1}™ described below. Let Z£;"! : {0,1}™ — ({0,1}™)" be defined by

2350 (s) = (21(s), - 2(9))

where
20(s) = p(E1(s), ..., Ex(s), FY(EL(s)), ..., F(E.(s)))

for1 < ¢ < t (see Figure[3). From an’f";f we obtain a keyed function family of signature

{0,1}*% x {0,1}™ — ({0, 1}™)* by instantiating each F* with a member of a function

family f : {0,1}* x {0,1}™ — {0, 1}"; however, we opt for the unkeyed notation (in

which F!, ... F? are implicitly keyed) when possible to reduce notational overhead.
As for the function p, it is the polynomial

r

.
p($17-~-79€7-7y17~-~,y7-)ZZiny; (3)

j=11i=1

where x1, ..., y, are n-bit strings treated as elements of the field Fo». The only prop-
erties of p that matter are the two following:

I. Invertibility. For any 1 < j < r and any values x1,...,2¥Y1,-..,¥j—1,
Yj+1,--+»Yr» 2 € Fan such that z1,..., 2, are not all zero, there are few val-
ues y; such that p(z1,...,2y,¥1,...,Yr) = 2, and these values y; are efficiently
enumerable.
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II. Collision Invertibility. For any 1 < j, 7/ < r and any values xz1,...,7,,
Yty Yj—15 Yj+15---5Yrs m/17 (R ,J/',/r, ?/17 s 7y.;"717y.;"+17 s 7.%/« € ]FQ'”' such
that (z1,...,2,) # (2, ..,z ) there are few values y; = y’, such that

p($17-~-7337-7yl7~-~7y7-) :p(x/177m;7yi77y;)7

and these values are efficiently enumerable.

Both properties are easily verifiable from the fact that p(z1,..., 2., 41,...,y,) IS @
polynomial of y; of the type ¢ + z1y; + - -+ + 2y, where ¢ does not depend on y;.
Maurer and Tessaro use a different construction instead of p which does not obviously
satisfy either property above, that requires enlarging the set of functions {F*} to a set
{F*v} where v ranges from 1 to [m/n + 1].

To state our main theorem, let InvTime(&, ¢) be the amount of time required to list
the values {s € {0,1}™ : Fj,(s) = vand E,(s) € U forh # hg} for any given
ho € [r], v € {0,1}™ and set i C {0, 1} such that |I/| < rq. We have:

Theorem 2. Let € be a (m,n,r,d, K)-IRFE let f : {0,1}" x {0,1}" — {0,1}" bea
function family, and consider Zf,{f;f as a keyed function family of key space {0,1}"* by
setting ' = fy, forany ky - - - ky € {0, 1}%*. Then

InSec; ' (T, q) < 6rQt3Q"" - InSec** (Tac, q) 4)

AR
forany q < K, where QQ = qrd and
Tae = T + O(Qt) + qrinvTime(E, q) + RootTime,(n)

where RootTime,.(n) is the time required to find all the roots of a polynomial of degree

rin a field of size Fon. In particular, when t = n and g < 2™ /(rd), we have
InSecCZCg?;Lt (T,q) < (12r%6n3) - ¢ InSec’t ™ (Thac, q)

Proof. Let A’ be an adversary for the game Cover(-, Z£;";") that runs in time 7" and that

has success probability € 4. It suffices to design an adversary B for the game Forge(-, f)

with advantage at least

ea (6rQE*QYN) ™!

and that runs in time Ty 4.

B has access to a random member fy, of f. B chooses ¢t random keys ki,...,k; €
{0,1}", and selects a random index ¢ € [t]. Then B simulates A’ with oracle Z5;";f,
instantianting the function F¢ with fy, if £ # ; and instantianting F® with fy,, using
its oracle. Moreover B proceeds to “forget” the value of £, treats each of the functions
F' as an oracle, and tries to forge any one of them (predicting their output on an un-
queried input), making only one such forgery attempt during the game. Since B has
chance 1/t of forging F% if it does make a correct forgery, it suffices for B to make
such a forgetful forgery with chance at least

ea (6rQPQYN) ™!

in order for it to forge f, with chance at least € 4/ (6rQt3Q/*) 1.
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It is easier to consider a modified version of A’, which we call simply A, that directly
issues F-queries rather than Zf,;”;f—queries; more precisely, A issues a sequence of
queries %1, . .., Ty Where ¢ < gr and each x; € {0,1}"; B answers the query z; with
the tuple (F!(z;),...,F*(z;)). We can assume A never makes the same query twice.
Welet Q; = {z;:j <i}andletS; = {s € {0,1}" : Ep(s) € Q; for1 < h < r} for
0 <1 < ¢ (with Qg = Sy = ). Note that

|Sil <S¢ <1Qyld < gré =Q

by the input-restricting property of £. We also let AS; = S;\S;—1 for 1 < i < ¢
and put z,(C) = {z¢(s) : s € C} forany C C {0,1}"™ (which B can compute after
it answers A’s i-th query as long as C C ;). We say A “wins the generous cover-free
game” at the i-th query if there exists an s € S; such that z¢(s) € z,(S;\{s}) for
1 < ¢ < t. Clearly, there exists an A of same running time as A’ whose advantage ¢ 4
in the generous game is at least as great as €4+, since A can simply simulate A’ and
ask the various F-queries needed to compute the answers to A’’s queries; by definition,
A wins if A" wins Cover(A’, Z&;"!). (It is easy to check that if A’ makes (distinct)
queries z1,...z; € {0,1}"™ such that z¢(s;) € {z¢(s;) : ¢ < j}, then A wins the
generous cover-free game by the time it has finished asking the queries necessary to
compute the answer to the query s; of A’.) Thus it is sufficient to have B forge one of
the F-functions with probability at least £ 4 (6rQt>Q'/*)~1. We now view B as simply
answering A’s F-queries (as opposed to computing answers to Zf,;f;f—queries) though
in reality B is running the whole computation, including the simulation of A’ by A.

We view each value s € S; as a “bin” with ¢ “slots”; the ¢-th slot of bin s “receives
a ball” or “becomes full” at query j > 7 if s € S; (namely, if the bin already exists at
that point), if z¢(s) € z¢(S;\{s}), and if either s ¢ S;_1 or z;(s) ¢ z¢(Sj—1\{s}).
Once a bin receives a ball in a slot, the slot remains full. A slot cannot receive more than
one ball, and bins are never removed; we note that no bins exist at the start, and that
| AS;| bins are added at the i-th query. Under these definitions, A wins the “generous”
cover-free game precisely if some bin becomes full (i.e., all its slots become full). It is
helpful to picture A and B as playing an adversarial game in which A wins if it fills a
bin without B forging one of the functions F', ..., F, and where B wins otherwise (in
fact, we may even picture A as choosing the answers to its queries, while B observes
and tries to guess an answer before it is revealed).

We say that ball £ of abin s € AS; is “early” if z¢(s) € z¢(S;\{s}) and “late” oth-
erwise; thus a ball is early if and only if it is added to a bin at the same A-query which
creates the bin. B plays one of two different forging strategies with equal probability.
The first strategy is designed to prevent too many early balls from appearing in bins
while the second strategy is designed to prevent A from filling a bin (the second strat-
egy only functions well if not too many early balls appear in bins, whence the necessity
of the first strategy). We name the two strategies “early prevention” and “late preven-
tion”; despite these names, we emphasize the two strategies are not played sequentially;
instead, B flips a coin at the start to decide which strategy to use.

We start by describing B’s early prevention strategy. Let ) = ¢rd; as noted above,
Q > |Sy1, s0 @ is an upper bound for the total number of bins created during the
game. The goal of B’s early prevention strategy is to prevent A from creating, for every
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1 < k < t, Q'"%* or more bins that each have k or more early balls in them. In
other words, we only require this strategy to work (i.e. forge a function F* with “good
enough” probability) if there is some 1 < k < t such that Q' ~*/* or more bins are
created with £ or more early balls in them.

We model the early prevention strategy via a slightly simplified balls-in-bins game
described below. To connect this balls-in-bins game with the “real” game played by B
and A, it is helpful to first review the process via which bins are created and early balls
are added to them. Consider a query x; made by A. Then

AS; = {s€{0,1}" : Ep,(s) = x; for some hg € [r] and E},(s) € Q;_1 for h # ho}

and the elements of AS; are the new bins created by this query. Each bin s € AS;
has ¢ slots and the “value” z;(s) of the ¢-th slot of s is revealed when B makes the
query F(z;); after the value z(s) is revealed, an early ball is added to the /-th slot of s
according to whether there exists an s’ € S;\{s} such that z;(s) = z¢(s") or not (notice
that z,(s’) is known at this point for all 8" € S;). Thus, the process of filling the newly
created bins with early balls consists in ¢ “phases” (the queries F!(z;),..., F(z;),
which are made sequentially by B), where the /-th phase simultaneously reveals the
values of the /-th slots of all the new bins, and whether these slots receive early balls or
not. The following balls-in-bins game thus abstracts the process of creation of new bins
and early balls:

‘EARLY PREVENTION’ BALLS-AND-BINS GAME. This game is played between two
adversaries A and B. Parameters are integers ¢, ¢’, Q > 1. Rules are as follows:

— The game proceeds in ¢’ rounds. At round 7, A announces some number v; > 0 of
bins such that ngi v; < Q.

— At the beginning of each round the v; bins are empty. Each bin has ¢ slots. Each
round consists of ¢ phases. At the /-th phase, A reveals which of the v; bins have
their /-th slot “filled” by a “ball”.

— Before each phase of each round, B is allowed to secretly predict a bin that will
receive a ball at that phase; B wins if it makes a correct guess, but it is only allowed
to make one guess during the entire game.

— Let by,; be the number of bins that receive k or more balls at round ¢, and let
b, = ZZ bi.; where the sum is taken over all the rounds. Then A is required to fill
bins such that b;, > Qlfk/t for at least one value of k, 1 < k < t.

In the full version [12] we exhibit a strategy for B that gives it at least (£2Q'/*)~!
chance of winning the above game, regardless of A’s strategy. Thus, if Q*~*/* or more
bins each receive k or more early balls for some 1 < k < ¢, and if B uses this strategy, B
has chance (t2Q"/*)~ of correctly predicting, before the answer to some query F*(z;)
is given, that the value returned by this query will result in slot £ of some (specific)
bin s € AS; receiving an early ball. To guess F¢(x;), B further chooses a random
s € S;\{s}, and solves z,(s) = z¢(s") in order to guess F*(z;) (since s receives an
early ball in slot ¢ precisely when there exists an s’ € S;\{s} such that z¢(s) = z¢(s)).
To see that z;(s) = z¢(s’) is really “solvable” two different cases must be considered,
according to whether s’ € AS; or not. If s’ ¢ AS; then s’ was created by an earlier
A-query and the value of its slots are known, in particular the value zy(s") of its ¢-th slot
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is known. Let xj, = Ep(s) for 1 < h < r, let hg € [r] be the unique index such that
wh, = x; and let y, = F*(z},) for 1 < h < r. Then all the values 1, ..., 2, yq, - - -,
y,- are known to B except for the value y;, , which it needs to guess using the equation

p(xla"wxﬂyla"'ayr):Zf(sl)' (5)

By condition (i) of Definition[Il (z1, ..., z,) # (0,...,0) so, by the ‘Invertibility” prop-
erty of p, there are few values y,, that solve (3). More precisely, since p(z1,...,¥,)isa
nonzero polynomial of degree at most in y;, , B has to choose from the at most r roots of
p(x1,...,y,) — ze(s"), where z¢(s’) is just a constant. In the second case, s’ € AS; and
z¢(s") is not known (like z¢(s), it is about to be revealed). Let 2}, = Ej(s’), let h{, € [r]
be the unique index such that m’% = x; and lety}, = F¥(x}) for 1 < h < r. Thenall the
values 2, ..., 2}, v}, ..., y. are known to B except y;%, and B needs to solve

p(x:l?""x'r?yl?"'?yr) :p(xa""’x’ll"7y€l""?y;") (6)

(this is z(s) = ze(s")) for yy, . v, (or at least for y;, ). But y,, = v}, ; since xp, =
:ﬂ’% = x;; also, by the injectivity of £, (x1, ..., z,) # (2], ...,.), so it follows by the
‘Collision Invertibility” property of p that there are few values y,, = y;% solving (6); in
fact these are the at most r different roots of p(z1, . ..,y,) — p(z], ..., y,), considered
as a polynomial in y,, = y;%. The term RootTime,.(n) in Theorem [l accounts for B’s
root-finding costs, which are incurred only once in the computation.

Naturally, B’s further guessing of s’ and of the correct root y;,, erodes its probability
of making a correct forgery even it has correctly guessed an early ball is about to be
added to a bin slot, but it is easy to bound this erosion: B has chance at least 1/|S;| >
1/@Q of correctly guessing s’ and chance at least 1/r of correctly guessing the root.
Thus, if Ql_k’/ ¢ or more bins each receive k or more early balls for some 1 < k < t
and if B is using its ‘early prevention’ strategy (which we have just finished describing),

then B has chance at least 1

TQt2Q1 /t
of forging. As B uses this strategy with probability %, we can therefore assume that
fewer than Q' %/ bins receive k early balls for every 1 < k < t, or else B already
reaches the requisite probability of success of & 4 (6rQt2Q/*) 1.

We now discuss B’s ‘late prevention’ strategy. Here B attempts to prevent A from
filling a bin with ¢ balls by guessing the arrival of late balls. We note that, if a query
F*(x;) results in some late ball being placed in the /-th slot of bin s, then s ¢ AS; (by
definition of ‘late’) and so the values z1(s),. .., z:(s) are already known prior to the
answer of the query F*(z;). Moreover the fact that the query F*(z;) results in a late
ball appearing in bin s means there is some s’ € AS; such that () Ep,(s') = «; for
some ho € [r], (ii) the queries F*(E},(s")) have already been maded for A # hg, and
(iii) z¢(s) = z¢(s’) (the value z(s") will become known when F*(z;) is answered).
Let 2} = Ey(s)),..., @, = Ex(s') (so 2}, = x;) and g} = F(a}), ...y, = F¥(a}),

% This means A has made the queries Ey,(s") for h # ho so that, in fact, all queries FY (En(s")
for 1 < ¢ < tand h # ho have already been made (not just £’ = £).
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all of which are known to B except y’ho. Then, if B has correctly guessed a late ball is
going to appear in the ¢-th slot of bin s and has correctly guessed the value of s € AS;,
it can predict F¢(x;) by solving

p(flf/l,...,flj;,yll,...,y;):Z[(S) (7)

for y;m, for which there are at most 7 solutions. (This is the second (and last) place
we require the ‘Invertibility’ property of p.) Given these observations, the following
balls-and-bins game clearly models B’s ‘late prevention’ task, up to but not including
guessing the root of ([@):

‘LATE PREVENTION’ BALLS-AND-BINS GAME. This game is played between two
adversaries A and B. Parameters are integers ¢, ¢’, @ > 1. Rules are as follows:

— The game involves “bins” with ¢ slots each, where each slot can contain either
contain a ball or not. At the beginning of the game, there are no bins. Bins are
added to the game as described below, and never removed.

— The game proceeds in ¢’ rounds, each of which consists of ¢ “phases”.

— Atthe beginning of round ¢, A announces some number v; > 0 such that > j<i Vj <
Q. If v; = 0, the round is skipped.

— At phase £ of round i, 1 < ¢ < t, A chooses a subset (possibly empty) of the
currently existing bins that do not yet have a ball in their ¢-th slot, and places balls
in all of their ¢-th slots, simultaneously. Moreover, A labels each ball placed with
a number from 1 to v;. (Multiple balls with the same label are allowed, and not all
labels are required to appear.)

— At the end of round i, A introduces v; new bins to the game, each possibly al-
ready containing some balls. Throughout the game, the total number of new bins
introduced with k& or more balls already in them must be less than Q' ~*/* for all
1<k<t.

— Before each phase of each round, B is allowed to secretly predict a bin that will
receive a ball at that phase and a label for that ball; B wins if it guesses both
correctly. It is only allowed to make one guess during the game.

— A must fill some bin with ¢ balls by the end of the game.

We note that the new bins introduced at the end of round ¢ correspond to the elements
of AS; and that v; corresponds to |AS;|. The “label” for a ball placed in a bin s at
phase ¢ corresponds to an element s* € AS; such that z,(s) = z,(s’), discussed above.
(In the ‘real game’ between B and A several such elements s’ may exist, so that more
accurate modelization would allow A to choose a nonempty list of labels rather than a
single label for each ball; however, seeking to minimize the guessing advantage of B,
A would automatically make each of these lists a singleton anyway.)

In the full version [12] we exhibit a strategy for B in the ‘late prevention’ game that
succeeds with probability (3Qt2Q"/ )~ regardless of A’s strategy. The ‘late preven-
tion’ strategy of B consists simply of coupling the B-strategy mentioned above with a
guessing of the root of (7). Thus, as long as fewer than Q'~*/* bins receive k or more
early balls for 1 < k£ < ¢, as long as A fills some bins with ¢ balls and as long as B uses
its late prevention strategy, B has chance at least

1
3IrQt2Q1/t
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of forging. Since B uses the ‘late prevention’ strategy with probability %, this concludes
the proof.

4 Implications

Replacing g in Lemma [ by our cover-free function Zﬁ;,r;f and using Theorem [2] with
m = 3n, we obtain:

Theorem 3. Let € be a (3n,n,r,0, K)-IRFE let f : {0,1}" x {0,1}" — {0,1}",
and consider Z5"'" as a keyed function family of key space {0, 1}** like in Theorem[2l

3n,n
Define F, G by @), @) with g = Zg;:; Then
InSecyisS o oy (T, G, 1) < 12rQt°Q"" - InSec’ ™ (Tyac, q) (8)

+ (2tqlogq +t) - InSect* (T + 0(q),q)
where ¢ = p/nand Q = qrd as long as ¢ < K, and where
Tac = T + O(Qt) + qrinvTime(E, q) + RootTime,.(n).
In particular, when t = n and Q < 2™ (i.e. ¢ < 2™/rd) and ¢ < K we have

InSec}tsi . (T, G, 1) < 24r°0n°q - InSec’t ™ (Tac, q) ®

+ (2nqlog g + n) - InSec?** (T + O(q), q)

By default we shall apply the second part of Theorem[3] choosing ¢ = n. In order to
interpret (@) we need to know what values of r, § and K are achievable via IRFFs and
to know InvTime(€, ¢) for those IRFFs, as this term dominates Ty ac.

The question of instantiating the IRFF £ was already studied by Maurer and Tessaro
[22], who reduced it to the construction of certain types of highly unbalanced bipartite
expander graphs. While well-studied, these types of expander graphs are not yet com-
pletely understood, and in particular the setting of parameters relevant to our case has
not been the object of much attention. Here we mention bounds achieved by two explicit
constructions as well as those achieved by a non-explicit, probabilistic construction. In
all cases we set m = 3n. We note that InvTime(&, ¢) can always be upper bounded
by ¢* by appending three functions to the IRFF that read off each block of input via
the identity. Moreover, we can easily enforce condition (i) of Definition [I as long as
r < 2™. Since the family sizes r in question are anyway polynomial in n, we assume
these tweaks without further mention.

Existential construction. A probabilistic construction [22] achieves a (3n,n, r, 6, K)-
IRFF € withr = O(n), § ~ 1 and K = £2(?). In this case Q = qrd = O(nq). Then
the right-hand side of (@) becomes
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O(n°q) - InSec}* (Tinac, )-

mac

Assuming InSec " (Tinc, q) ~ 1/2", MD[F, G] achieves query security up to ¢ =
2(2" /n®). However, this construction is inexplicit.

Expanders of [30]. Expanders of Ta-Shma, Umans and Zuckerman yield an explicit
(3n,n,r,d, K)-IRFF € with r = poly(n), § = poly(n) and K = 'Q(polgyT(Ln))' In this
case @ = gpoly(n). The right-hand side of (@) becomes

O(poly(n)q) - InSec’t" ™ (Tinac, q)-

Assuming InSect"**(Tiac, ) =~ 1/2" we can then achieve query security up to ¢ =

£2(2"™ /poly(n)). (We note this construction is strictly better from all standpoints than
the one presented by Maurer and Tessaro [22].)

Expanders of [14]. Expanders of Guruswami, Umans and Venkatesan yield an explicit
(3n,n,r,6, K)-IRFF € with r = n©(:), § = poly(n) and K = 2"(1~€) for any ¢ €
(0,1). In this case Q = gpoly(n)n°(:). We can set t = log(Q) = logq + O(!logn).
For constant ¢ the right-hand side of (@) again becomes

O(poly(n)q) - InSec’t" ™ (Tinac, q)-

Assuming InSec’*" (T, ) &~ 1/2" the insecurity thus remains negligible as long as

g < K = 2n(1=¢) The advantage of this construction is that it affords efficient inver-
sion time of O(q poly(n)) (as opposed to O(g?) for the previous two constructions).
Interpretation. The assumption InSec’?"**(Tine, ¢) &~ 1/2" is only realistic as long
as Tiac does not allow to do an exhaustive search over the key space of f; assuming
the latter has size 2% > 2™, this implies that our upper bounds are only meaningful if
Tmac =~ InvTime(€, q) < 2" (since Tiae is dominated by InvTime(&, ¢)). The first
two constructions, which are only known to have InvTime(&,q) = O(q?), therefore
only give a meaningful bound for ¢ < 2%/3. Thus, with the current understanding of
InvTime(&, q), they might become beyond birthday only if x > 3n/2 (and approach
q ~ 2" only if kK > 3n). However, the last construction, having InvTime(€,q) =
O(gpoly(n)), yields beyond-birthday security even if x = n, which is the case of
AES-128. Once again, though, we stress that the current limitations of our approach
are due only to the limitations in the current constructions of expander graphs, and are
not related to any “cryptographic” difficulties. Needless to say, future advances in the
constructions of expander graphs will not only improve our parameters, but will likely
have other applications in many areas of theoretical computer science.

Heuristic Instantiation. In practice, we expect to nearly match the good IRFF param-
eters of the existential construction (including » = O(n) and 6 = O(1)) by simply im-
plementing each E; : {0,1}3" — {0,1}" as the XOR of three (independently keyed)
fixed key blockciphers, i.e. E;(z||y[|2) = fx,, () D fr, »(y) ® fr, ,(2). We note that in
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this case the 3r keys k1,1, . . ., k. 3 do not constitute key material, but are instead fixed
constants of the construction.
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