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Abstract. The U.S. National Institute of Standards and Technology encouraged
the publication of works that investigate and evaluate the performances of the
second round SHA-3 candidates. Besides the hardware characterization of the
14 candidate algorithms, the main goal of this paper is the description of a reli-
able methodology to efficiently characterize and compare VLSI circuits of cryp-
tographic primitives. We took the opportunity to apply it on the ongoing SHA-3
competition. To this end, we implemented several architectures in a 90 nm CMOS
technology, targeting high- and moderate-speed constraints separately. Thanks to
this analysis, we were able to present a complete benchmark of the achieved post-
layout results of the circuits.

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) started a pub-
lic competition aiming at the selection of a new standard for cryptographic hashing [9].
Hash functions are cryptographic primitives that generate a sort of digital fingerprint
of an arbitrary-length file, following some fundamental principles. Due to their flexi-
bility, hash functions are used in a wide range of communication protocols where they
provide data integrity, user authentication and many other security features. The moti-
vation behind the NIST competition has been the growing concern of the security of
two widely deployed hash functions MD5 and SHA-1 following a series of successful
attacks [12,1,2]. The structural similarity of MD5 and SHA-1 with the current standard
SHA-2 encouraged the NIST to start a new evaluation and selection process similar to
the competition which promoted the Rijndael block cipher as new Advanced Encryp-
tion Standard (AES) in 2001. The cryptographic community was asked to propose new
hash functions and to evaluate the security level of other candidates. In 2008, a total of
51 functions were accepted to the first round, while in July 2009 this number has been
reduced to 14 second round candidates. The final decision, i.e., the proclamation of the
winner algorithm, has been scheduled for 2012. To this end, the organizers are not only
interested in the cryptographic strength of the candidates but also in the evaluation of
the performance of the algorithm implemented in different platforms. The new SHA-3
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standard is indeed expected to provide at least the security of SHA-2 with significantly
improved efficiency. Several applications, from multi-gigabit mass storage devices to
radio-frequency identification (RFID) tags, are expected to utilize SHA-3. It is there-
fore crucial that the final SHA-3 function should be flexible enough to be used in both
high-performance and resource constrained environments. From a pure hardware point
of view, the SHA-3 algorithm should provide good performance in terms of speed, area,
and power.

Our interest in the SHA-3 selection process started with our involvement with the
development of the candidate algorithm BLAKE. We participated in the algorithm spec-
ification, providing relevant information on the hardware performance and possible op-
timizations in this direction. When the SHA-3 competition entered the second phase,
we started a VLSI characterization of several candidates within three separate student
projects at our institute. The resulting designs were manufactured in three different
ASICs, each containing a dedicated interface for I/O communication and the selected
algorithms. At this time, we had implemented twelve out of fourteen candidate algo-
rithms (all apart from ECHO and SIMD). We then decided to extend the analysis to all
candidate algorithms.

In this paper we develop and present one methodology to evaluate the ASIC im-
plementation of all SHA-3 second round algorithms. Rather than going for extremes of
performance (fastest or smallest implementation) we propose to optimize all algorithms
for multiple clearly defined specifications. We have applied our methodology and have
evaluated several architectural variations of all candidate algorithms and presented the
results.

The organization of the paper is as follows: A discussion of our methodology is the
focus of Sect. 2. We present our approach to have a fair comparison, provide details and
reasoning for key design decisions. Implementation details are given in Sect. 3. Due to
limited space we were unable to provide implementation details for the architectures,
an abbreviated summary of all architectures is provided in the Appendix. The results
of our evaluation are presented in Sect. 4 together with a subsection that explains the
errors in our methodology. We hope that this “open” approach will allow independent
researchers to validate our findings. Finally in Sect. 5 we have concluding remarks.

2 Evaluation Methodology

In this work we will attempt to make a fair comparison between VLSI implementations
of a set of algorithms all of which realize a similar function, but have very different
structures. The main difficulty in this particular evaluation is the lack of concrete hard-
ware specifications for the secure hash function candidates.

In practice, the specifications of the hardware are determined by the application. The
hardware designers can then make several well-known trade-offs to come up with a
design that offers the best compromise between, the required silicon area, the amount
of energy required for the operation and the throughput/latency of the operation. For this
study the requirements state efficient hardware implementation without being specific1.

1 This should not necessarily be understood as criticism for the NIST specifications. However,
lack of concrete specifications make a fair comparison more difficult.
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In some cases, such as telecommunication algorithms which have to fulfill require-
ments of certain well-defined standards, the application field alone sets sufficient con-
straints on the system. However cryptographic functions, like the SHA-3 hash function
candidates that is the topic of this paper, are used for a very wide range of applications
with different requirements. This makes it difficult to determine which of the perfor-
mance parameters is more important. A hash function that is part of a battery operated
wireless transmitter would probably be optimized for energy consumption, while the
same algorithm when implemented in a telecommunication base station would most
likely favor a high-throughput realization.

For comparative studies, if concrete specifications are not present, the authors will
usually determine one parameter to be more important (i.e. throughput) [11,8,7], or will
come up with aggregate performance metrics such as throughput per mm2 [10, 3, 5].
Both approaches have their problems. Focusing on one parameter will favor algorithms
which are strong on one parameter (i.e. throughput), but will not merit algorithms which
perform better in other scenarios. Aggregate performance metrics on the other hand,
may end up hiding the absolute performance of an implementation, impractical design
corners (i.e. very large area, very low throughput) may perturb the results.

In the following subsection we will first define the performance metrics that we will
consider in this evaluation. The next step will be to define specifications that will set
limits on these performance metrics.

2.1 Performance Metrics

The most common metrics for hardware include the operation speed, the circuit area
and the power consumption. For this analysis we have decided to use the following
three main metrics for performance:

– Circuit Area
Generally speaking the cost of an ASIC implementation of a function for a particu-
lar technology directly depends on the area required to realize the function2. In this
evaluation we will use the net circuit area of a placed and routed design, includ-
ing the overhead for power routing, clock trees. The area will be reported in kilo
gate equivalents (kGE), where a gate equivalent corresponds to the area of a nom-
inal drive strength 2-input NAND (or NOR) gate in the standard cell library used
for the design realization. This metric covers the evaluation criteria 4.B.ii Memory
requirements in the NIST specification [9].

– Throughput
We need a measure to determine how fast the implementation is. To this end we
define the throughput of a hash function as the amount of message (input informa-
tion) in bits for which a message digest can be computed per second. Furthermore,
we assume that the hash function has been properly initialized, and the message
sizes are matched to individual candidate functions for best case performance. The

2 This is only true if the area is within a certain range. Extremely large circuits will have yield
penalties, while very small circuits will not be able to justify the overhead associated with
manufacturing.
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throughput numbers are given in Gigabits per second (Gbps). This metric covers
the evaluation criteria 4.B.i Computational Efficiency in the NIST specification [9].

– Energy Consumption
Power and energy metrics have gained more importance in recent years. On one
hand there are power density limits the circuits have to comply for sub 100 nm tech-
nologies, and on the other hand for systems with scarce energy resources (handheld
devices, smartcards, RFID devices etc.) reduced energy consumption equals to in-
creased functionality or longer operating time. In this evaluation we will consider
the energy consumption as our metric and will calculate the energy per bit of input
information processed by the hash function. This will be obtained by dividing the
total power consumption (in Watts) by the throughput (Gigabits/s) described above.
The energy consumption will be given in milli Joules per Gigabit (mJ/Gbit). This
metric partly covers the evaluation criteria 4.C.i.b Flexibility in the NIST specifi-
cation [9] as the energy efficiency is a deciding factor for implementation in con-
strained environments.

2.2 SHA-3 Parameters

The SHA-3 Minimum Acceptability Requirements state that all candidates should sup-
port message digest sizes of 224,256, 384, and 512 bits, and support a maximum mes-
sage length of at least 264 − 1 bits. All algorithms process the message in blocks. The
so-called message block size differs from algorithm to algorithm. In addition several
submissions have included a salt input that can be used as a parameter in the hash
function.

In our evaluation we have chosen:

– Message Digest Size of 256
Several algorithms use (slightly) different architectures for different output lengths.
Additional circuitry is then required to support all possible digest sizes. By select-
ing a single length, we aim to focus on the core algorithm which also simplifies
certain architectural decisions. Out of the four required sizes, we have eliminated
224 and 384 as they are not a power of two (always an advantage in hardware de-
sign). We have settled on 256 as it will usually result in smaller hardware and faster
implementations.

– Use the largest message block size available
For each algorithm we have used the largest message block size and we have as-
sumed that the message has already been padded (i.e. the length of the padded
message is an exact multiple of the message block size). For throughput computa-
tion we always give the maximum achievable values, e.g., very long message for
algorithms that have an initialization procedure.

– No salt inputs
Since not all algorithms provide such an input, we have not included any salt inputs.
For algorithms that provide a salt, the inputs are set to their default values according
to the specification, and these constants have been propagated during synthesis to
allow further optimizations whenever possible.
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2.3 Defining Specifications

As mentioned earlier, the main difficulty in this evaluation is the lack of precise specifi-
cations that the candidate algorithms have to fulfill. Hardware design is based on find-
ing a compromise between competing parameters that determine circuit performance.
For example, there are several architectural transformations that allow to increase the
throughput at the expense of the circuit area (see [6]). Without guiding specifications, it
is difficult to determine which of the circuit metrics is more important for a design.

In summary, the NIST specifications in [9] require that the candidate algorithms to
be computationally efficient (4.B.i), have limited memory requirements (4.B.ii), to be
flexible (4.C.i) and simple (4.C.ii) 3.

The classical way to perform this analysis would be to concentrate on only the
throughput metric and try to find out which algorithms are the fastest. In the last year,
several groups presented comparative works and, almost certainly, others will be pub-
lishing new results to this effect. However, if only the maximum throughput requirement
is investigated the flexibility of candidate algorithms may not be visible. Therefore we
suggest to use two separate specifications: an aggressive high-throughput target and a
moderate-throughput target.

The high throughput target has been chosen to be beyond the expected performance
of most algorithms, and would therefore still be able to rank the algorithms in their
maximum throughput capability. Our observation has been that even with older fabri-
cation technologies, such as 180 nm CMOS, several candidate algorithms are able to
reach throughputs of multiple Gigabits/s.

There are certainly applications which could make use of such throughputs, however
such data rates are way beyond the requirements for many applications. For the moder-
ate throughput requirement we have decided to determine a throughput which is at least
two orders of magnitude lower than that used in the first case.

Fixing one of the performance metrics, allows us to make a fairer comparison be-
tween the remaining performance metrics (area and energy), and by considering two
distinct throughput targets, we hope to uncover the flexibility of the candidate algo-
rithms for different operational requirements. In particular, we will be interested in the
circuit area for our high-throughput target, while we will be more interested in the en-
ergy consumption for our moderate-throughput target.

The maximum achievable throughput by a circuit implementing a cryptographic al-
gorithm depends on the specific technology into which the circuit will be mapped. A
throughput value that is easily achieved in 65 nm process, may not be feasible at all
when using a 180 nm process. Therefore the specifications for our two scenarios have
to be chosen while considering the capabilities of our target process.

We have decided to use the 90 nm CMOS process by UMC with the free libraries
from Faraday Technology Corporation, mainly because we already had experience in
designing ASICs with this technology and it was readily available within our design
environment at the time of this study.

3 Note that, computational efficiency could be interpreted in different ways, however, in the
NIST specification it is stated that the “computational efficiency essentially refers to the speed
of the algorithm”. Similarly the memory requirements refer to the circuit area in hardware
implementations.
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Fig. 1. From left to right: Photograph of the fabricated 90 nm chip implementing BLAKE, Cube-
hash, Hamsi, Keccak, Luffa and Shabal. Photograph of the 180 nm chips implementing BMW,
Fugue, Grøstl, JH, SHAvite and Skein.

Table 1. Post-Layout results of the implemented algorithms

Algorithm Area Throughput Energy Technology
[kGE] [Gbps] [mJ/Gbit] [nm]

BLAKE-32 33.55 7.314 15.291 UMC 90
BMW-256 95.00 3.527 31.407 UMC 180
CubeHash16/32-256 39.69 8.000 20.700 UMC 90
Fugue-256 26.00 2.806 122.506 UMC 180
Grøstl-256 65.00 4.064 73.075 UMC 180
Hamsi-256 32.25 7.467 23.624 UMC 90
Hamsi-512 68.66 7.467 46.605 UMC 90
JH-256 44.00 2.371 72.885 UMC 180
Keccak-256† 27.85 39.822 5.726 UMC 90
Keccak-512† 26.94 19.911 11.933 UMC 90
Luffa-256 29.70 22.400 9.482 UMC 90
Shabal-256 35.99 4.923 30.713 UMC 90
SHAvite-3256 48.00 2.452 93.764 UMC 180
Skein-256-256 27.00 1.917 44.329 UMC 180

† First round specification.

Our experiences from designing the three ASICs (one of which was manufactured
using this target technology) have given us a good estimation for the expected perfor-
mance of all algorithms in the 90 nm process. We have decided to use 20 Gigabits/s for
our high throughput target and 0.2 Gigabits/s for our moderate performance specifica-
tions. In the high-speed mode, almost all designs should be pushed to their speed limit,
while with the latter we could evaluate the scalability and therefore the flexibility of
each candidate algorithm.

2.4 ASIC Realizations

During this work twelve out of the fourteen second round SHA-3 candidates (some with
several architectural variations) were fabricated in three different ASICs as shown in
Fig. 1. Table 1 shows a list of algorithms that were implemented and their performances
measured on the manufactured chips.
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Actually implementing the designs in real silicon is certainly the best way to validate
a design and determine its true potential. However, during this work we have realized
that several practical factors have affected these results. The maximum available silicon
area (that can be afforded for this project), the total number of I/O pins, the capabilities
of the test infrastructure that is available for the test of the ASIC have all set limits on
the implementations.

Since none of the designs was large enough to merit its own ASIC, each ASIC com-
prised of several independent modules. All modules shared a common interface which
provided the inputs and collected the outputs from individual hash function realizing
cores. For practical reasons, cores with similar clock frequencies were grouped together
and were optimized using common constraints. In many cases compromises had to be
made to allow two or more cores to be optimized at the same time. All of these had
non-negligible influence on the outcome.

Practical considerations for testing of the systems has brought even more constraints.
The necessity to include test structures (scan chains) adds some overhead, but more im-
portantly, the maximum achievable clock rate greatly depends on the capabilities of
the ASIC test infrastructure available. Designs with a high clock frequency (more than
500 MHz for 90 nm designs) put yet other constraints. When compared to designs run-
ning at lower frequencies, these designs suffer more from clock and power distribution
problems, and are difficult to test at speed.

When designing these three ASICs we were forced to make many design decisions
(i.e. blocks running faster than 700 MHz were deemed to be impractical within our envi-
ronment) based on practical constraints which had its influence on the results. Schedul-
ing constraints have also played a role in the choice of technology used to implement
the designs. For the last two ASICs, there were no feasible 90 nm MPW (Multi Project
Wafer) runs available. Consequently we had to submit these designs to a 180 nm run,
which in turn made direct comparisons more difficult.

For this reason we have taken the design experience from the actual implementation
of the individual cores, and have decided to re-implement all cores without considering
these practical limitations. In particular we have decided:

– No limits on the clock frequency
In this study we will not set any artificial limits on the clock rate. Obviously designs
with high clock rates will still face the penalties for clock distribution, but we will
not deal with practical considerations such as test, crosstalk and I/O limitations.

– No test structures
Testing is an essential part of IC design. The exact overhead for testing depends on
many factors, such as the desired test quality, and a one-size fits all solution is difficult
to find4. Since the designs in this study will not be manufactured directly we chose
not to include any test specific structures into the designs to have a fair comparison.

– Assumed an ideal interface
The candidate algorithms differ in the number of I/Os they require. We have as-
sumed that these core will eventually be part of a larger system which has an

4 Simply using a full-scan methodology for example would not ensure that all designs have
the same test coverage. Furthermore certain designs could be partially tested using functional
vectors, or would be more amenable to BIST structures.
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adequate I/O interface matching the requirements of each core. In this way, ev-
ery function could express its maximum potentiality without suffering from any
external limiation. However, we made no assumptions about how long the inputs
stayed valid, all required inputs were sampled by the cores at the beginning of the
operation. In other words, we implemented an internal message block memory for
designs that require the input to be stable for more than one clock cycle.

– No macro blocks
We have not used any macro blocks to realize look-up tables or register files for
portability reasons. All look-up tables and memory blocks were realized by stan-
dard cells.

3 Implementation

3.1 Design Flow

The same design procedure was used for all candidate algorithms. We have first devel-
oped a golden model based on the Known Answer Tests provided by the submission
package. This golden model was then used to generate the stimuli vectors and expected
responses that we have used to verify the RTL description of the algorithm written in
VHDL.

We have then used Synopsys Design Vision-2009.06 to map the RTL description to the
UMC 90 nm technology using the fsd0a_a_2009Q2v2.0 RVT standard cell library from
Faraday Technology Corporation. All outputs are assumed to have a capacitive loading
of 50 fF (equivalent to the input capacitance of about 9 medium strength buffers), and
the input drive strength is assumed to be that of a medium strength buffer (BUFX8).

We use the worst case condition (1.08 V, 125 °C) characterization of the standard cell
libraries. We have decided to use worst case characterized libraries in order to guarantee
that we can meet the specifications. Table 2 is given as a reference to be able to compare
the three characterizations that are commonly available (worst, typical, best) for one of
the candidate algorithms.

Table 2. Comparison of different characterizations, synthesis results for the ECHO algorithm

Worst Case Typical Case Best Case

Supply Voltage 1.08 V 1.2 V 1.32 V
Temperature 125 °C 27 °C -40 °C
Critical Path 3.49 ns 2.24 ns 1.59 ns
Throughput 13.75 Gbps 21.42 Gbps 30.19 Gbps
Relative Performance 64.2 % 100 % 140.9 %

Depending on the throughput requirements, we try different architectural transfor-
mations such as parallelization, pipelining to come up with an architecture that meets
(or comes closest to meeting) the requirements. We then use the Cadence Design Sys-
tems Velocity-9.1 tool for the back-end design. The technology used in this evaluation
uses 8 metal layers (metallization option 8m026), out of which the top-most two are
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double pitch (wider and thicker). A square floorplan is generated, leaving 30 µm space
around the core for the power connections. For all designs we have used a 85 % uti-
lization of the core area, in other words we have left 15 % of the area for post-layout
optimization and power and ground distribution overhead. For power routing we have
used a power grid utilizing Metal-7 and Metal-8.

Then the design is placed, a clock tree is synthesized and subsequently the design
is routed. After every step the timing is checked, and if necessary a timing optimiza-
tion is performed. At the end, if a valid layout without any Design Rule Check (DRC)
violations are found, the total core area is reported as the area of the system. The to-
tal core area excludes the 30 µm space reserved for power rings, but includes all the
available area that the placement and routing tool can use for the design. By default,
all designs start with a 15 % overhead for post-layout optimizations. Depending on
the design some amount of this overhead is used during various optimization phases
during the back-end design. However it is difficult to quantify the minimum required
overhead for every design reliably. We have decided to start all designs with the same
initial placement density, and verified that the final design was not overly-congested. In
a congested design, the routing solution includes many detours which adversely affect
timing. For these designs the initial row utilization would have been reduced by 5 %,
increasing the overhead. This was not necessary for any designs in this study5. In some
designs, the routing resources are sparsely utilized. Such designs could have benefited
from a higher initial row utilization, which could have resulted in a slightly smaller cir-
cuit without noticeable timing penalties. As mentioned earlier, it is not trivial to make
sure that two designs have exactly the same amount of overhead. Therefore, we have not
considered changing the default row utilization, unless there was a noticeable problem.

The timing results are taken from the finalized design. First, the Velocity tool is
used to extract the post-layout parasitics and an SDF file containing the delays of all
interconnections and instances is generated. The final netlist and the SDF files is read
by the Mentor Graphics Modelsim-6.5a simulator and the functionality of the design is
verified. At the same time, a Value Change Dump (VCD) file that records the switching
activity of all the nodes during the simulation is produced. To have more realistic results,
the start of the VCD file is chosen after the circuit has been properly initialized. This
VCD file is then read back into the Velocity tool and a statistical power analysis is
performed. The Total Power number is used to determine the energy consumption of
the system.

3.2 Algorithms

For a given candidate algorithm, there are several well-known architectural transfor-
mations such as parallelization, pipelining, loop-unrolling etc. that will allow differ-
ent trade-offs between circuit size and throughput. In addition, within the submission
document, the authors often suggest different computational methods to perform a spe-
cific transformation of their candidate function. A good example is the frequently used

5 Note that the initial density strongly depends on the technology options such as used metal
layers. We have used 85 % as a result of our previous experience with this particular technology.



Developing a Hardware Evaluation Method for SHA-3 Candidates 257

substitution boxes. They can be implemented as look-up tables, or can be realized as a
circuit that computes the underlying function mathematically. To make matters worse,
the exact trade-off between alternative realizations may only be visible after placement
and routing. All these aspects broaden the spectrum of the possible hardware architec-
tures. For a single candidate, there is often a large set of circuits with different trade-offs
between size and speed. To identify the best design among many possibilities is not a
trivial task. Despite all attempts to formalize architectural exploration, our experience
has been that optimizing the circuit still remains a manual task, that relies on the skill
and experience of the designer.

In this work, for each candidate algorithm we have selected what we believe was
the most appropriate architecture that was able to reach the target throughput (20 and
0.2 Gbps) with minimal resources. For every candidate we designed and implemented
two different architectures. The specifications of the single designs used within this
work, is given in App. A. We make no claims that any of the architectures we have
reported in this paper is the best possible architecture for a given candidate algorithm.
In our opinion, it is not possible to make such a claim, and the exact implementations
should be open to public scrutiny and review. For this purpose we have made all the
source code that was used for this evaluation public on our www site [4].

4 Results

In this section we present the performance of the circuits implemented for high and
moderate speed environments. The comparison between these two scenarios gives a
further overview of the efficiency and flexibility of the candidate algorithms. We will
refrain from concluding remarks about the performance of the algorithms, as we do not
consider the results complete without public scrutiny.

For each architecture we report two operating frequencies/throughputs. The Max-
imum Clock Frequency is the maximum achievable clock frequency of the given ar-
chitecture. When operating with this clock frequency the circuit can achieve the given
Maximum Achievable Throughput. In most cases, this throughput is not exactly the
same as the required throughput (either 20 or 0.2 Gbps). The second clock frequency
states the clock frequency required to reach the target throughput. The final value in the
tables is a relative indicator of how close the architecture is in achieving the target clock
frequency. A number lower than one means that the architecture failed to achieve the
target throughput. One can take this as a ratio of how closely we were able to optimize
the circuit to the given target performance.

4.1 High Throughput Scenario

As expected, not all the circuits optimized for high-speed were able to reach the target
throughput. Only two algorithms, Keccak and Luffa, were able to achieve the constraint.
Table 3 lists the main performance figures for all architectures. In this scenario both area
and energy were sacrificed to achieve high-throughput. The corresponding layouts can
be seen in Fig. 2. The scale is given in the lower right corner of the figure. Circuits with
a higher congestion rate (i.e. BMW or SIMD) require indeed the entire core for routing,
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Fig. 2. The final layouts of all candidate algorithms for a target throughput of 20 Gbps

and would probably reach a faster throughput with more core area, i.e., a lower row
utilization. Particularly interesting is also the local congestion for the 8-bit LUT-based
S-boxes which makes them easily identifiable within ECHO, Grøstl, Fugue, and partly
SHAvite.

4.2 Medium Throughput Scenario

The moderate-throughput circuits match the target throughput of 0.2 Gbps without diffi-
culty. As can be seen in Table 4 the maximum achievable clock rate always exceeds the
clock frequency required for 0.2 Gbps operation. To some extent, the additional speed
can be traded to reduce the overall energy consumption, by lowering the supply voltage.
It must be noted that there is a lower limit for the supply voltage (around 0.5 V for this
process). Such voltage scaling techniques were not considered in this comparison, all
results are listed for 1.2 V supply voltage.

Since in this scenario, timing was quite relaxed, the main figure of merit becomes the
area and the energy dissipation. The layouts of all fourteen architectures are compared
in Fig. 3, with the scale indicated on the bottom left.

The most interesting result is that a smaller area (or indeed throughput) does not
always equal lower energy consumption (see Hamsi or Skein compared to BMW or
SIMD). It must be noted that, no special precautions were taken for a low-power de-
sign (i.e. proper clock-gating, input-silencing). In addition some architectural decisions
resulted in increased number of operations and/or increased circuit activity which af-
fected the energy consumption differently for separate algorithms. We believe that there
is much room for improvement in terms of low-power performance of the architectures.
We must conclude that the present specifications do not necessarily result in low-power
realizations in the medium-throughput corner. In a next step, the design methodology
could be extended to provide a low-power scenario.
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Table 3. Post-layout performances of all candicate algorithms for a target throughput of 20 Gbps
in the UMC 90 nm process

Maximum Clock Freq. Max. / Target
Achievable Clock for 20 Gbps Frequency

Algorithm Area Energy Throughput Frequency Throughput Ratio
[kGE] [mJ/Gbit] [Gbps] [MHz] [MHz]

BLAKE-32 47.5 11.00 9.752 400 820 0.49
BMW-256 150.0 16.86 8.486 298 703 0.42
CubeHash16/32-256 42.5 13.71 10.667 667 1250 0.53
ECHO-256 260.0 43.41 13.966 291 417 0.70
Fugue-256 55.0 15.60 8.815 551 1250 0.44
Grøstl-256 135.0 14.13 16.254 667 820 0.81
Hamsi-256 45.0 15.90 8.686 814 1876 0.43
JH-256 80.0 17.54 10.807 760 1406 0.54
Keccak-256 50.0 2.42 43.011 949 441 2.15
Luffa-256 55.0 6.92 23.256 727 625 1.16
Shabal-256 45.0 14.83 6.819 693 2033 0.34
SHAvite-3256 75.0 19.21 7.999 562 1406 0.40
SIMD-256 135.0 35.66 5.177 364 1406 0.26
Skein-256-256 50.0 30.47 3.558 264 1484 0.18

Fig. 3. The final layouts of all candidate algorithms for a target throughput of 0.2 Gbps

4.3 Sources of Error

Although we have tried our best to ensure a fair comparison, there are many factors that
could have influenced the results. In this section we try to outline the possible sources
of error in our results, and outline what we have done to address them.

– Conflict of interest
One of the authors of this paper, Luca Henzen, is involved with the SHA-3 candi-
date algorithm BLAKE. Our interest in implementing the SHA-3 candidate algo-
rithms has started by investigating optimal hardware implementations of BLAKE.
We have tried to be as impartial as possible when implementing other candidate
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Table 4. Post-layout performances of all candidate algorithms for a target throughput of 0.2 Gbps
in the UMC 90 nm process

Maximum Clock Freq. Max. / Target
Achievable Clock for 0.2 Gbps Frequency

Algorithm Area Energy Throughput Frequency Throughput Ratio
[kGE] [mJ/Gbit] [Gbps] [MHz] [MHz]

BLAKE-32 16.0 13.00 0.463 73.282 31.646 2.32
BMW-256 85.0 14.04 1.845 64.876 7.031 9.23
CubeHash16/32-256 16.0 10.50 1.741 217.581 25.000 8.70
ECHO-256 60.0 59.44 0.204 137.061 134.771 1.02
Fugue-256 19.0 9.02 1.828 114.260 12.500 9.14
Grøstl-256 25.0 22.28 0.412 128.750 62.500 2.06
Hamsi-256 15.0 35.12 0.200 150.083 149.925 1.00
JH-256 37.5 13.03 1.909 134.228 14.063 9.54
Keccak-256 27.5 5.50 6.767 149.276 4.412 33.83
Luffa-256 22.0 21.79 1.265 118.624 18.751 6.33
Shabal-256 25.0 26.57 0.399 128.634 64.475 2.00
SHAvite-3256 25.0 11.43 1.871 131.527 14.063 9.35
SIMD-256 90.0 32.49 0.943 66.295 14.063 4.71
Skein-256-256 19.0 32.67 0.200 118.765 118.765 1.00

algorithms. However, it is true that we are more familiar with this algorithm than
any other algorithm.

– Designer experience
The algorithms have been implemented by a group of students over a period of
several months. Different designers may have more or less success in optimizing a
given design. We have confidence in our team, but it is possible that for some al-
gorithms we have inadvertently missed a possible optimization while for the others
we were more successful. In addition, over time the designers naturally gain more
experience and are more successful with the designs.
We believe that the most important aspect of a fair comparison is openness. For
this reason we have made the source code and run scripts for the EDA tools used to
implement all designs presented in this paper available on our website [4]. In this
way, other groups can replicate our results, and can find and correct any mistakes
we might have made in the process.

– Accuracy of numbers
The numbers delivered by synthesis and analysis tools rely on the library files pro-
vided by the manufacturer. The values in the libraries are essentially statistical en-
tities and sometimes have large uncertainties associated with it. In addition most of
the design process involves heuristic algorithms which depending on a vast num-
ber of parameters can return different results. Our experience with synthesis tools
suggest that the results have around ± 5% variation. We therefore consider results
that are within 10% of each other to be comparable.
In an effort to be more accurate we have chosen to report post-layout area numbers
that include clock and power distribution overhead. We have designed all circuits
with the same overhead. For some circuits this overhead is adequate, for others it
is too much, and for others is insufficient. We made sure that there is an acceptable
solution for all cases.
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– Bias through specification
We have chosen two design corners in our applications, these specifications have
helped us to have a common base for comparing all 14 algorithms. Regardless of
how these specifications are chosen, it is possible that they benefit some algorithms
more than the others. We hope that, similar studies by other groups which use dif-
ferent specifications will help to give a clearer picture.

– Simplification due to assumptions
All our assumptions, the specific choices we made for SHA-3 parameters and the
practical choices we made in the design flow will have some effect on the results.
For example, we have decided not take IR-drop or crosstalk effects into account.
As a result, the cores that achieve their reported performance by using very high
clock frequencies will be more difficult to realize in practice. The assumptions in
the design flow are a practical necessity and were designed to create a methodology
in which the same solution could be used for all designs.

5 Conclusions

In this paper we have presented a methodology to compare the SHA-3 candidate al-
gorithms. Our previous experiences in designing ASIC implementations of candidate
algorithms (Table 1) has been instrumental in developing what we believe is a fair set
of specifications. Rather than targeting outright performance, we have set limits for
one performance metric (throughput) and re-implemented all algorithms to meet two
distinct throughput requirements. This enabled us to compare the flexibility of the algo-
rithms (Tables 3 and 4).

A public selection process, such as the SHA-3 invariably attracts a large number of
submissions with many different algorithms. In early stages of the selection process,
the sheer number of algorithms (51 in the first round) makes it impractical to employ a
detailed analysis for hardware suitability. Our experience has shown that even with the
14 second round candidates, it is difficult to present an authoritative and fair evaluation
of all candidates. We believe that for the final round of evaluations, a similar approach
to what we have demonstrated in this paper should be utilized: Clear constraints should
be set for the implementations, preferably more than one performance corner should
be targeted, the evaluation process should be well documented and the errors in the
evaluation process should be openly discussed. We would also suggest the addition of
a low-power corner that also considers voltage scaling for low-power operation to our
methodology.

In many parts of this paper, we have extensively commented on limitations of our
methodology, and have included a whole subsection on sources of error. We strongly
believe that any such comparison must be thorough with its analysis of error sources
and clear with its performance metrics.
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didates we used the same design for the 20 Gbps (HS) and 0.2 Gbps (MS) analysis. In
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Table 5. Design specification of the HS and MS-target architectures. For the latency, the enclosed
value refers to the finalization cycles.

Algorithm Message Block Size Arch. Latency Implementation details
[bits] [cycles]

BLAKE 512
HS 21

Four parallel G function modules, anticipation of the first message-

constant addition.

MS 81 One G function module.

BMW 512 HS-MS 18 (+18)
f0 and f2 computed in one cycle, while f1 iteratively decomposed in a

single expand block.

CubeHash 256
HS 16 (+160) Single round per cycle, initial state stored.

MS 32 (+320) Half round, initial state stored.

ECHO 1536
HS 32 8 AES rounds per clock cycle.

MS 1034 Single 32-bit AES core, one parallel BigMixColumn unit.

Fugue
32 HS 2 (+37) S-box as LUT.

MS 2 (+37) S-box as composite field logic.

Grøstl 512
HS 21 (+21)

Interleaved P and Q permutation with one pipeline stage, SubBytes as

LUT.

MS 160 (+160) Single-column round (64-bit datapath), SubBytes as composite field.

Hamsi 32
HS 3 (+6)

Message expansion in three 256×256 LUTs, single round per cycle,

substitution layer as logic.

MS 24 (+48) Same as HS, datapath reduced to 128 bits.

JH 512 HS-MS 36 S-boxes S0 and S1 stored in LUTs, constants stored.

Keccak 1088 HS-MS 24 Single round per cycle.

Luffa 256
HS 8 Three parallel Step function modules, SubCrumb function as logic.

MS 24 One Step function modules, SubCrumb function as logic.

Shabal 512
HS 52 (+156)

One keyed permutation round per cycle. In total, 30 adders and 16 sub-

tractors.

MS 165 One adder and one subtractor only.

SHAvite-3 512
HS 36

One AES round for message expansion and one AES round for the F3

round, SubBytes as LUT.

MS 36 Same as HS, SubBytes in composite field.

SIMD 512 HS-MS 36 (+36)† Four parallel Feistel modules, message expansion based on NNT8 and

eight multipliers for tweadle mult.

Skein 256
HS 19 (+19) Four unrolled Threefish rounds.

MS 152 (+152) Half Threefish round.

† Further 36 cycles of initialization required for message expansion.
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