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Abstract. We show that probabilistically checkable proofs can be used
to shorten non-interactive zero-knowledge proofs. We obtain publicly ver-
ifiable non-interactive zero-knowledge proofs for circuit satisfiability with
adaptive and unconditional soundness where the size grows quasi-linearly
in the number of gates. The zero-knowledge property relies on the exis-
tence of trapdoor permutations, or it can be based on a specific number
theoretic assumption related to factoring to get better efficiency. As an
example of the latter, we suggest a non-interactive zero-knowledge proof
for circuit satisfiability based on the Naccache-Stern cryptosystem con-
sisting of a quasi-linear number of bits. This yields the shortest known
non-interactive zero-knowledge proof for circuit satisfiability.

Keywords: Non-interactive zero-knowledge proofs, adaptive soundness,
probabilistically checkable proofs, Naccache-Stern encryption.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [GMRS&9]
are interactive protocols that enable a prover to convince a verifier about the
truth of a statement without leaking any information but the fact that the
statement is true. Blum, Feldman and Micali [BFMSS] followed up by introducing
non-interactive zero-knowledge (NIZK) proofs where the prover outputs just
one message called a proof, which convinces the verifier of the truth of the
statement. The central properties of zero-knowledge proofs and non-interactive
zero-knowledge proofs are completeness, soundness and zero-knowledge.

Completeness: If the statement is true, the prover should be able to convince
the verifier.

Soundness: A malicious prover should not be able to convince the verifier if
the statement is false.

Zero-knowledge: A malicious verifier learns nothing except that the statement
is true.

In this paper, we focus on the NP-complete language of circuit satisfiability,
which is the most widely studied language in the context of non-interactive zero-
knowledge proofs. The statement is a binary circuit C' and a claim that there
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exists an input, a witness w, such that the circuit outputs 1 when evaluated on
w. The prover has the witness w as a private input, while the statement C is
public and known both to the prover and the verifier.

Only languages in BPP have non-interactive zero-knowledge proofs in the
plain model without any setup [Ore87, [GO94, (GK96]. Blum, Feldman and Mi-
cali [BFMS8S]| therefore suggested the common reference string model, where the
prover and the verifier have access to a trusted bit-string. The common reference
string can for instance be generated by a trusted third party or by a set of parties
executing a multi-party computation protocol. Groth and Ostrovsky [GO07] has
as an alternative suggested NIZK proofs in the multi-string model, where many
parties generate a random string and the security of the NIZK proof relies on a
majority of the strings being honestly generated. In this paper, we work in the
common random string model, where the common reference string is a trusted
uniformly random bit-string.

NIZK proofs have many applications, ranging from early chosen-ciphertext
secure public-key cryptosystems [DDNO0L [Sah01] to recent advanced signature
schemes [BWO06l [CGSQO7]. They have therefore been studied carefully in the lit-
erature. Blum, Feldman and Micali [BEMS8§| proposed an NIZK proof for all of
NP based on a number theoretic assumption related to factoring. Feige, Lapidot
and Shamir [FLS99] gave an NIZK proof for all of NP based on the existence
of trapdoor permutations. While these results established the existence of NIZK
proofs based on general assumptions, other works [Dam92l [DDP02, [KP98] have
aimed at reducing the complexity of NIZK proofs. Gentry’s fully homomorphic
cryptosystem based on lattices can reduce the complexity of an NIZK to grow
linearly in the witness size as opposed to the circuit size [Gen09]. Groth, Os-
trovsky and Sahai [GOS06D, [GOS06al, [Gro06l [GSO8] have constructed highly
efficient NIZK proofs using techniques from pairing-based cryptography.

1.1 Owur Contribution

We construct NIZK proofs for circuit satisfiability with a size that grows quasi-
linearly in the size of the circuit. Our NIZK proofs have perfect completeness,
statistical soundness, and computational zero-knowledge. The zero-knowledge
property of the NIZK proofs can be based on trapdoor permutations or for
higher efficiency on the semantic security of the Naccache-Stern cryptosystem
based on higher residues [NS98].

The Naccache-Stern cryptosystem is based on a decisional assumption in RSA-
type groups, which predates but is otherwise incomparable to the decisional
assumptions used in pairing-based NIZK proofs. Surprisingly, the construction
based on the Naccache-Stern cryptosystem has better asymptotic efficiency than
the recent pairing-based NIZK proofs for circuit satisfiability [GOS06b, [GOS064,
GSO08] (although pairing-based NIZK proofs remain more efficient for practical
purposes due to the large constants involved in our construction). With pairing
group elements of size kg and a circuit size that is polynomial in the security
parameter k we get an asymptotic improvement over pairing-based NIZK proofs
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Table 1. Comparison of NIZK proofs for security parameter k, circuit size |C| =
E°W | witness size |w|, trapdoor permutations over {0, 1}*7 and pairing group size kg
(usually kg ~ k* for 27 security [GPS08])

CRS size Proof size Assumption
Kilian-Petrank [KP98§] w(|Ckrklog k) w(|C|krklog k) trapdoor perm.
This work |C|kr log®(k) + poly(k)||C|kr log®(k) + poly(k)|trapdoor perm.
Gentry [Gen09] poly (k) |w|poly (k) lattice-based
GOS [GOS06b] O(ka) O(|Ckea) pairing-based
This work |C|log®(k) + poly(k) | |C|log®(k) + poly(k) |Naccache-Stern

of a multiplicative factor poly’igg(k). This brings the NIZK proof size within a
polylog(k) factor of the size of the circuit itself.

In Table [l we compare our NIZK proofs with the current state of the art
NIZK proofs for circuit satisfiability based on respectively trapdoor permutations
IKP98] and specific number theoretic assumptions [GOS06b, [GOS06a]. All of
these NIZK proofs have an efficient (probabilistic polynomial time) prover and
they are all publicly verifiable.

Soundness and zero-knowledge can be adaptive or non-adaptive. In non-
adaptive soundness and zero-knowledge, the statement to be proven is chosen
independently of the common reference string. Usually, NIZK proofs are used in
a context where the common reference string is publicly available though, and it
is therefore unreasonable to assume the statement is independent of the common
reference string Adaptive soundness and adaptive zero-knowledge refers to the
more realistic setting, where NIZK proofs need to be sound and zero-knowledge
even when the common reference string is publicly available and the statement
may depend on the common reference string. Our NIZK proofs are both adap-
tively sound and adaptively zero-knowledge, and in Table [Il we have compared
the schemes in the efficient prover, adaptive soundness setting.

1.2 New Techniques

PCPs IN NIZK. Probabilistically checkable proofs (PCPs) [AS98, IALM™98|
Din07] are proofs for a statement that can be verified by reading a few bits in the
proof instead of reading the whole proof. A PCP for a circuit being satisfiable will
belarger than the circuit itself; however, one only needs to read a few bits of the proof
to get more than 50% chance of detecting an attempt to prove a false statement. By
reading more bits, we can get exponentially small risk of wrongly being convinced
by the PCP.

PCPs have been very useful in the context of zero-knowledge arguments. Kil-
ian [Kil92] for instance suggested a sub-linear size zero-knowledge argument,
where the prover commits to the bits of a PCP and the verifier asks the prover
to reveal the content of a few of these commitments.

! We have a hard time thinking of any applications where non-adaptive soundness
suffices, while non-adaptive zero-knowledge sometimes may be useful.
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We use PCPs in a different way. In our NIZK proofs the prover will prove
that all queries to the PCP have satisfactory answers. At first sight this may
seem counterintuitive; the PCP will be larger than the statement itself and it is
odd that increasing the statement size would help us in shortening the size of
the NIZK proofs. Using a PCP for the statement, however, has the advantage
that the verifier can grant the malicious prover a non-trivial chance of falsely
answering some of the queries, as long as there are other queries where he will
detect the attempt to cheat. This stands in contrast to traditional NIZK proofs,
where the verifier needs high certainty for every single part of the statement
being correct.

To illustrate our technique, consider an NIZK proof such as Kilian-Petrank
IKP98§]. They first reduce circuit satisfiability to 3SAT5; where each clause has
three variables and each variable appears in at most 5 clauses. By choosing
a trapdoor permutation and revealing hard-core bits related to the common
reference string, the prover can demonstrate that each clause is satisfied. There
is a risk of error though, and the prover therefore needs to repeat the proof many
times for each clause to increase the soundness guarantee.

Our idea is to use a PCP in a pre-processing step before applying the tech-
niques of Kilian and Petrank. The effect of the PCP (see Section[d)) is to increase
the gap between satisfiable and unsatisfiable statements. In a standard 3SAT5
statement there are unsatisfiable statements where all but one clause can be
satisfied. With the PCP, however, we can ensure that either all clauses can be
satisfied or alternatively a constant fraction of the clauses are unsatisfied. The
advantage over Kilian and Petrank’s NIZK proof is that now we have resilience
towards errors in individual clauses. Even if a malicious prover succeeds in falsely
creating NIZK proofs for some of the clauses being satisfied, we still get sound-
ness as long as this only happens for a small constant fraction of clauses. We
can therefore avoid the repetition of proofs that Kilian and Petrank needed.

IMPLEMENTING A HIDDEN RANDOM STRING. We construct our NIZK proofs
in two steps. We use cryptographic techniques to convert the common reference
string into a hidden string of random bits, where the prover may selectively
disclose some of the bits and keep other bits secret. We then construct NIZK
proofs that assume the existence of a string of hidden bits, where the prover may
keep some of them secret and reveal others to the verifier.

Feige, Lapidot and Shamir [FLS99] suggested the following way of implement-
ing the hidden bits model. When working with trapdoor permutations, we can
interpret the common reference string as a string of images of the trapdoor
permutation. The hidden random bits are hardcore bits of the pre-images. The
prover may with the knowledge of the trapdoor learn all the hidden random bits.
By revealing a pre-image to the trapdoor permutation, she can disclose the value
of a particular hidden random bit. This is a costly approach, however, since we
only get one hidden random bit per trapdoor permutation image. In general, the
common reference string has to be a factor kp larger than the hidden random
string, where kp is the size a trapdoor permutation value.
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The second contribution of this paper is using the Naccache-Stern cryptosys-
tem [NS9§| to reduce the cost of implementing the hidden bits model. We in-
terpret the common reference string as a series of ciphertexts, but with the
Naccache-Stern cryptosystem each ciphertext may hold many hardcore bits. The
message space is of the form Zp, where P = H?Zl p; is a product of small primes
of size log k. We will show that with the Naccache-Stern cryptosystem, it is possi-
ble to disclose the plaintext modulo p; without revealing the rest of the plaintext.
This means that we can have Q(l(’fgck) hidden random bits in each ciphertext,
giving a common reference string that is only a factor O(log k) larger than the
hidden random string.

Combining PCPs and the Naccache-Stern cryptosystem, we get the asymp-
totically shortest known NIZK proofs for circuit satisfiability consisting of a
quasi-linear number of bits.

1.3 Overview

We construct NIZK proofs for circuit satisfiability in three steps. In Section Bl we
describe how a PCP can be used to convert the circuit into a Gap-3SATS5 formula,
where either all clauses are satisfiable or alternatively there are at least a constant
fraction of unsatisfiable formulae. In Section ] we construct an NIZK proof in the
hidden bits model, where it is assumed that the prover has access to a string of
uniformly random bits and may reveal an arbitrary subset of these bits and their
positions to the verifier. Finally, in Sections [l and [l we show how to implement
the hidden bits model under the general assumption of the existence of trapdoor
permutations and more efficiently under a concrete number theoretic assumption
related to factoring. The two main contributions of the paper are the conceptual
idea of using PCPs in a preprocessing step as described in Section[3land the intro-
duction of a new technique for efficiently implementing the hidden random bits
model using the Naccache-Stern cryptosystem described in Section

2 Preliminaries

NOTATION. Given two functions f,g : N — [0,1] we write f(k) = g(k) when
|f(k) — g(k)| = O(k—°) for every constant ¢ > 0. We say that f is negligible if
f(k) = 0 and that f is overwhelming if f(k) ~ 1.

We write y = A(z;r) when the algorithm A on input z and randomness
r, outputs y. We write y < A(x) for the process of picking randomness r at
random and setting y = A(z;7). We also write y «— S for sampling y uniformly
at random from the set S. We will for convenience assume uniform random
sampling from various types of sets is possible; there are easy ways to amend
our protocols to the case where the sets are only sampleable with a distribution
that is statistically close to uniform.

NIZK pPrOOFs. Let R be a polynomial time computable binary relation. For
pairs (C,w) € R we call C the statement and w the witness. Let L be the NP-
language consisting of statements with witnesses in R. In this paper, we will
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focus on the case where the statements are circuits and L is the language of
satisfiable circuits, i.e., where there exists an input w so C'(w) = 1. The size of
the NIZK proofs will depend on the size of the statement. We will write L,, for
the language of satisfiable circuit consisting of n binary gates and write R,, for
the corresponding relation.

An efficient-prover non-interactive proof for the relation R consists of three
probabilistic polynomial time algorithms (K, P,V'). K is the common reference
string generator that takes the security parameter written in unary 1* and an
intended statement size n as input and outputs a common reference string o of
length 2(k). P is the prover algorithm that takes as input the common reference
string o, a statement C' and a witness w so (z,w) € R and outputs a proof 7. V
is the verifier algorithm that on a common reference string o, a statement C' and
a proof 7 outputs 0 or 1. We interpret a verifier output of 0 as a rejection of the
proof and a verifier output of 1 as an acceptance of the proof. We call (K, P,V) a
non-interactive proof system for R it is complete and sound as described below.

PERFECT COMPLETENESS. Completeness means that a prover with a witness
can convince the verifier. For all adversaries A and n = k() we have

Pr [a — K(1*,n); (C,w) — A(0);7 — P(0,C,w) : V(o,C,7) =1 if (C,w) € Rn} =1.

STATISTICAL SOUNDNESS. Soundness means that it is impossible to convince the
verifier of a false statement. For all non-uniform polynomial time adversaries A
and n = k°M) we have

Pr [a — K(1*,n);(C,7) «— A(0) : C ¢ L,, and V(o,C,7) = 1] ~ 0.

COMPUTATIONAL ZERO-KNOWLEDGE. A non-interactive argument (K, P, V') is
computationally zero-knowledge if it is possible to simulate the proof of a true
statement without knowing the witness. Formally, we require the existence of
a probabilistic polynomial time simulator S = (S1,S2). S1 outputs a simulated
common reference string ¢ and a simulation trapdoor 7. Sy takes the simulation
trapdoor and a statement as input and produces a simulated proof 7. We require
for all non-uniform polynomial time stateful interactive adversaries A and n =
kO™ that

Pr |:0' — K(1",n); (C,w) — A(o);7 — P(0,C,w) : (C,w) € R, and A(n) = 1]

~ Pr [(a, 7) — 51 (1%, n); (C,w) — A(o); 7w — Sa(7,C) : (C,w) € Ry, and A(r) = 1]

3 Preprocessing with Probabilistically Checkable Proofs

We start by giving a polynomial time reduction f from circuit satisfiability to
Gap-3SAT5. The reduction f takes as its input a circuit with n binary gates
and outputs a 3SAT formula with N = n polylog n variables and gN clauses.
The 3SAT formula, will be such that each variable appears exactly 3 times as a
positive literal and 2 times as a negative literal. If the input of f is a satisfiable
circuit C, it will output a satisfiable 3SAT5 formula ¢ = f(C). If the circuit
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C' is unsatisfiable, the reduction f will output a formula ¢ = f(C) such that
all assignments have at least /N unsatisfied clauses for some constant a > 0.
We also need a polynomial time witness-reduction f,,, which on input C,w such
that C'(w) =1 outputs a satisfying assignment f,,(C,w) for the 3SAT5 formula
6= J(C).

The first step in our reduction is to map the circuit C' to a constraint graph
G(C) with the following properties. The vertices of the constraint graph G may
be assigned values from a constant size alphabet 3, but each edge between two ver-
tices describes a constraint on the values that they may be assigned. When start-
ing with a satisfiable circuit, the output is a satisfiable constraint graph. However,
on an unsatisfiable circuit the output is an unsatisfiable constraint graph where
any assignment violates at least a ag-fraction of the constraints for some constant
ap > 0. The polynomial time assignment tester [DR04] given by Dinur [Din07] in
her proof of the PCP theorem has the properties described above. Moreover, given
a witness for the satisfiability of the circuit C', we may in polynomial time com-
pute a satisfying assignment for the constraint graph G(C'). Dinur’s most efficient
assignment tester building on work by Ben-Sasson and Sudan [BSS08] outputs a
constraint graph G(C') with n polylog n vertices and edges.

Given a constraint graph G over a constant size alphabet Y, we assign a
constant number of binary variables to each vertex such that it is possible to
represent any element from the alphabet Y. Each constraint between two vertices
is of constant size X2 and we can therefore write out a constant size 3SAT formula
describing the constraint. Taking the conjunction of all these 3SAT formulas, we
reduce the constraint graph to a 3SAT formula with n polylog n variables and
clauses. A satisfying assignment for the constraint graph gives us a satisfying
assignment to the 3SAT formula. Since each vertex has a constant number of
variables associated with it, and each constraint has a constant number of clauses
associated with it, a constraint graph with a constant fraction g of unsatisfiable
constraints reduces to a 3SAT formula with a oy fraction of unsatisfiable clauses
for some constant a3 > 0.

Finally, we reduce the 3SAT formula to a 3SAT5 formula where each variable
appears in the clauses as exactly 5 literals and each clause has exactly 3 literals.
First we copy clauses and variables so each clause has exactly 3 literals and each
variable appears at least 3 times. Then the ¢ appearances of a variable as a pos-
itive literal x; or a negative literal —z; are replaced with copies x;1, ..., x;. For
each copy we add 4 clauses for consistency in the truth value assignment with
the predecessor #; j—1 mod ¢ and the successor Z; j11 mod ¢ according to whether
the original variable appeared as a positive or negative literal. In these consis-
tency clauses the copy appears twice as a negative literal and twice as a positive
literal, so all copies appear as exactly 3 positive literals and 2 negative literals in
the resulting 3SATS5 formula. This is a linear size reduction, so we end up with
n polylog n variables and clauses. A satisfying assignment for the 3SAT formula
gives us a satisfying assignment for the resulting 3SAT5 formula. A 3SAT for-
mula with a constant fraction oy of unsatisfiable clauses, gives a 3SAT5 formula
with a « fraction of unsatisfiable clauses for some constant a > 0.
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In summary, there is a pair of polynomial time algorithms (f, f,,) and a con-
stant a > 0 so:

Reduction: f takesinput a circuit C with n gates and outputs a 3SAT5 formula
f(C) with N =n poly log n variables. Each variable appears as 3 positive
literals and 2 negative literals, and each clause has exactly 3 literals. If C' is
satisfiable, then f(C) is satisfiable. If C' is unsatisfiable, then all assignments
to the variables of f(C') leave at least aN clauses unsatisfied.

Witness-preservation: f, takes as input a circuit C' with n gates and a wit-
ness for C being satisfiable and outputs a truth value assignment satisfying
the 3SATS5 formula f(C).

4 NIZK Proofs in the Hidden Bits Model

We will now give an NIZK proof in the hidden-bits model for Gap-3SATS5-
satisfiability. The ideas in this section are quite similar to Kilian and Petrank
[IKP9§], although our setting allows us to simplify their scheme.

Let Ly be the language of satisfiable 3SAT5 formulae with N variables and
gN clauses, where each variable appears as 3 positive literals and 2 negative
literals. Let Ry be the corresponding relation of formulae and satisfying as-
signments. Further, define L%, as the language of formulae in Ly that have a
truth-value assignment to the variables that leaves at most alN clauses unsatis-
fied. We will be interested in a hidden-bits NIZK proof (¢g(N), Py, Vi) for R
with perfect completeness, (o, ey (IV))-soundness, and perfect zero-knowledge as
described below.

PERFECT COMPLETENESS. For all N € 3N and all (¢, w) € Ry we have
Pr [p — {0, 1} N iy i) — Pr(p, éyw) : Vi (b, i1, piys - - - i, pis) = 1} -1

STATISTICAL SOUNDNESS. For all N € 3N and all adversaries A
Pr {p — {0,147 (i1, i) — Alp) -
¢ ¢ L(I)l\/' and VH(¢77:17pi17 e 7it7pit) = 1:| S EH(N)

PERFECT ZERO-KNOWLEDGE. There exists a probabilistic polynomial time sim-
ulator Sp such that for all N € 3N and all (¢, w) € Ry the distribution

{P — {07 1}ZH(N)a (i17 .. '77:t) — PH(P7 (b,’ll)) : (i17pi17 e 7it7pit)}

is identical to the distribution

{(ilapha"'aitapit) — SH(QS) : (ilapi1>"'7itapit)}'
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4.1 Hidden-Bits NIZK Proof for Gap-3SAT5

Let ¢ be a 3SAT5 formula with N variables and gN clauses, where each variable
appears exactly thrice as a positive literal x; and twice as a negative literal —x;
in the clauses. The verifier has the promise that either there is an assignment to
the variables so all clauses are satisfied, or all assignments of truth values to the
variables lead to more than N unsatisfied clauses. The prover has a satisfying
assignment and wants to give an NIZK proof in the hidden bits model for ¢
being satisfiable.

We first sketch the NIZK proof and then afterwards explain the main ideas
in the construction. There is some freedom in the choice of parameters; for
concreteness we suggest a = [3],b = [logN], A = |_101ng-|'

Statement: A 3SAT5 formula ¢ € Ly.
Prover’s input: A string p of 6a2%¢(bN + A) hidden bits. A truth-value as-
signment to the variables x1,...,zx so ¢(z1,...,2x) = 1.
Proof:
1. Interpret the hidden bits as 6a2%~1(bN + A) consecutive pairs of bits.
Each pair of bits is interpreted as one of three possible characters ac-
cording to the following scheme

00=0 01=w 100=w 11=1.

Later the prover may reveal one of the bits in a character. In a wildcard
character W the prover can reveal either 0 or 1, whereas 0 can only be
revealed as 0 and 1 can only be revealed as 1.

2. Interpret the characters as 269~1(bN + A) consecutive 6a-character
blocks. Call a block good if it has exactly 3a W-characters and they
are either all in the first half of the block or all in the second half of the
block. Otherwise, call the block bad.

3. A block has 2'7%% chance of being good, so we expect on average (bN +
A) good blocks. If the number of good blocks is outside the interval
[BN;ON + 2A] reveal all hidden bits and halt.

4. Reveal to the verifier all the hidden bits associated with bad blocks.

5. Assign the first b good blocks to the first variable, etc., so each variable
has b blocks assigned to it. The remaining good blocks will not be used.

6. Interpret each good block as a set of 6 consecutive a-character strings
(see examples in Figure[Il). Assign in the order of appearance, 5 of these
a-character strings to the 5 appearances of their variable z; in the clauses
as follows. If the witness has z; = 1, assign the 3 wildcard strings to the
3 appearances of x;, and the first 2 0/1-strings to the 2 appearances of
—x;. If the witness has x; = 0, assign the first 2 wildcard strings to the
2 appearances of —z; and the 3 0/1-strings to the 3 appearances of x;.
Taking all good blocks into account, each appearance of x; or —x; has b
a-character strings assigned to it.

7. Each clause has 3 literals, and each literal has a corresponding tuple
of b a-character strings. Pick at random a literal for which the b a-
character strings only contain wildcard characters. Such a literal must
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exist since the clause is satisfied by the truth-value assignment. For the
other two literals reveal a random bit in each character’s bit pair, thereby
revealing two ab-bit strings. In the remaining wildcard literal, reveal in
each wildcard character one of the bits, such that the revealed ab-bit
string is the exclusive-or of the two other ab-bit strings.

8. The proof consists of the revealed bits. If the number of good blocks is
outside the interval [bN; bN + 2A] the proof reveals all hidden bits. Else,
the proof reveals the hidden bits of the bad blocks and a 152—fraction of
the hidden bits in the first bN good blocks.

Verification:

1. If the proof reveals all hidden bits, return 1 if the number of good blocks
is outside the range [bN;bN + 2A] and else return 0.

2. Verify that there are no good blocks among the blocks where all bits
have been revealed.

3. Verify that there are at most bN + 2A blocks where some of the bits
remain hidden. Associate the first bN blocks with the variables in the
order of appearance.

4. Verify that in each of the bIN blocks corresponding to variables, exactly
5 of the 6 a-character strings have one revealed bit in each character.
Verify also that in each block either the last a-character string in the
first half of the block, or the last a-character string in the second half of
the block has no revealed bits. Based on this, each revealed a-bit string
can be uniquely associated with a corresponding literal in a clause.

5. For each clause, verify that the exclusive-or of the two first ab-bit strings
corresponding to the first 2 literals equals the ab-bit string corresponding
to the third literal.

6. Return 1 if all verifications passed, else return 0.

In the first step, note that there is 50% chance that a character is a wildcard
and 50% chance that it is a 0 or a 1. Later, the prover will open some of the
characters by revealing one of the bits. Wildcards can be opened as 0 or 1,
whereas 0 can only be opened as 0 and 1 can only be opened as 1. The prover
sets up the strings so wildcards correspond to true literals and non-wildcards
correspond to false literals. In satisfied clauses there is a true literal, which can
be opened at will. This is what gives the prover with a satisfying assignment the
power to convince the verifier. On the other hand, in an unsatisfied clause there
will only be non-wildcard characters associated with the false literals, which will
reduce the power of the prover and make it hard to convince the verifier of a
false statement. Finally, for zero-knowledge we can set more of the characters to
be wildcard characters. This will make it possible to simulate a proof without
knowing a satisfying truth assignment for the statement.

We interpret the string of characters as blocks of 6a characters. There will be
an expected number of bV + A good blocks. We can use Chernoff-bounds to see
that there is high probability that most of the hidden blocks that have not been
revealed are indeed good blocks. The point of sampling good blocks is that they
represent a consistent view of a variable. All true literals are assigned wildcard
strings, all false literals are assigned non-wildcard string.
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010...101 100...011 O10... 170 WW .. W WW .. W WW ... W

wWw.. . WWwWw..WWwWWw...W010...110 000...111 100...101

Fig. 1. Two examples of good blocks

The important thing to note is that with wildcard string, the prover may open
the true literals to any a-bit string. For the false literals, however, the prover
is bound to a particular a-bit string. We require that in each clause, the prover
should open 3 a-bit strings, such that they exclusive-or to 0. In clauses with a true
literal this is easy to accomplish, since the prover may open the corresponding
wildcard string to any a-bit string. This gives us completeness. In unsatisfied
clauses, however, the prover has 3 fixed a-bit strings and the probability of their
exclusive-or being 0 is 27%. For each unsatisfied clause, we therefore get a good
chance of catching a cheating prover.

We have now described the main idea in the construction. The prover has
some degrees of freedom in choosing the statement, taking advantage of a few
bad blocks that may be camouflaged as good blocks, etc. However, by repeating
the proof b times in parallel and using the fact that for unsatisfiable statement
there is actually a constant fraction of unsatisfied clauses no matter what the
truth assignment is, we can ensure that a cheating prover still has very small
chance of convincing the verifier on a false statement.

Theorem 1. For sufficiently large N the protocol given above is a hidden-bits
N

NIZK proof for 3SATS5 with perfect completeness, (a,2 ¢10g> N )-soundness and
perfect zero-knowledge with a hidden string of size £y (N) = O(N log N).

We refer to the full paper for a proof.

5 Implementing the Hidden Bits Proof with Trapdoor
Permutations

TRAPDOOR PERMUTATIONS. We will now implement the hidden bits NIZK
proof using trapdoor permutations. A trapdoor permutation is a triple of al-
gorithms (K, F, F~1). K1 generates a public key pk, which we for convenience
will assume has k bits, and a secret key sk for the trapdoor permutation. Fj
and Fs_k1 are efficiently computable permutations of k-bit strings, such that
Fo(F'(y)) = y. We will assume it is hard to compute F,' without knowl-
edge of sk. All trapdoor permutations can easily be converted into trapdoor
permutations with a hardcore predicate [GL89] so we will assume the existence
of a hardcore predicate B for the trapdoor permutation. If y « {0, 1}* is chosen
uniformly at random then B(F,;'(y)) is uniformly random in {0,1} and given
only (pk,y) it is computationally hard to decide B(F.;'(y)).
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IMPLEMENTING THE HIDDEN BIT STRING. To implement a hidden bit string
with N’ random bits, we generate a common reference string o consisting of
k(AN' + 4A’) uniformly random bits. There is a range of choices of A’, for
the sake of concreteness let us say A’ = f(N’)Z] The prover picks a trapdoor
permutation and interprets o as 4N’ + 44’ images of the trapdoor permutation.
This gives the prover 4N’ + 44’ secret hardcore bits. The prover can selectively
open some of the hardcore bits by computing the corresponding preimages and
giving them to the verifier. This idea first described in [FLS99] indicates how we
can generate hidden random bits that the prover can see and selectively disclose
to the verifier.

Our hidden bits proof has perfect zero-knowledge if the simulator can choose
the hidden bits itself. Once a trapdoor permutation has been chosen we cannot
alter the preimages though so we have not yet implemented the hidden bits
model in the adaptive zero-knowledge sense. The problem is that the common
reference string is chosen before the adversary picks the statement and therefore
the simulator needs to get hidden bits out of the simulated common reference
string that can be revealed as both 0 and 1 depending on what is needed in the
simulation. Our solution is to interpret pairs of hardcore bits as hidden bits as
follows:

00=0 01=S5 10=25 11 =1.

The prover reveals a hidden bit by revealing one of the two preimages associated
with it. This means it is bound to open 0 as 0 and open 1 as 1, but it can open
a soft bit S as either 0 or 1. In the zero-knowledge simulation, we will set up the
common reference string such that all hidden bits are soft. When all hidden bits
are soft, the zero-knowledge simulator can open them as it likes and simulate
the hidden bits proof.

When half the hidden bits are soft we have to be careful to preserve soundness
though. We therefore require that the prover reveals the preimages corresponding
to soft hidden bits. On average the prover should reveal N’ + A’ soft hidden bits;
and the verifier checks that at last N’ soft hidden bits are revealed. This leaves
the prover with approximately N’ hidden bits, which mostly will be hard hidden
bits which can only be opened as 0 or only be opened as 1. Soundness will now
follow from the fact that most of the remaining hidden bits are uniformly random
hard bits.

NIZK PrOOF. We will now give the full NIZK proof for circuit satisfiability.
The statement will be a circuit C and the prover will have a satisfying witness
w so C(w) = 1. We have to be careful that the prover chooses a well-formed
public key for the trapdoor permutation and will therefore use an NIZK proof
(Lwell, Pwell, Viven) for well-formedness. This NIZK proof could for instance be
Kilian and Petrank’s original NIZK proof [KP9§], which would have a cost of
poly (k) bits. Alternatively, we could assume the existence of certifiable trapdoor
permutations where the well-formedness of the public key is directly verifiable.
Or we could use Bellare and Yung’s [BY92] method of sampling preimages to
show that the public key describes a function close to a trapdoor permutation and
then give a more careful probability analysis that deals with the small statistical



Short Non-interactive Zero-Knowledge Proofs 353

bias this might introduce in the hidden bits. We will in the following let N/ =
O(Nlog N) = n polylog(n) be the number of bits needed in the hidden bits
model for circuits with n gates.

CRS: 0 = (01’1, c oy O2N/42A 2, Uwell) — {O, 1}k(4N’+4A')+€W611(k).
Proof:

1. Generate keys for the trapdoor permutation (pk, sk) «+ K (1¥).
2. Compute an NIZK proof 7y for pk being a valid public trapdoor per-
mutation key.
3. Compute the hardcore bits hq 1, h12,. .., han'424/,1, han' 4247 2 @S hy j =
B(Fskl (0i,5))-
4. If there are less than N’ pairs or more than N’ + 2A’ pairs where h; 1 =
hi 2 return the proof (pk, Twel, Fsk (01,1),--- Fsk (UQN/+2A/ 2) and halt.
5. For each pair h;; # h; 2 include preimages m; 1 = Fék (04,1) and m; 0 =
F;kl (04,2) in the proof.
6. Let p = (p1,...,pn) be the values of the first N’ remaining pairs of
hardcore bits.
7. Run the hidden bit string proof on p to get my «— Py (p, f(C), fuw(w)).
8. For all revealed bits p; in the hidden bits proof my corresponding to
hardcore bits hj;1 = h;2 choose at random to include either 7;; =
F Noj1) or mjo = F;'(0}2) in the proof.
The proof is of the form (pk, Twell, Tiy j1s -« - Wiy 5, )-
Verification:
1. Verify the NIZK proof 7w for pk being a correctly generated public
trapdoor permutation key.
2. Verify the correctness of all the preimages o; ; = Fpr(m; ;).
Compute the corresponding hardcore bits h; ; = B(m; ;).

@

4. If all hardcore bits have been revealed, verify that there are less than N’
or more than N’ 4+ 2A’ pairs h; 1 = h;2 and accept if all verifications
have succeeded.

5. Verify that all revealed pairs of hardcore bits have h; 1 # h; 2 and that
there are between N’ and N’ + 2A’ pairs left in which at most one
hardcore bit has been revealed.

6. Interpret the remaining hardcore bits as indices and revealed bits as a
hidden bits proof (i1, pi,, ..., i, pi,) and accept if all verifications have
succeeded and Vi (f(C), i1, piys---, i, pip) = 1.

The construction leads to the following theorem that we prove in the full paper.

Theorem 2. Assuming the erxistence of trapdoor permutations on {0,1}% with
k-bit keys there is an NIZK proof for circuit satisfiability with perfect complete-
ness, statistical soundness and computational zero-knowledge. The size of the
common reference string and the NIZK proof is |C| polylog |C|-k+poly (k) bits.
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6 Implementing the Hidden Bits Proof with
Naccache-Stern Encryption

NACCACHE-STERN ENCRYPTION. The Naccache-Stern cryptosystem based on
higher residues [NS98| has message space Zp where P is a product of small
primes. We will show how to reveal the plaintext modulo a small prime factor p;
without revealing the rest of the plaintext. Interpreting even numbers as 0, odd
numbers as 1, and p;—1 as “ignore” we get a uniform distribution of hardcore bits
modulo p; assuming the Naccache-Stern encryption is semantically secure. With
Naccache-Stern’s cryptosystem having constant expansion rate and each prime
factor of the message space being of logarithmic size in the security parameter
we can construct a hidden random bits implementation that is quasi-linear in
the number of hidden bits.

In the Naccache-Stern cryptosystem the public key is of the form pk =
(M, P, g), where M is a k-bit RSA modulus, P is a product of small odd
primes pi, ..., pq so ged(8P2 p(M)) = 4P, and g € Z%, is a group element with
ord(g) = W(iw). The secret key is sk = ¢(M). Encrypting a message m € Zp
with randomness r «+— Z3, yields the ciphertext

¢=g™r" mod M.

P (M)

To decrypt a ciphertext ¢, compute FEY = (g 7 )™ and use the Pohlig-
Hellman algorithm for finding discrete logarithms in groups with a smooth order
to compute m mod P.

The cryptographic assumption underlying our NIZK proof is that there is a
probabilistic polynomial time key generator Kyg for generating Naccache-Stern
keys (pk, sk) such that the cryptosystem is IND-CPA secure and the number
of small prime factors in P is larger than 610’; , for some constant 3 > 0. We
refer to Naccache and Stern [NS98] for concrete key generator suggestions and a
proof that the resulting cryptosystem is IND-CPA secure under a computational
intractability assumption related to higher residues.

OPENING AND SIMULATING OPENINGS OF HARDCORE BITS. In the implemen-
tation of the Naccache-Stern cryptosystem, the prover will generate Naccache-
Stern keys pk = (M, P,g) and sk = ¢(M). The random string is interpreted
as a series of k-bit integers where those outside Zj, are ignored. An integer
in Z3; can be interpreted as a ciphertext encrypting some message m mod P
where P = szl pi. Since there are d = [, fgkﬂ prime factors in P, this gives the
prover d residues {m mod p;}&_,, each of which is translated into a hardcore bit.
The prover will use the first N’ hardcore bits as the hidden bit string and since
she gets (9(10’; . ) bits per element in Zj}, she only looses a logarithmic factor in
implementing the hidden bit string.

The key observation needed for using Naccache-Stern encryption in this way
is that the prover may verifiably disclose m; = m mod p; without revealing the
other parts of the message. Consider a particular k-bit block ¢ € Zj,, which the
prover can decrypt to get the plaintext m € Zp. All ¢ € Z}, are valid cipher-

texts but there are P different r € Z}; so ¢ = r¢™ so we will for notational
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convenience fix an arbitrary such r in the following. To prove m; = m mod p; is
indeed part of the plaintext the prover gives a proof 7 satisfying

7TP — (Cg—m,;); .

Raising both sides to the power ¢(1]3W ) shows

1= (@75 = (P gmmiye P = (g e ymem

telling the verifier that m; = m mod p; since Plord(g). The prover with the
secret key ¢(M) can compute a random 7 satisfying the equation by choosing
s € Z3; at random and setting
= fegmm) P et O E

In the NIZK proof, we will generalize this idea to verifiably disclose m mod Py
for arbitrary Pr = [],c; ps- This makes it possible for the prover to reveal many
values {m mod p; };es simultaneously.

There is a little variation in how many hardcore bits the prover gets out of
a common reference string since not all k-bit integers will belong to Z}, and
some hardcore bits are ignored but we can use Chernoff bounds to get a good
estimate of how many hardcore bits the prover can extract and tune the proof
accordingly. Since the verifier obtains proofs 7 for the correctness of the opened
hardcore bits the soundness of the hidden bit proof system implies soundness of
the full NIZK proof for circuit satisfiability.

The zero-knowledge property will come from using a different type of public
key. Instead of using g that has order d>(i\4) the simulator will pick g with order

¢£A1f) . As we shall see in the security proof, the semantic security of the Naccache-
Stern cryptosystem implies that the two types of public keys are computationally
indistinguishable. With the latter choice of public key ord(g) = ¢iA1f) we can
write g = (¢')F and now a ciphertext is no longer binding since ¢ = rfg™ =
rP(g")™F = (r(g")™ ™ )P g™ is at the same time an “encryption” of m and m/.
The simulator sets up the common reference string so it contains ciphertexts that
can be opened to any hardcore bits it chooses thereby allowing it to simulate
the hidden bits proof.

NIZK PROOF BASED ON NACCACHE-STERN ENCRYPTION. We will now give the
full NIZK proof for circuit satisfiability. The statement is a circuit C' and the
prover will have a satisfying witness w so C'(w) = 1. Naccache-Stern keys are not
directly verifiable, so we let ({yel1, Pwell, Vavel) be an NIZK proof system for well-
formedness of a Naccache-Stern public key. This NIZK proof could for instance
be Kilian and Petrank’s original NIZK proof [KP9§|, which would have a cost of
poly(k) bits. We will in the following let N = O(N log N') = n polylog(n) be the
number of bits needed in the hidden bits model for circuits with n gates and let
A’ = O((N')3). For notational simplicity, we will assume d|N’ and ngA/ €z,
where d = [1£gkk] for a constant 8 > 0 and ¢ is defined in the protocol.
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. 3N/
Common reference string: o = (01,...,0sy:, Owen) « {0, 1}F7a Howen(k),
d

Proof:
1.

Generate Naccache-Stern keys (pk, sk) = (M, P, g),6(M)) «— Kns(1¥)
Compute an NIZK proof myen for the well-formedness of pk = (M, P, g).

. Define 6 = d — Zle pl_ and let ¢1,...,cn/1a be the first N'+AT of
v s

s
O1y.+.,03n" € Z}‘WE If there are less than ngA/ of them return the
d

proof m = (pk, sk).

. Decrypt c1,...,cnrpar to get plaintexts mq,...,my/yar. Define m; ; =
5 §

m; mod p;.

. Define hy 1,..., hd7 Nrar as hi; = L if m; ; = —1 and otherwise h; ; =0

if m; ; is even and h; ; = 1 if m; ; is odd. If there are less than N’ or more
than N’ + 2A” hardcore bits h; ; € {0,1} return the proof m = (pk, sk).
Define p = (p1,...,pn’) as the first N” hardcore bits h; ;.

Run the hidden bit string proof on p to get w7y «— P (p, f(C), fuw(w)).

. Define m;; as revealed if the hardcore bit h;; is revealed in mg or

hi,j =1.

. Let for all j the set I; C {1,...,d} be the indices ¢ for which m,; is

revealed. Define m;, = m; mod Pj; where P, = Hz‘e 1, Pi- Compute

(P~ mod ¢(}]3V[))P}; $(M)

is; ¥ for a randomly chosen s; « Z3,.

—’m[j )
J

;= (cg

The proof is either m = (pk, sk) or

™= (pk77rwell7[17m1177717"'7IN’;rA'7mIN/

LA 77TN’+A’)~
5 5

Verification:

1.

If the proof is of the form m = (pk, sk) accept it if and only if the key is
well-formed (the secret key can be of a form so this can be verified) and
there are less than v /gA/ values in Z}, or the number of valid hardcore
bits h; ; € {0,1} is less than N’ or higher than N’ + 2A’.

. Verify the NIZK proof myen for pk = (M, P, g) being a correctly gener-

ated public Naccache-Stern key with d small odd primes p, ..., pq4.

. Identify the first N/JgA/ values ci,...,cnrpar € Z3,. Reject if there are
§

less than N/JgA/ of them.
P

Verify the proofs 7rJP = (cg”™%5)" mod M and compute the hardcore

bits h; ; € {0,1} corresponding to my,,...,mr,, ., - Reject if the num-

)
ber of unopened hardcore bits plus opened valid hardcore bits h; ; is less
than N’ or more than N’ + 24",

. Interpret the h;; € {0,1} as a hidden bits proof (i1, pi,,---,%t Pi,)-

Accept if the verifications succeed and Vi (f(C), i1, piys- - -, i1, pi,) = L.

The construction gives us the following theorem that we prove in the full paper.

2 We represent elements of Z}; as integers in the range {1,...,M — 1}.
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Theorem 3. Assuming the Naccache-Stern cryptosystem is IND-CPA secure,
there is an NIZK proof for circuit satisfiability with perfect completeness, sta-
tistical soundness and computational zero-knowledge. The size of the common
random string and the proof is |C| polylog |C| + poly(k) bits.

7 Conclusion

We have suggested the shortest known NIZK proofs based on standard in-
tractability assumptions. Based on trapdoor permutations we get an NIZK
proof and common reference string of size |C|k polylogk bits (where we use
that polylog|C| = polylogk). This is a factor improvement over Kilian
and Petrank’s construction [KP9g].

Based on a specific number-theoretic assumption related to factoring, we get
a very efficient implementation of a hidden bit string and an even shorter NIZK

proof with a complexity of |C| polylogk bits. This is asymptotically a factor
kS
polylogk

and Sahai [GOS06D, [GOS06a] (assuming the group elements have size 1ki %)

polylog
although it remains an open problem to reduce the polylogarithmic factor to
make our construction practical.

polylogk

more efficient than the pairing-based constructions by Groth, Ostrovsky
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