
NDPMine: Efficiently Mining Discriminative Numerical
Features for Pattern-Based Classification�

Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

Department of Computer Science,
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{hkim21,kim71,weninge1,hanj,zaher}@illinois.edu

Abstract. Pattern-based classification has demonstrated its power in recent stud-
ies, but because the cost of mining discriminative patterns as features in clas-
sification is very expensive, several efficient algorithms have been proposed to
rectify this problem. These algorithms assume that feature values of the mined
patterns are binary, i.e., a pattern either exists or not. In some problems, how-
ever, the number of times a pattern appears is more informative than whether a
pattern appears or not. To resolve these deficiencies, we propose a mathemati-
cal programming method that directly mines discriminative patterns as numerical
features for classification. We also propose a novel search space shrinking tech-
nique which addresses the inefficiencies in iterative pattern mining algorithms.
Finally, we show that our method is an order of magnitude faster, significantly
more memory efficient and more accurate than current approaches.

Keywords: Pattern-Based Classification, Discriminative Pattern Mining, SVM.

1 Introduction

Pattern-based classification is a process of learning a classification model where pat-
terns are used as features. Recent studies show that classification models which make
use of pattern-features can be more accurate and more understandable than the origi-
nal feature set [2,3]. Pattern-based classification has been adapted to work on data with
complex structures such as sequences [12,9,14,6,19], and graphs [16,17,15], where dis-
criminative frequent patterns are taken as features to build high quality classifiers.

These approaches can be grouped into two settings: binary or numerical. Binary
pattern-based classification is the well-known problem setting in which the feature

� Research was sponsored in part by the U.S. National Science Foundation under grants CCF-
0905014, and CNS-0931975, Air Force Office of Scientific Research MURI award FA9550-
08-1-0265, and by the Army Research Laboratory under Cooperative Agreement Number
W911NF-09-2-0053 (NS-CTA). The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on. The second author was supported by the
National Science Foundation OCI-07-25070 and the state of Illinois. The third author was
supported by a NDSEG PhD Fellowship.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part II, LNAI 6322, pp. 35–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 H. Kim et al.

space is {0, 1}d, where d is the number of features. This means that a classification
model only uses information about whether an interesting pattern exists or not. On the
other hand, a numerical pattern-based classification model’s feature space is N

d, which
means that the classification model uses information about how many times an inter-
esting pattern appears. For instance, in the analysis of software traces loops and other
repetitive behaviors may be responsible for failures. Therefore, it is necessary to deter-
mine the number of times a pattern occurs in traces.

Pattern-based classification techniques are prone to a major efficiency problem due
to the exponential number of possible patterns. Several studies have identified this issue
and offered solutions [3,6]. However, to our knowledge there has not been any work
addressing this issue in the case of numerical features.

Recently a boosting approach was proposed by Saigo et al. called gBoost [17]. Their
algorithm employs a linear programming approach to boosting as a base algorithm com-
bined with a pattern mining algorithm. The linear programming approach to boosting
algorithm (LPBoost) [5] is shown to converge faster than ADABoost [7] and is proven
to converge to a global solution. gBoost works by iteratively growing and pruning a
search space of patterns via branch and bound search. In work prior to gBoost [15] by
the same authors, the search space is erased and rebuilt during each iteration. However,
in their most recent work, the constructed search space is reused in each iteration to
minimize computation time; the authors admit that this approach would not scale but
were able to complete their case study with 8GB main memory.

The high cost of finding numerical features along with the accuracy issues of binary-
only features motivates us to investigate an alternative approach. What we wish to de-
velop is a method which is both efficient and able to mine numerical features for clas-
sification. This leads to our proposal of a numerical direct pattern mining approach,
NDPMine. Our approach employs a mathematical programming method that directly
mines discriminative patterns as numerical features. We also address the fundamen-
tal problem of iterative pattern mining algorithms, and propose a novel search space
shrinking technique to prune memory space without removing potential features. We
show that our method is an order of magnitude faster, significantly more memory effi-
cient and more accurate than current approaches.

The structure of this paper is as follows. In Section 2 we provide a brief background
survey and discuss in further detail the problems that NDPMine claims to remedy. In
Section 3 we introduce the problem setting. Section 4 describes our discriminative pat-
tern mining approach, pattern search strategy and search space shrinking technique.
The experiments in Section 5 compare our algorithm with current methods in terms of
efficiency and accuracy. Finally, Section 6 contains our conclusions.

2 Background and Related Work

The first pattern-based classification algorithms originated from the domain of associa-
tion rule mining in which CBA [11] and CMAR [10] used the two-step pattern mining
process to generate a feature set for classification. Cheng et al. [2] showed that, within
a large set of frequent patterns, those patterns which have higher discriminative power,
i.e. higher information gain and/or Fisher score, are useful in classification. With this

NDPMine: Efficiently Mining Discriminative Numerical Features 37

intuition, their algorithm (MMRFS) selects patterns for inclusion in the feature set based
on the information gain or Fisher score of each pattern. The following year, Cheng et
al. [3] showed that they could be more efficient if they performed pattern-based classifi-
cation by a direct process which directly mines discriminative patterns (DDPMine). A
separate algorithm by Fan et al. (called M bT) [6], developed at the same time as DDP-
Mine, uses a decision tree-like approach, which recursively splits the training instances
by picking the most discriminative patterns.

As alluded to earlier, an important problem with the many approaches is that the
feature set used to build the classification model is entirely binary. This is a significant
drawback because many datasets rely on the number of occurrences of a pattern in order
to train an effective classifier. One such dataset comes from the realm of software be-
havior analysis in which patterns of events in software traces are available for analysis.
Loops and other repetitive behaviors observed in program traces may be responsible for
failures. Therefore, it is necessary to mine not only the execution patterns, but also the
number of occurrences of the patterns. Lo et al. [12] proposed a solution to this problem
(hereafter called SoftMine) which mines closed unique iterative patterns from normal
and failing program traces in order to identify software anomalies. Unfortunately, this
approach employs the less efficient two-step process which exhaustively enumerates a
huge number of frequent patterns before finding the most discriminative patterns.

Other approaches have been developed to address specific datasets. For time series
classification, Ye and Keogh [19] used patterns called shapelets to classify time-series
data. Other algorithms include DPrefixSpan [14] which classifies action sequences,
XRules [20] which classifies trees, and gPLS [16] which classifies graph structures.

Table 1. Comparison of related work

Binary Numerical
Two-step MMRFS SoftMine, Shapelet
Direct DDPMine, MbT , gPLS NDPMine

DPrefixSpan, gBoost

Table 1 compares the aforementioned algorithms in terms of the pattern’s feature
value (binary or numerical) and feature selection process (two-step or direct). To the
best of our knowledge there do not exist any algorithms which mine patterns as numer-
ical features in a direct manner.

3 Problem Formulation

Our framework is a general framework for numerical pattern-based classification. We,
however, confine our algorithm for structural data classification such as sequences,
trees, and/or graphs in order to present our framework clearly. There are several pattern
definitions for each structural data. For example, for sequence datasets, there are se-
quential patterns, episode patterns, iterative patterns, and unique iterative patterns [12].
The pattern definition which is better for classification depends on each dataset, and

38 H. Kim et al.

thus, we assume that the definition of a pattern is given as an input. Let D = {xi, yi}n
i=1

be a dataset, containing structural data, where xi is an object and yi is its label. Let P
be the set of all possible patterns in the dataset.

We will introduce several definitions, many of which are frequently used in pattern
mining papers.

A pattern p in P is a sub-pattern of q if q contains p. If p is a sub-pattern of q, we
say q is a super-pattern of p. For example, in a sequence, a sequential pattern 〈A, B〉
is a sub-pattern of a sequential pattern 〈A, B, C〉 because we can find 〈A, B〉 within
〈A, B, C〉.

The number of occurrences of a given pattern p in a data instance x is denoted
by occ(p, x). For example, if we count the number of non-overlapped occurrences
of a pattern, the number of occurrences of a pattern p = 〈A, B〉 in a data instance
x = 〈A, B, C, D, A, B〉 is 2, and occ(p, x) = 2. Since the number of occurrences of a
pattern in a data depends on a user’s definition, we assume that the function occ is given
as an input.

The support of a pattern p in D is denoted by sup(p, D), where sup(p, D) =∑
xi∈D occ(p, xi). A pattern p is frequent if sup(p, D) ≥ θ, where θ is a minimum

support threshold.
A function f on P is said to posses the apriori property if f(p) ≤ f(q) for any

pattern p and all its sub-patterns q.
With these definitions, the problem we present in this paper is as follows: Given a

dataset D = {xi, yi}n
i=1, and an occurrence function occ with the apriori property,

we want to find a good feature set of a small number of discriminative patterns F =
{p1, p2, . . . , pm} ⊆ P so that we map D into N

m space to build a classification model.
The training dataset in N

m space for building a classification model is denoted by D′ =
{x′

i, yi}n
i=1, where x′

ij = occ(pj , xi).

4 NDPMine

From the discussion in Section 1, we see the need for a method which efficiently
mines discriminative numerical features for pattern-based classification. This section
describes such a method called NDPMine (Numerical Discriminative Pattern Mining).

4.1 Discriminative Pattern Mining with LP

For direct mining of discriminative patterns two properties are required: (1) a measure
for discriminative power of patterns, (2) a theoretical bound of the measure for pruning
search space. Using information gain and Fisher score, DDPMine successfully showed
the theoretical bound when feature values of patterns are binary. However, there are
no theoretical bounds for information gain and Fisher score when feature values of pat-
terns are numerical. Since standard statistical measures for discriminative power are not
suitable in our problem, we take a different approach: model-based feature set mining.
Model-based feature set mining find a set of patterns as a feature set while building a
classifier. In this section, we will show that NDPMine has the two properties required
for direct mining of discriminative patterns by formulating and solving an optimization
problem of building a classifier.

NDPMine: Efficiently Mining Discriminative Numerical Features 39

To do that, we first convert a given dataset into a high-dimensional dataset, and learn
a hyperplane as a classification boundary.

Definition 1. A pattern and class label pair (p, c) is called class-dependent pattern,
where p ∈ P and c ∈ C = {−1, 1}. Then, the value of a class-dependent pattern (p, c)
for data instance x is denoted by sc(p, x), where sc(p, x) = c · occ(p, x).

Since there are 2|P | class-dependent patterns, we have 2|P | values for an object x in D.
Therefore, by using all class-dependent patterns, we can map xi in D into x′

i in N
2|P |

space, where x′
ij = scj (pj , x

′
i). One way to train a classifier in high dimensional space

is to learn a classification hyperplane (i.e., a bound with maximum margin) by formu-
lating and solving an optimization problem. Given the training data D′ = {x′

i, yi}n
i=1,

the optimization problem is formulated as follows:

max
α,ρ

ρ

s.t.
∑

(p,c)∈P×C

yiαp,csc(p, x′
i) ≥ ρ, ∀i

∑

(p,c)∈P×C

αp,c = 1, αp,c ≥ 0,

(1)

where α represents the classification boundary, and ρ is the margin between two classes
and the boundary.

Let α̃ and ρ̃ be the optimal solution for (1). Then, the prediction rule learned from
(1) is f(x′) = sign(x′ · α̃), where sign(v) = 1 if v ≥ 0 and −1, otherwise. If
∃(p, c) ∈ P × C : αp,c = 0, f(x′) is not affected by the dimension of the class-
dependent pattern (p, c). Let F = {p|∃c ∈ C, α̃p,c > 0}. If using F instead of P in
(1), we will have the same prediction rule. In other words, only the small number of
patterns in F , we can learn the same classification model as the one learned by P . With
this observation, we want to mine such a pattern set (equivalently: a feature set) F to
build a classification model.

In addition, we want F to be as small as possible. In order to obtain a relatively small
feature set, we need to obtain a very sparse vector α, where only few dimensions are
non-zero values. To obtain a sparse weight vector α, we adopt the formulation from
LPBoost [5].

max
α,ξ,ρ

ρ − ω
∑n

i=1 ξi

s.t.
∑

(p,c)∈P×C

yiαp,cs(x′
i; p, c) + ξi ≥ ρ, ∀i

∑

(p,c)∈P×C

αp,c = 1, αp,c ≥ 0

ξi ≥ 0, i = 1, . . . , n,

(2)

where ρ is a soft-margin, ω = 1
ν·n , and ν is a parameter for misclassification cost. The

difference between the two formulas is that (2) allows mis-classifications of the training
instances to cost ω, where (1) does not. To allow mis-classifications, (2) introduces slack
variables ξ, and makes α sparse in its optimal solution [5]. Next, we do not know all
patterns in P unless we mine all of them, and mining all patterns in P is intractable.

40 H. Kim et al.

Therefore, we cannot solve (2) directly. Fortunately, such a linear optimization problem
can be solved by column generation, a classic optimization technique [13]. The column
generation technique, also called the cutting-plane algorithm, starts with an empty set of
constraints in the dual problem and iteratively adds the most violated constraints. When
there are no more violated constraints, the optimal solution under the set of selected
constraints is equal to the optimal solution under all constraints. To use the column
generation technique in our problem, we give the dual problem of (2) as shown in [5].

min
μ,γ

γ

s.t.
n∑

i=1

μiyisc(p, x′
i) ≤ γ, ∀(p, c) ∈ P × C

n∑

i=1

μi = 1, 0 ≤ μi ≤ ω, i = 1, . . . , n,

(3)

where μ can be interpreted as a weight vector for the training instances.
Each constraint

∑n
i=1 μiyisc(p, x′

i) ≤ γ in the dual (3) corresponds to a class-
dependent pattern (p, c). Thus, the column generation finds a class-dependent pattern
at each iteration whose corresponding constraint is violated the most. Let H(k) be the
set of class-dependent patterns found so far at the kth iteration. Let μ(k) and γ(k) be the
optimal solution for kth restricted problem:

min
μ(k),γ(k)

γ(k)

s.t.
n∑

i=1

μ
(k)
i yisc(p, x′

i) ≤ γ(k), ∀(p, c) ∈ H(k)

n∑

i=1

μ
(k)
i = 1, 0 ≤ μ

(k)
i ≤ ω, i = 1, . . . , n

(4)

After solving the kth restricted problem, we search a class-dependent pattern (p∗, c∗)
whose corresponding constraint is violated the most by the optimal solution γ(k) and
μ(k), and add (p∗, c∗) to H(k).

Definition 2. For a given (p, c), let v =
∑n

i=1 μ
(k)
i yisc(p, x′

i). If v ≤ γ(k),
the corresponding constraint of (p, c) is not violated by γ(k) and μk because
∑n

i=1 μ
(k)
i yisc(p, x′

i) = v ≤ γ(k). If v > γ(k), then we say the corresponding con-
straint of (p, c) is violated by γ(k) and μ(k), and the margin of the constraint is defined
as v − γ(k).

In this view, (p∗, c∗) is the class-dependent pattern with the maximum margin. Now,
we define our measure for discriminative power of class-dependent patterns.

Definition 3. We define a gain function for a given weight μ as follows:

gain(p, c; μ) =
n∑

i=1

μiyisc(p, x′
i).

NDPMine: Efficiently Mining Discriminative Numerical Features 41

Algorithm 1. Discriminative Pattern Mining

1: H(0) ← ∅
2: γ(0) ← 0
3: μ

(0)
i = 1/n ∀i = 1, . . . , n

4: for k = 1, . . . do
5: (p∗, c∗) = argmax(p,c)∈P×C gain(p, c; μ(k−1))

6: if gain(p∗, c∗; μ(k−1))− γ(k−1) < ε then
7: break
8: end if
9: H(k) ← H(k−1) ∪ {(p∗, c∗)}

10: Solve the kth restricted problem (4) to get γ(k) and μ(k)

11: end for
12: Solve (5) to get α̃
13: F ← {p|∃c ∈ C, α̃p,c > 0}

For given γ(k) and μ(k), choosing the constraint with maximum margin is the same
as choosing the constraint with maximum gain. Thus, we search for a class-dependent
pattern with maximum gain in each iteration until there are no more violated constraints.
Let k∗ be the last iteration. Then, we can get the optimal solution ρ̃ and α̃ for (2) by
solving the following optimization problem and setting α̃(p,c) = 0 for all (p, c) /∈
H(k∗).

min
α,ξ,ρ

−ρ + ω
∑n

i=1 ξi

s.t.
∑

(p,c)∈H(k∗)

yiαp,cs(x′
i; p, c) + ξi ≥ ρ, ∀i

∑

(p,c)∈H(k∗)

αp,c = 1, αp,c ≥ 0

ξi ≥ 0, i = 1, . . . , n

(5)

The difference is that now we have the training instances in |H(k∗)| dimensions, not in
2|P | dimensions. Once we have α̃, as explained before, we can make a feature set F
such that F = {p|∃c ∈ C, α̃p,c > 0}. As a summary, the main algorithm of NDPMine
is presented in Algorithm 1.

4.2 Optimal Pattern Search

As in DDPMine and other direct mining algorithms, our search strategy is a branch-
and-bound approach. We assume that there is a canonical search order for P such that
all patterns in P are enumerated without duplication. Many studies have been done for
canonical search orders for most of structural data such as sequence, tree, and graph.
Most of the pattern enumeration methods in these canonical search orders create the
next pattern by extending the current pattern. Our aim is to find a pattern with maximum
gain. Thus, for efficient search, it is important to prune the unnecessary or unpromising
search space. Let p be the current pattern. Then, we compute the maximum gain bound
for all super-patterns of p and decide whether we can prune the branch or not based on
the following theorem.

42 H. Kim et al.

Algorithm 2. Branch-and-bound Pattern Search
Global variables: maxGain, maxPat
procedure search optimal pattern(μ, θ, D)

1: maxGain← 0
2: maxPat← ∅
3: branch and bound(∅, μ, θ, D)

function branch and bound(p, μ, θ, D)

1: for q ∈ {extended patterns of p in the canonical order} do
2: if sup(q, D) ≥ θ then
3: for c ∈ {−1, +1} do
4: if gain(q, c; μ) > maxGain then
5: maxGain← gain(q, c; μ)
6: maxPat← (q, c)
7: end if
8: end for
9: if gainBound(p; μ) > maxGain then

10: branch and bound(q, μ, θ, D)
11: end if
12: end if
13: end for

Theorem 1. If gainBound(p; μ) ≤ g∗ for some g∗, then
gain(q, c; μ) ≤ g∗ for all super-patterns q of p and all c ∈ C, where

gainBound(p; μ) =

max

⎛

⎝
∑

{i|yi=+1}
μi · occ(p, x′

i),
∑

{i|yi=−1}
μi · occ(p, x′

i)

⎞

⎠

Proof. We will prove it by contradiction. Suppose that there is a super-pattern q of p
such that gain(q, c; μ) > gainBound(p; μ). If c = 1,

gain(q, c; μ) =
n∑

i=1

μiyisc(q, x′
i) =

n∑

i=1

μiyiocc(q, x′
i)

=
∑

{i|yi=1}
μiocc(q, x′

i) −
∑

{i|y=−1}
μiocc(q, x′

i)

≤
∑

{i|yi=1}
μiocc(q, x′

i) ≤
∑

{i|yi=1}
μiocc(p, x′

i)

≤ gainBound(p; μ)

Therefore, it is a contradiction. Likewise, if c = −1, we can derive a similar contradic-
tion. Note that occ(q, x′

i) ≤ occ(p, x′
i) because occ has apriori property.

If the maximum gain among the ones observed so far is greater than gainBound(p; μ),
we can prune the branch of a pattern p. The optimal pattern search algorithm is pre-
sented in Algorithm 2.

NDPMine: Efficiently Mining Discriminative Numerical Features 43

Iteration

No Shrinking

Shrinking

1 2 3

search space space savings

4

...

...

Fig. 1. Search Space Growth with and without Shrinking Technique. Dark regions represent
shrinked search space (memory savings).

4.3 Search Space Shrinking Technique

In this section, we explain our novel search space shrinking technique. Mining dis-
criminative patterns instead of frequent patterns can prune more search space by using
a bound function gainBound. However, this requires an iterative procedure like in
DDPMine, which builds a search space tree again and again. To avoid the repetitive
searching, gBoost [17] stores the search space tree of previous iterations in main mem-
ory. The search space tree keeps expanding as iteration goes because it needs to mine
different discriminative patterns. This may work for small datasets on a machine with
enough main memory, but is not scalable.

In this paper, we also store the search space of previous iterations, but introduce
search space shrinking technique to resolve the scalability issue.

In each iteration k of the column generation, we look for a pattern whose gain is
greater than γ(k−1), otherwise the termination condition will hold. Thus, if a pattern p
cannot have greater gain than γ(k−1), we do not need to consider p in the kth iteration
and afterwards because γ(k) is non-decreasing by the following theorem.

Theorem 2. γ(k) is non-decreasing as k increases.

Proof. In each iteration, we add a constraint that is violated by the previous optimal
solution. Adding more constraints does not decrease the value of objective function in
a minimization problem. Thus, γ(k) is not decreasing.

Definition 4. maxGain(p) = max
μ,c

gain(p, c; μ), where c ∈ C, and ∀i 0 ≤ μi ≤ ω.

If there is a pattern p such that maxGain(p) ≤ γ(k), we can safely remove the pattern
from main memory after the kth iteration without affecting the final result of NDPMine.
By removing those patterns, we shrink the search space in main memory after each
iteration. Also, since γ(k) increases during each iteration, we remove more patterns as
k increases. This memory shrinking technique is illustrated in Figure 2.

In order to compute maxGain(p), we could consider all the possible values of μ
by using linear programming. However, we can compute maxGain(p) efficiently by
using the greedy algorithm greedy maxGain presented in Algorithm 3.

44 H. Kim et al.

Algorithm 3. Greedy Algorithm for maxGain

Global Parameter: ω
function greedy maxGain(p)

1: maxGain+ ← greedy maxGainSub(p,+1)
2: maxGain− ← greedy maxGainSub(p,−1)
3: if maxGain+ > maxGain− then
4: return maxGain+

5: else
6: return maxGain−

7: end if

function greedy maxGainSub(p, c)

1: maxGain← 0
2: weight← 1
3: X ← {x′

1, x
′
2, . . . , x

′
n}

4: while weight > 0 do
5: x′

best = argmaxx′
i∈X yi · sc(p, x′

i)
6: if weight ≥ ω then
7: maxGain← maxGain + ω · ybest · sc(p, x′

best)
8: weight← weight− ω
9: else

10: maxGain← maxGain + weight · ybest · sc(p, x′
best)

11: weight← 0
12: end if
13: X ← X − {x′

best}
14: end while
15: return maxGain

Theorem 3. The greedy algorithm greedy maxGain(p) gives the optimal solution,
which is equal to maxGain(p)

Proof. Computing maxGain(p) is very similar to continuous knapsack problem (or
fractional knapsack problem) – one of the classic greedy problems. We can think our
problem as follows: Suppose that we have n items, each with weight of 1 pound and
a value. Also, we have a knapsack with capacity of 1 pound. We can have fractions
of items as we want, but not more than ω. The only difference from continuous knap-
sack problem is that we need to have the knapsack full, and the values of items can
be negative. Therefore, the optimality of the greedy algorithm for continuous knapsack
problem shows the optimality of greedy maxGain.

5 Experiments

The major advantages of our method is that it is accurate, efficient in both time and
space, produces a small number of expressive features, and operates on different data
types. In this section, we evaluate these claims by testing the accuracy, efficiency and
expressiveness on two different data types: sequences and trees. For comparison-sake
we re-implemented the two baseline approaches described in Section 5.1. All experi-
ments are done on a 3.0GHz Pentium Core 2 Duo computer with 8GB main memory.

NDPMine: Efficiently Mining Discriminative Numerical Features 45

5.1 Comparison Baselines

As described in previous sections, NDPMine is the only algorithm that uses the direct
approach to mine numerical features, therefore we compare NDPMine to the two-step
process of mining numerical features in computation time and memory usage. Since
we have two different types of datasets, sequences and trees, we re-implemented the
two-step SoftMine algorithm by Lo et al. [12] which is only available for sequences. By
showing the running time of NDPMine and SoftMine, we can appropriately compare
the computational efficiency of direct and two-step approaches.

In order to show the effectiveness of the numerical feature values used by NDPMine
over the effectiveness of binary feature values, we re-implemented the binary DDPMine
algorithm by Cheng et al. [3] for sequences and trees. DDPMine uses the sequential
covering method to avoid forming redundant patterns in a feature set. In the original
DDPMine algorithm [3], both the Fisher score and information gain were introduced as
the measure for discriminative power of patterns; however, for fair comparison of the
effectiveness with SoftMine, we only use the Fisher score in DDPMine.

By comparing the accuracy of both methods, we can appropriately compare the nu-
merical features mined by NDPMine with the binary features mined by DDPMine.

In order to show the effectiveness of the memory shrinking technique, we imple-
mented our framework in two different versions, one with memory shrinking technique
and the other without it.

5.2 Experiments on Sequence Datasets

Sequence data is a ubiquitous data structure. Examples of sequence data include text,
DNA sequences, protein sequences, web usage data, and software execution traces.
Among several publicly available sequence classification datasets, we chose to use soft-
ware execution traces from [12]. These software trace datasets contained sequences of
nine different software traces. More detail description of the software execution trace
datasets is available in [12]. The goal of this classification task was to determine whether
a program’s execution trace (represented as an instance in the dataset) contains a failure
or not. For this task, we needed to define what constitutes a pattern in a sequence and
how to count the number of occurrences of a pattern in a sequence. We defined a pattern
and the occurrences of a pattern the same as in [12].

5.3 Experiments on Tree Datasets

Datasets in tree structure are also widely available. Web documents in XML are good
examples of tree datasets. XML datasets from [20] are one of the commonly used
datasets in tree classification studies. However, we collected a very interesting tree
dataset for authorship classification. In information retrieval and computational linguis-
tics, authorship classification is one of the classic problems. Authorship classification
aims to classify the author of a document. In order to attempt this difficult problem
with our NDPMine algorithm, we randomly chose 4 authors – Jack Healy, Eric Dash,
Denise Grady, and Gina Kolata – and collected 100 documents for each author from
NYTimes.com. Then, using the Stanford parser [18], we parsed each sentence into a tree
of POS(Part of Speech) tags. We assumed that these trees reflected the author’s writing

46 H. Kim et al.

style and thus could be used in authorship classification. Since a document consisted
of multiple sentences, each document was parsed into a set of labeled trees where its
author’s name was used as its class label for classification. We used induced subtree
patterns as features in classification. The formal definition of induced subtree patterns
can be found in [4]. We defined the number of occurrences of a pattern in a document is
the number of sentences in the document that contained the pattern. We mined frequent
induced subtree patterns with several pruning techniques similar to CMTreeMiner [4],
the-state-of-art tree mining algorithm. Since the goal of this classification task was to
determine the author of each document, all pairs of authors and their documents were
combined to make two-class classification dataset.

5.4 Parameter Selection

Besides the definition of a pattern and the occurrence counting function for a given
dataset, NDPMine algorithm needs two parameters as input: (1) the minimum support
threshold θ, and (2) the misclassification cost parameter ν. The θ parameter was given
as input. The ν parameter was tuned in the same way as SVM tunes its parameters:
using cross-validation on the training dataset.

DDPMine and SoftMine are dependent on two parameters: (1) the minimum support
threshold θ, and (2) the sequential coverage threshold δ. Because we were comparing
these algorithms to NDPMine in accuracy and efficiency, for sequence and tree datasets,
we selected parameters which were best suited to each task.

First, we fixed δ = 10 for the sequence datasets as suggested in [12], and δ =
20 for the tree datasets. Then, we found the appropriate minimum support θ in which
DDPMine and SoftMine performed their best. Thus, we set θ = 0.05 for the sequence
datasets and θ = 0.01 for the tree datasets.

5.5 Computation Efficiency Evaluation

We discussed in Section 1 that some pattern-based classification models can be inef-
ficient because they use the two-step mining process. We compared the computation
efficiency of the two-step mining algorithm SoftMine with NDPMine as θ varies. The
sequential coverage threshold is fixed to the value from Section 5.4. Due to the limited
space, we only show the running time for each algorithm on the schedule dataset and
the 〈D. Grady, G. Kolata〉 dataset in Figure 2. Other datasets showed similar results.

We see from the graphs in Figure 2 that NDPMine outperforms SoftMine by an order
of magnitude. Although the running times are similar for larger values of θ, the re-
sults show that the direct mining approach used in NDPMine is computationally more
efficient than the two-step mining approach used in SoftMine.

5.6 Memory Usage Evaluation

As discussed in Section 3, NDPMine uses memory shrinking technique which prunes
the search space in main memory during each iteration. We evaluated the effective-
ness of this technique by comparing the memory usage of NDPMine with the memory
shrinking technique to NDPMine without the memory shrinking technique. Memory us-
age is evaluated in terms of the number of the size (in megabytes) of the memory heap.

NDPMine: Efficiently Mining Discriminative Numerical Features 47

 10

 20

 30

 40

 0 0.05 0.1 0.15 0.2

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

min_sup

SoftMine
NDPMine

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

min_sup

SoftMine
NDPMine

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 (

M
b)

Iteration

No shrinking
Shrinking

 100

 200

 300

 400

 500

 0 10 20 30 40 50
M

em
or

y
U

sa
ge

 (
M

b)
Iteration

No shrinking
Shrinking

(a) Sequence (b) Tree

Fig. 2. Running Time and Memory Usage

Figure 2 shows the memory usage time for each algorithm on the schedule dataset and
the 〈D. Grady, G. Kolata〉 dataset. We set θ = 0 in order to use as much memory as
possible. We see from the graphs in Figure 2 that NDPMine with memory shrinking
technique is more memory efficient than NDPMine without memory shrinking. Al-
though the memory space expands roughly at the same rate initially, the search space
shrinking begins to save space as soon as γ(k) increases. The difference between the
sequence dataset and the tree dataset in Figure 2 is because the search spaces of the tree
datasets are much larger than the search spaces of the sequence datasets.

5.7 Accuracy Evaluation

We discussed in Section 1 that some pattern-based classification algorithms can only
mine binary feature values, and therefore may not be able to learn an accurate classifi-
cation model. For evaluation purposes, we compared the accuracy of the classification
model learned with features from NDPMine to the classification model learned with
features from DDPMine and SoftMine for the sequence and tree datasets. After the fea-
ture set was formed, an SVM (from the LIBSVM [1] package) with linear kernel was
used to learn a classification model. The accuracy of each model was also measured
by 5-fold cross validation. Table 2 shows the results for each algorithm in the sequence
datasets. Similarly, Table 3 shows the results in the tree datasets. The accuracy is defined
as the number of true positives and true negatives over the total number of examples,
and determined by 5-fold cross validation.

In the sequence dataset, the pattern search space is relatively small and the classifica-
tion tasks are easy. Thus, Table 2 shows marginal improvements. However, for the tree
dataset, which has larger pattern search space, and enough difficulty for classification,
our method shows the improvements clearly.

48 H. Kim et al.

Table 2. The summary of results on software behavior classification

Accuracy Running Time Number of Patterns
Software DDPMine SoftMine NDPMine SoftMine NDPMine SoftMine NDPMine
x11 93.2 100 100 0.002 0.008 17.0 6.6
cvs omission 100 100 100 0.008 0.014 88.8 3.0
cvs ordering 96.4 96.7 96.1 0.025 0.090 103.2 24.2
cvs mix 96.4 94.2 97.5 0.020 0.061 34.6 10.6
tot info 92.8 91.2 92.7 0.631 0.780 136.4 25.6
schedule 92.2 92.5 90.4 25.010 24.950 113.8 16.2
print tokens 96.6 100 99.6 11.480 24.623 76.4 27.4
replace 85.3 90.8 90.0 0.325 1.829 51.6 15.4
mysql 100 95.0 100 0.024 0.026 11.8 2.0
Average 94.8 95.6 96.2 4.170 5.820 70.4 14.5

Table 3. The summary of results on authorship classification

Accuracy Running Time Number of Patterns
Author Pair DDPMine SoftMine NDPMine SoftMine NDPMine SoftMine NDPMine
〈J. Healy, E. Dash〉 89.5 91.5 93.5 43.83 1.45 42.6 24.6
〈J. Healy, D. Grady〉 94.0 94.0 96.5 52.84 1.26 47.2 19.4
〈J. Healy, G. Kolata〉 93.0 95.0 96.5 46.48 0.86 40.0 8.8
〈E. Dash, D. Grady〉 91.0 89.5 95.0 35.43 1.77 32.0 28.2
〈E. Dash, G. Kolata〉 92.0 90.5 98.0 45.94 1.39 43.8 18.8
〈D. Grady, G. Kolata〉 78.0 84.0 86.0 71.01 6.89 62.0 53.4
Average 89.58 90.75 94.25 49.25 2.27 44.6 25.53

These results confirm our hypothesis that numerical features, like those mined by
NDPMine and SoftMine, may be used to learn more accurate models than binary fea-
tures like those mined by DDPMine. We also confirm that feature selection by LP results
in a better feature set than feature selection by sequential coverage.

5.8 Expressiveness Evaluation

We also see from the results in Tables 2 and 3 that the numbers of patterns mined by
NDPMine are typically smaller than those of SoftMine, yet the accuracy is similar or
better. Because NDPMine and SoftMine both use SVM and mine numerical features
in common, we can conclude that the feature set mined by NDPMine must be more
expressive than the features mined by SoftMine.

Also, we observed that NDPMine mines more discriminative patterns for harder clas-
sification datasets and fewer for easier datasets under the same parameters θ, ν. We
measured this by the correlation between the hardness of the classification task and the
size of feature set mined by NDPMine. Among several hardness measures [8] we deter-
mine the separability of two classes in a given dataset as follows: (1) mine all frequent
patterns, (2) build a SVM-classifier with linear kernel, and (3) measure the margin of
the classifier. Note that SVM builds a classifier by searching the classification boundary
with maximum margin. The margin can be interpreted as the separability of two classes.

NDPMine: Efficiently Mining Discriminative Numerical Features 49

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
ea

tu
re

 s
iz

e

Margin

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
ea

tu
re

 s
iz

e

Margin

(a) SoftMine (b) NDPMine

Fig. 3. The correlation between the hardness of Classification tasks and feature sizes

If the margin is large, it implies that the classification task is easy. Next, we computed
the correlation between the hardness of a classification task and the feature set size of
NDPMine by using Pearson product-moment correlation coefficient (PMCC). A larger
PMCC implies stronger correlation; conversely, a PMCC of 0 implies that there is no
correlation between two variables. We investigated on the tree dataset, and drew the 30
points in Figure 3 (there are six pairs of authors and each pair has 5 testdata). The result
in Figure 3 shows a correlation of −0.831 for NDPMine and −0.337 for SoftMine. For
the sequence dataset, the correlations are −0.28 and −0.08 for NDPMine and SoftMine,
respectively. Thus, we confirmed that NDPMine mines more patterns if the given clas-
sification task is more difficult. This is a very desired property for discriminative pattern
mining algorithms in pattern-based classification.

6 Conclusions

Frequent pattern-based classification methods have shown their effectiveness at clas-
sifying large and complex datasets. Until recently, existing methods which mine a set
of frequent patterns either use the two-step mining process which is computationally
inefficient or can only operate on binary features. Due to the explosive number of po-
tential features, the two-step process poses great computational challenges for feature
mining. Conversely, those algorithms which use a direct pattern mining approach are
not capable of mining numerical features. We showed that the number of occurrences of
a pattern in an instance is more important than whether a pattern exists or not by exten-
sive experiments on the software behavior classification and authorship classification
datasets.

To our knowledge, there exists no discriminative pattern mining algorithm which can
directly mine discriminative patterns as numerical features. In this study, we proposed
a pattern-based classification approach which efficiently mines discriminative patterns
as numerical features for classification NDPMine. A linear programming method is
integrated into the pattern mining process, and a branch-and-bound search is employed
to navigate the search space. A shrinking technique is applied to the search space storage
procedure which reduces the search space significantly. Although NDPMine is a model-
based algorithm, the final output from the algorithm is a set of features that can be used
independently for other classification models.

50 H. Kim et al.

Experimental results show that NDPMine achieves: (1) orders of magnitude
speedup over two-step methods without degrading classification accuracy, (2) signif-
icantly higher accuracy than binary feature methods, and (3) better efficiency in space
by using memory shrinking technique. In addition, we argue that the features mined by
NDPMine can be more expressive than those mined by current techniques.

References

1. Chang, C.-C., Lin, C.-J.: LIBSVM: a Library for Support Vector Machines (2001), Software
is available for download, at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

2. Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative frequent pattern analysis for effective
classification. In: ICDE (2007)

3. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for effective clas-
sification. In: ICDE (2008)

4. Chi, Y., Xia, Y., Yang, Y., Muntz, R.R.: Mining closed and maximal frequent subtrees from
databases of labeled rooted trees. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 17(2), 190–202 (2005)

5. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column gen-
eration. Machine Learning 46(1-3), 225–254 (2002)

6. Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P.S., Verscheure, O.: Direct
mining of discriminative and essential frequent patterns via model-based search tree. In:
KDD (2008)

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

8. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans.
Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

9. Levy, S., Stormo, G.D.: Dna sequence classification using dawgs. In: Structures in Logic and
Computer Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht, London, UK,
pp. 339–352. Springer, Heidelberg (1997)

10. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple class-
association rules. In: ICDM, pp. 369–376 (2001)

11. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp.
80–86 (1998)

12. Lo, D., Cheng, H., Han, J., Khoo, S.-C., Sun, C.: Classification of software behaviors for
failure detection: A discriminative pattern mining approach. In: KDD (2009)

13. Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill, New York (1996)
14. Nowozin, S., Gökhan Bakõr, K.T.: Discriminative subsequence mining for action classifica-

tion. In: ICCV (2007)
15. Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.: A linear programming approach for molecular

qsar analysis. In: MLG, pp. 85–96 (2006)
16. Saigo, H., Krämer, N., Tsuda, K.: Partial least squares regression for graph mining. In: KDD

(2008)
17. Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gboost: a mathematical program-

ming approach to graph classification and regression. Mach. Learn. 75(1), 69–89 (2009)
18. The Stanford Natural Language Processing Group. The Stanford Parser: A statistical parser,

http://www-nlp.stanford.edu/software/lex-parser.shtml
19. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: KDD (2009)
20. Zaki, M.J., Aggarwal, C.C.: Xrules: an effective structural classifier for xml data. In: KDD

(2003)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www-nlp.stanford.edu/software/lex-parser.shtml

	NDPMine: Efficiently Mining Discriminative Numerical Features for Pattern-Based Classification
	Introduction
	Background and Related Work
	Problem Formulation
	NDPMine
	Discriminative Pattern Mining with LP
	Optimal Pattern Search
	Search Space Shrinking Technique

	Experiments
	Comparison Baselines
	Experiments on Sequence Datasets
	Experiments on Tree Datasets
	Parameter Selection
	Computation Efficiency Evaluation
	Memory Usage Evaluation
	Accuracy Evaluation
	Expressiveness Evaluation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

