
Secure Multiplicative Masking of Power

Functions

Laurie Genelle1, Emmanuel Prouff1, and Michaël Quisquater2

1 Oberthur Technologies
{l.genelle,e.prouff}@oberthur.com

2 University of Versailles
michael.quisquater@prism.uvsq.fr

Abstract. Side Channel Analysis (SCA) is a powerful key recovery at-
tack that efficiently breaks block ciphers implementations. In software,
it is usually counteracted by applying a technique called masking, that
combines the key dependent variables with random values. When the
block cipher to protect mixes affine functions and power functions, a
natural strategy is to additively mask the first category of functions and
to multiplicatively mask the second one. Several works that follow this
strategy have been proposed in the literature, but all of them have been
proved to be flawed or very costly. The main difficulty comes from the
multiplicative masking of the zero value in a finite field. In this paper,
we propose a scheme to multiplicatively mask power functions in such a
way that the security against first-order SCA is maintained. We more-
over show how to securely combine additive masking of affine transfor-
mations with multiplicative masking of power functions. We then apply
our method to protect the AES implementation and we show that our
proposal offers good timing/memory performances.

1 Introduction

Originally, cryptographic algorithms were designed to provide resistance against
logical attacks. These attacks try to recover the key from ciphertexts related to
known or unknown plaintexts. While an algorithm may be considered as perfect
from a logical point of view, its implementation may leak information. This very
old idea was actually already applied to the one-time pad by distinguishing the
electrical trace of a zero resulting from the addition of two one’s and of two
zero’s. In the late 90’s, the development of the smart card industry instigated
the research community to develop attacks against software (and hardware) im-
plementations of algorithms. Those attacks take advantage of the correlation
between the manipulated secret key and physical measures such as the running
time, the power consumption or the electromagnetic emanation of the algorithm
processing. Cryptanalyses based on physical measures are today commonly re-
ferred to as side channel attacks. For such attacks, the idea consists in targeting
internal processed values from which it is often possible to derive information
on the key. The family of side channel analyzes can be split into two main cat-
egories: the Simple Power Analysis (SPA) and the Differential Power Analysis

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 200–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Secure Multiplicative Masking of Power Functions 201

(DPA). SPA consists in directly interpreting power consumption measurements
and in identifying the execution sequence. In a DPA, the attacker focuses on the
power consumption of a single instruction and performs statistical tests to reveal
some correlations between the distribution of the measurement values and the
sensitive data (i.e. depending on a secret value) manipulated by the instruction.
Since the publication of the first SPA and DPA, many papers describing either
countermeasures or attack improvements have been published (see [2, 4, 5, 13]
for example). Among these improvements, higher-order SCA attacks are of par-
ticular interest. They extend the SPA and DPA by considering a set of several
instructions instead of a single one. The number d of instructions targeted by
the attack is called order of the SCA. Today’s implementations are expected
to be resistant against first-order SCA (1O-SCA for short), higher order being
difficult to mount in practice. That’s why only resistance against SCA of order
one (including the classical DPA) is considered in this paper. We investigate
this problematic for software implementations of block ciphers that mix affine
transformations with power functions (e.g. the AES).

1.1 Related Work

A way to thwart SCA involves random values (called masks) to de-correlate
the leakage signal from the sensitive data that are manipulated. This way of
securing the implementation is called masking. It is today considered as the most
effective one and is therefore privileged by the smart card industry. The masking
countermeasures that have been proposed in the literature may be divided into
two global strategies.

The first one consists in masking additively internal values whatever the trans-
formation of the block cipher is applied to. For linear operations, dealing with
additive masks propagation and correction is straightforward. In contrast, deal-
ing with additive masking for the non-linear steps of the algorithm (e.g. the
S-box transformations) is more difficult. This issue was addressed in several
ways. Table re-computation [5,12] enables to mask any function at the cost of a
high memory complexity. It may be a good solution when the device on which is
embedded the implementation is not too limited in RAM memory. In the context
of the S-boxes of the AES, Courtois and Goubin [7] have improved the memory
performances of the method by using the compact representation of homographic
functions. The main other methods concern S-boxes with a simple polynomial
representation and they are essentially based on the decomposition of the eval-
uation of those functions. Blömer et al. [3] proposed to evaluate them using a
square-and-multiply algorithm while propagating additive mask at each step. In
the same spirit, several researchers have applied the so-called tower field meth-
ods [19,10,14,15,16,18] that evaluate functions defined on quadratic extensions
of a finite field from the elements of the subfields while propagating the mask
from one representation to another.

The second global strategy was initially proposed by Akkar and Giraud [2]
and is dedicated to block ciphers that mix additive operations with multiplica-
tive ones. The core of the strategy is to take the best part of each world using

202 L. Genelle, E. Prouff, and M. Quisquater

additive masking to secure linear operations and multiplicative masking to deal
with power functions. Originally, the tricky part of this approach was believed to
be the conversion of additive masked values into multiplicative ones and Akkar
and Giraud [2] proposed a solution to this problematic. However Golić and Ty-
men [9] exhibited a flaw in the scheme, observing that the sensitive variable is
not masked when it equals zero. Indeed, in this case the multiplicatively masked
variable equals zero whatever the value of the mask. As a result and as confirmed
afterwards in several papers, it turned out that the main difficulty of the second
strategy is to multiplicatively mask the value zero in a finite field.

In order to bypass this difficulty, several solutions were proposed:

– Golić et al. [9] proposed to shift the computation of the power function up
to a ring embedding the finite field on which the power function is defined.
This procedure enables to map the zero element of the finite field to non-
zero elements of the ring. This procedure doubles the size of the elements
and thus induces both a memory and a computational overhead. Moreover,
the scheme does not perfectly protect the data against first-order SCA.

– Trichina et al. [20] simplified Akkar and Giraud’s scheme and proposed some
tricks to correct the zero-value flaw. Unfortunately, the whole scheme was
shown to be vulnerable to DPA attacks [1] because some masks are biased.

– Another solution would be to detect the zero value masking processing and
to apply a particular treatment in this case. As for instance suggested in [8],
this could be done by using conditional branches. However, this solution
does not give satisfaction because it is vulnerable to SPA. Trichina and
Korkishko [21] proposed a trick based on pre-computed tables in order to
avoid the use of conditional branches. However, with such a procedure the
processing of the AES S-box is simply wrong when applied to zero or one as
noticed by Oswald and Schramm [16]. The latter authors tried to repair the
schema but conditional branches were always necessary.

Eventually none of the techniques proposed in the literature to apply multiplica-
tive masking to sensitive data is perfectly secure against first-order SCA. This
led people to work in the direction of the first strategy even if the second one is
actually more natural for block ciphers such as AES.

1.2 Our Results

The method we describe in this paper circumvents the difficulties encountered
so far to combine additive masking with multiplicative one. Our solution may be
outlined as follows. We first mask the sensitive variable additively and we com-
pute the propagation of this mask through the affine transformations. We then
convert this additive masking into a multiplicative masking, mapping (masked)
sensitive data equal to zero into non-zero values. We keep track of this modi-
fication if applied and we compute the propagation of the multiplicative mask
of this non-zero masked value through the power function. The multiplicative
mask is then converted into an additive mask taking into account the poten-
tial modification of a sensitive variable at the preceding step. These steps are

Secure Multiplicative Masking of Power Functions 203

repeated to eventually obtain both the additively masked ciphertext and the
corresponding mask. In the paper we propose two algorithms to convert an ad-
ditive masking into a multiplicative masking and conversely. Those algorithms
result in two methods to secure the implementation of block ciphers. We com-
pared their performances with those of the main techniques proposed in the
literature [5, 12, 14, 15, 18, 21]. The timing complexity of our first proposal is
ranked second after the table re-computation method [5, 12] and is at least 2.5
times faster than the others [14, 15, 18, 21]. It requires as much memory as the
re-computation table method, but it enables to change the masks frequently
during the processing with only little overhead. This is a strong advantage since
this specificity can be mandated to ensure that no simple higher-order SCA is
possible [9]. The second method we propose is an optimization of the first one for
devices with little RAM and with at least 32 bytes of bit-addressable memory (as
for instance the 80C251 architecture microcontrollers). In memory constraints
environment, the re-computation method can no longer be used and our solution
is the fastest first-order secure alternative to it. We may further conclude that
this second proposal achieves the best timing/memory trade-off while having the
advantage to enable frequent change of the masks during the computation with
only little overhead.

1.3 Paper Organization

The paper is organized as follows. Section 2 deals with the definitions and the
concepts we use in the paper. Section 3 and 4 respectively describe the core idea
and the algorithms enabling to convert additive masks to multiplicative ones
and conversely. Section 5 compares our solution to other implementations in the
case of the AES. Section 6 concludes the paper.

2 Theoretical Framework for Security Analysis

We briefly give in what follows some definitions and concepts used to describe
our proposal and to analyze its security.

We shall view an implementation of a cryptographic algorithm as the pro-
cessing of a sequence of intermediate data, as defined by Blömer et al. [3]. Those
data will be associated with random variables (r.v. for short) denoted by cap-
ital letters, X for instance, while lowercase letters, x for instance, will denote
a particular value. The probability of the event {X ∈ B} shall be denoted by
P(X ∈ B). When the event is the singleton {x}, we will write P(X = x). If the
random variable X has the law of probability L(S) on the set S, we will write
X ∼ L(S). In particular, the uniform law will be denoted by U(S). We introduce
below the concept of dependency with respect to P(·).
Definition 1 (Independency). Two discrete random variables X1 and X2,
defined over finite sets S1 and S2 respectively, are independent if and only if

P(X1 = x1, X2 = x2) = P(X1 = x1) · P(X2 = x2)

for any pair (x1, x2) ∈ S1 × S2.

204 L. Genelle, E. Prouff, and M. Quisquater

Throughout this paper we will often use the following results (see Theorems
3.3.1 and 3.3.2 in [6]).

Proposition 1. Let X1, X2, · · · , Xn be independent random variables taking re-
spectively their values in the finite sets S1, S2, · · · , Sn. If T1, T2, · · · , Tn, U and
V denote arbitrary sets, then

1. g1(X1), g2(X2), · · · , gn(Xn) are independent for any applications gi : Si →
Ti, i = 1...n,

2. f(X1, · · · , Xk) and g(Xk+1, · · · , Xn) are independent for any applications
f : S1 × · · · × Sk → U and g : Sk+1 × · · · × Sn → V .

We now state a proposition that will allow us to derive the next results. It
generalizes analyzes published in [3, 15].

Proposition 2. Consider a finite group (G, �), a finite set S and an application
g : S → G. Let X1 and X2 be two independent random variables over G and
S, respectively. If X1 is uniform, then X3 = X1 � g(X2) is a uniform random
variable over G which is independent of X2.

Proof. See Appendix A.1. �
In the next proposition, we apply Proposition 2 to the additive group (GF(2n),⊕)
and the multiplicative group (GF(2n)�, ·). These results will be useful to prove
the security of our scheme in Sect. 4.

Proposition 3. In what follows, L(S) denotes a law of probability on S which
is not specified.

1. If X1 ∼ U(GF(2n)) and X2 ∼ L(GF(2n)) are independent r.v’s and g is an
application from GF(2n) to GF(2n), then

X3 = X1 ⊕ g(X2) ∼ U(GF(2n)) and X3 is independent of X2 .

2. If X1 ∼ U(GF(2n)�) and X2 ∼ L(GF(2n)) are independent r.v’s and g is an
application from GF(2n) to GF(2n)�, then

X3 = X1 · g(X2) ∼ U(GF(2n)�) and X3 is independent of X2 .

3. If X1 ∼ L(GF(2n)�), X2 ∼ U(GF(2n)) and X3 ∼ L(GF(2n)) are indepen-
dent r.v’s and g is an application from GF(2n) to GF(2n), then

X4 = X1 · (X2 ⊕ g(X3)) ∼ U(GF(2n)) and X4 is independent of X3 .

Proof. See Appendix A.2. �
In the rest of the paper, an intermediate variable shall be said to be sensitive if it
is dependent on the secret key. The following definition gives a formal definition
of the security against first-order SCA.

Definition 2 (First-Order SCA Security). A cryptographic algorithm is
said to be secure against first-order SCA if every intermediate variable is in-
dependent of every sensitive variable.

In the next sections, we present the core idea of our proposal and we prove that
it is first-order SCA resistant.

Secure Multiplicative Masking of Power Functions 205

3 Core Idea of Our Proposal

The core idea of our contribution deals with the first-order SCA resistant imple-
mentation of block ciphers mixing affine transformations and power functions in
a finite field. In what follows, Op denotes either an affine transformation or a
power function, depending on the context.

In what follows, we assume that input/output of the affine operations of the
block cipher (e.g. the AES individual affine transformations) are always masked
additively. Namely, every such operation Op is implemented such that it takes
as input the masked data x ⊕ min ∈ GF(28), where min is randomly generated
over GF(28) and x is a sensitive value. Since Op is affine, then the corresponding
output equals Op(x) ⊕ Op(min) ⊕ c, where c is a constant and Op(min) ⊕ c is
the new mask. In this case, it is obvious that neither the input, nor the output,
nor any intermediate data during the computation is sensitive.

Let us now consider the case when Op is a power function (not linear) defined
over GF(28). To take advantage of the multiplicative structure of Op, we would
like to secure its implementation with multiplicative masks. For such a purpose,
since Op is likely to operate on the output of additively masked affine trans-
formations, we first need to convert an additively masked value x ⊕ min into a
multiplicatively one in the form x · b, where b is a random value in GF(28)�.
Secondly, we need to define a scheme such that Op operates securely on x · b,
and outputs data in the form Op(x) · b′. Eventually, since an affine transforma-
tion is likely to operate on the multiplicatively masked output of Op, we need
to convert it back into an additively masked value in the form Op(x) ⊕ mout,
where mout is randomly generated over GF(28). The masking conversions and
the secure scheme for the power function must be defined by taking into account
the so-called zero-value problem identified in several papers [7,9,20,21]: the value
x = 0 cannot be masked multiplicatively.

The core idea of this paper is to convert additive masking into multiplicative
masking via an algorithm AMToMM in such a way that the sensitive value x = 0
is mapped into 1, keeping trace of this transformation. The power function is then
applied to this non-zero multiplicatively masked value. The result is eventually
converted into an additive masked value via an algorithm MMToAM, taking into
account the potential mapping of the zero sensitive value in the first step.

For any y, let us denote by δy the function defined by δy(x) = 1 if x = y and
δy(x) = 0 otherwise. The most tricky part in this method is to define AMToMM
such that it computes b · (x ⊕ δ0(x)) in a secure way from x ⊕ min, min and b.
This indeed implies the SCA-secure computation of δ0(x) from x⊕min and min.
It can first be noticed that we have δ0(x) = δmin(x⊕min). Based on this remark,
we propose in the following section a masked implementation of δmin(x ⊕ min)
designed such that:

˜δmin(x ⊕ min) =

{

r ⊕ 1 if x = 0
r otherwise

206 L. Genelle, E. Prouff, and M. Quisquater

where r is a random value in GF(28) (Proposal 1 in Sect(s). 4.1 and 4.3) or
in GF(2) (Proposal 2 in Sect. 4.4). To implement it securely and efficiently we
choose to tabulate the function thanks to a pre-computed table T defined such
that T [i] = r⊕1 if i = min and T [i] = r otherwise. Indeed, for such a table T we
have ˜δmin(x⊕min) = T [x⊕min]. The whole procedure is summarized in Fig. 1.

min b

mout

x ⊕ min

Op(x) ⊕ mout

b · (x ⊕ δ0(x))

b′ · (Op(x) ⊕ δ0(x))

b′ = Op(b)

Op

MMToAM

AMToMM

x
?
= 0

Fig. 1. Multiplicative Masking of a Power Function Op

In the next section the three algorithms AMToMM, Op and MMToAM are
described and their efficiency and security are both discussed.

4 Algorithmic of Our Proposal

In the following description of Alg(s). AMToMM, Op and MMToAM we will keep
the same notations involved above. Namely, we shall denote by x a sensitive
value, by min an additive mask, by b ∈ GF(28)� a multiplicative mask, by
r a random value over GF(28) and by T a table of 256 bytes/bits such that
T [x ⊕ min] takes the value r ⊕ 1 if x = 0 and r otherwise. The value r and
the table T are regenerated at each execution of the algorithm. Values min and
b can be regenerated several times per algorithm processing. We shall denote
(x)min = x ⊕ min and [x]b = b · (x ⊕ δ0(x)). The output Op(x) ⊕ δ0(x) shall be
denoted by x′ and the associated multiplicative mask Op(b) shall be denoted
by b′.

4.1 From Additive Masking (AM) to Multiplicative Masking (MM)

To transform every (x)min into [x]b without leaking information about x, we
suggest to use the following algorithm which has been decomposed into several

Secure Multiplicative Masking of Power Functions 207

elementary operations (left column), each manipulating an intermediate result
(right column) computed from x ⊕ min, min, b and r.

Algorithm 1. SCA-resistant AMToMM

Inputs: The table T , the random value r, the additively masked value (x)min , the
additive mask min, the multiplicative mask b
Output: The multiplicatively masked value [x]b and the updating of the global variable
mem with T [(x)min]

Pseudo-Code Data

1. res← r res = r
2. res← res⊕ (x)min res = r ⊕ x⊕min

3. res← res⊕min res = r ⊕ x
4. res← b · res res = b · (r ⊕ x)
5. tmp← (x)min tmp = x⊕min

6. mem← T [tmp] mem = r ⊕ δ0(x)
7. tmp← b ·mem tmp = b · (r ⊕ δ0(x))
8. res← res⊕ tmp res = b · (x⊕ δ0(x))

Correctness of Alg. 1. Algorithm 1 processes the following computations. Ad-
ditions are performed in the order from left to right to insure that the calculation
is first-order SCA resistant:

b · (r ⊕ (x)min ⊕ min ⊕ T [(x)min]) .

Substituting the data according to their definitions, this computation simplifies
to:

b · (x ⊕ δ0(x)) = [x]b .

Moreover we can see that Alg. 1 keeps the track of the possible mapping into 1
of x = 0 by saving T [(x)min] in a global variable denoted by mem.

Security Analysis. In the following, we denote by X , Min, B and R the random
variables modeling the values x, min, b and r respectively. From the description
of Alg. 1, we obtain in Table 1 the list of all intermediate variables I1, . . . , I7 that
involve X in their construction. We prove below that each of them is independent
of X .

We remind that Min and R are uniformly distributed over GF(28), and that
B is uniformly distributed over GF(28)�. Moreover Min, B, R and X are by
definition mutually independent.

Proposition 4. Algorithm 1 is first-order SCA resistant.

Proof. We have I1 = (R ⊕ Min) ⊕ X , I2 = R ⊕ X , I4 = X ⊕ Min and I5 =
R ⊕ δ0(X), where R, Min and X are mutually independent random variables.
We moreover have Min ∼ U(GF(28)) and R ∼ U(GF(28)). Thus, the random
variable R⊕Min satisfies R⊕Min ∼ U(GF(28)) according to the first statement

208 L. Genelle, E. Prouff, and M. Quisquater

Table 1. Intermediate variables of Alg. 1

j Ij

1 R⊕X ⊕Min

2 R⊕X
3 B · (R⊕X)
4 X ⊕Min

5 R⊕ δ0(X)
6 B · (R⊕ δ0(X))
7 B · (X ⊕ δ0(X))

of Proposition 3 and it is independent of X according to Statement 2 of Propo-
sition 1. The three r.v’s Min, R and R⊕Min being uniform over U(GF(28)) and
independent of X , it follows from Statement 1 of Proposition 3 that I1, I2, I4

and I5 are also independent of X .
We observe now that I7 = B · (X ⊕ δ0(X)) is the product of a uniform

random variable B defined over GF(28)∗ with a function of X taking its values
in GF(28)∗. Noting that B and X are independent, it follows from the second
statement of Proposition 3 that I7 is independent of X .

Eventually, we have I3 = B · (R ⊕ X) and I6 = B · (R ⊕ δ0(X)), where B ∼
GF(28)∗, R ∼ U(GF(28)) and X are mutually independent random variables. We
conclude that I3 and I6 are independent of X according to the third statement
of Proposition 3.

We have proved that all intermediate variables in Alg. 1 are independent
of X . From Definition 2, we can then conclude that Alg. 1 is first-order SCA
resistant. �

4.2 Multiplicative Masking of Power Functions

We describe hereafter how to secure the processing of a power function Op with
multiplicative masking.

Algorithm 2. SCA-resistant Power Function Op

Inputs: The multiplicative masked value [x]b and the multiplicative mask b
Output: The masked value [Op(x)]b′ and the output mask b′

1. output← Op([x]b)

2. b′ ← Op(b)

Correctness of Alg. 2. We apply the power function Op to the multiplicatively
masked value [x]b and we obtain:

Op([x]b) = Op(b) · Op(x ⊕ δ0(x)) = b′ · x′ ,

where we recall that x′ and b′ respectively denote Op(x ⊕ δ0(x)) and Op(b).
Observing that x′ is always non-zero, we deduce that δ0(x′) = 0 and we have:

Secure Multiplicative Masking of Power Functions 209

Op([x]b) = b′ · (x′ ⊕ δ0(x′)) = [x′]b′ .

Security Analysis. In Alg. 2, the following intermediate variables appear:
I1 = [x]b, I2 = Op([x]b) and I3 = Op(b). Among them only I1 and I2 involve X
in their definition and we prove below that each of them is independent of X .

Proposition 5. Algorithm 2 is first-order SCA resistant.

Proof. Let g denote the function defined from GF(28) into GF(28)� by g(X) =
X ⊕ δ0(X). The r.v. I1 is the product of g(X) with a random variable B ∼
U(GF(2n)�) which is independent of X . The second statement of Proposition 3
thus implies that I1 and X are independent. Since I2 is a function of the r.v. I1

which is independent of X , it is itself independent of X according to Statement
1 of Proposition 1. We eventually conclude that all the intermediate variables
of Alg. 2 are independent of X . Definition 2 thus implies that the latter one is
secure against first-order SCA. �

4.3 From Multiplicative to Additive Masking

We recall that we have x′ = Op(x ⊕ δ0(x)), that is x′ = Op(x) ⊕ δ0(x) since Op
is a power function (and thus Op(0) = 0 and Op(1) = 1). We assume that mout

is a random value generated over GF(28).
The following algorithm describes a method to securely convert every [x′]b′

into (Op(x))mout .

Algorithm 3. SCA-resistant MMToAM

Inputs: The multiplicatively masked value [x′]b′ , the multiplicative mask b′ ∈ GF(28)
�
,

the additive mask mout ∈ GF(28), the global variable mem = T [(x)min]
Output: The additively masked value (Op(x))mout

Pseudo-Code Data

1. res← mem res = r ⊕ δ0(x)
2. res← res⊕mout res = r ⊕ δ0(x)⊕mout

3. res← res⊕ r res = δ0(x)⊕mout

4. res← b′ · res res = b′ · (δ0(x)⊕mout)
5. tmp← [x′]b′ tmp = b′ · (Op(x)⊕ δ0(x))
6. res← res⊕ tmp res = b′ · (Op(x)⊕mout)
7. res← b′−1 · res res = Op(x)⊕mout

Correctness of Alg. 3. Algorithm 3 processes the following computations
where the operation order is defined from the left to the right between each pair
of brackets:

b′−1 · (b′ · (T [(x)min] ⊕ mout ⊕ r) ⊕ [x′]b′) .

Substituting the variables according to their definitions and observing that Op
(x ⊕ δ0(x)) = Op(x) ⊕ δ0(x), this computation simplifies to:

210 L. Genelle, E. Prouff, and M. Quisquater

δ0(x) ⊕ r ⊕ mout ⊕ r ⊕ x′ ⊕ δ0(x′) = δ0(x) ⊕ mout ⊕ Op(x ⊕ δ0(x))
= mout ⊕ Op(x)
= (Op(x))mout

Security Analysis. We use the same notations as introduced in Sect. 4.1.
Additionally we denote by Mout and B′ the random variables corresponding
respectively to the values mout and b′. Table 2 lists all the intermediate variables
I1, . . . , I7 of Alg. 3. We prove below that each of them is independent of X .

Table 2. Intermediate variables of Alg. 3

j Ij

1 R⊕ δ0(X)
2 R⊕ δ0(X)⊕Mout

3 δ0(X)⊕Mout

4 B′ · (δ0(X) ⊕Mout)
5 B′ · (Op(X)⊕ δ0(X))
6 B′ · (Op(X)⊕Mout)
7 Op(X)⊕Mout

By definition Mout is uniformly distributed over GF(28), and B′ is uniformly
distributed over GF(28)�. Moreover we remind that Mout, B′ and X are mutually
independent.

Proposition 6. Algorithm 3 is first-order SCA resistant.

Proof. We have, I1 = R ⊕ δ0(X), I2 = (Mout ⊕ R) ⊕ δ0(X), I3 = Mout ⊕ δ0(X)
and I7 = Op(X)⊕Mout where R, Mout and X are mutually independent. After
noting that Mout ∼ U(GF(28)) and R ∼ U(GF(28)), we deduce respectively from
the first Statement of Proposition 3 and the second Statement of Proposition 1
that R ⊕ Mout satisfies R ⊕ Mout ∼ U(GF(28)) and is independent of X . We
conclude from Statement 1 of Proposition 3 that I1, I2, I3 and I7 are independent
of X .

Let us observe now that I5 = B′ · (Op(X) ⊕ δ0(X)) is the product of a
uniform random variable defined over GF(28)∗ and a function of X with values
in GF(28)�. It follows from Statement 2 of Proposition 3 that I5 is independent
of X .

Eventually, we have I4 = B′ · (δ0(X) ⊕ Mout) and I6 = B′ · (Op(X) ⊕ Mout),
where B′ ∼ U(GF(28)∗), Mout ∼ U(GF(28)) and X are mutually independent.
These intermediate variables are independent of X according to Statement 3 of
Proposition 3.

All intermediate variables of Alg. 3 are independent of X . We conclude that
Alg. 3 is secure against first-order SCA according to Definition 2. �

Secure Multiplicative Masking of Power Functions 211

4.4 Optimization

Here we propose an alternative algorithm to convert an additive masking into
a multiplicative masking. Compared with Alg. 1, it involves a RAM-table T of
256 bits (stored in 32 bytes) instead of a RAM-table T of 256 bytes, at the cost
of only two additional bitwise additions (Steps 3 and 9 in Alg. 4). This ver-
sion is therefore of particular interest when the device on which is implemented
the countermeasure makes it easy to manipulate bits in memory (e.g. has bit-
addressable memory).

In what follows, we denote by γ a random bit and we define T by T [i] = γ⊕1
if i = min and T [i] = γ otherwise.

Algorithm 4. SCA-resistant AMToMM using a bit-table

Inputs: The table T , the random bit γ, the additively masked value (xi)min , the
additive mask min, the multiplicative mask b
Output: The multiplicatively masked value [x]b and the updating of the global variable
mem with T [(x)min]

Pseudo-Code Data

1. res← γ res = γ
2. rand← RNG rand is random value
3. res← res⊕ rand res = γ ⊕ rand
4. res← res⊕ (x)min res = γ ⊕ rand⊕ x⊕min

5. res← res⊕min res = γ ⊕ rand⊕ x
6. res← b · res res = b · (γ ⊕ rand⊕ x)
7. tmp← (x)min tmp = x⊕min

8. mem← T [tmp] mem = γ ⊕ δ0(x)
9. tmp← mem⊕ rand tmp = γ ⊕ δ0(x)⊕ rand
10. tmp← b · tmp tmp = b · (γ ⊕ δ0(x)⊕ rand)
11. res← res⊕ tmp res = b · (x⊕ δ0(x))

We have described the optimization for Alg. AMToMM only but the mod-
ification must obviously also be done for Alg. MMToAM. Since adapting the
optimization above to the latter algorithm is straightforward, we chose to not
describe it.

5 Application to the AES

To compare the efficiency of our proposals with that of other methods in the
literature, we applied them to protect an implementation of the AES-128 al-
gorithm in encryption mode. We wrote the codes in assembly language for an
8051 based 8-bit architecture without bit-addressable memory. This context was
not ideally suitable for our Proposal 2, but as it can be observed in Table 3, its
performances are already good for this architecture and actually achieve the
best timing/memory trade-off. For this reason, we didn’t chose to move to a
bit-addressable target1 for our comparison.
1 After a rough analysis of the assembly code for our Proposal 2, we think that a 10%

loss of performances is due to the fact that no bit-addressable memory is available.

212 L. Genelle, E. Prouff, and M. Quisquater

In Table 3, we have listed the timing/memory performances of the different
implementations. Memory performances correspond to the number of bytes al-
locations and cycles numbers correspond to multiple of 103. We moreover have
dissociated RAM consumption inherent to the method from RAM consumption re-
lated to the implementation choice (in brackets) which can highly vary from
a code to another. A column has been added to alert on the fact that some
of the listed countermeasures can be easily adapted (without significant tim-
ing/memory performances overhead) to involve different masks to secure each
S-box calculation. This specificity is referred to as MM (for Multi-Masking) in
the table and is discussed in more details in [9, 18]. We also added a column to
point out that some of the listed countermeasures do not achieve first-order SCA
resistance as defined in Definition 2. This fact is discussed in further details in
the next paragraph.

Table 3. Comparison of AES implementations

Method Ref. Cycles RAM ROM MM 1O-SCA

Unprotected Implementation

1. No Masking Na. 2 0 (+32) 1150 Na. No.

Masking by Addition vs First-Order SCA

2. Re-computation [12] 10 256 (+35) 1553 No. Yes.

3. Tower Field in GF(22) [14,15] 77 0 (+42) 3195 Yes. Yes.

4. Tower Field in GF(24) [16] 29 0 (+36) 3554 Yes. No.

5. Masking on-the-fly [18] 82 0 (+39) 2948 Yes. Yes.

Masking by Addition-and-Multiplication vs First-Order SCA

6. Log-ALog Tables [21] 55 256 (+44) 1900 No. No.

7. Proposal 1 Na. 26 256 (+40) 2795 Yes. Yes.

8. Proposal 2 Na. 28 32 (+40) 2960 Yes. Yes.

Outlines of the Methods and Main Differences. The AES implementa-
tions listed in Table 3 only differ in their approaches to protect the S-box access.
The linear steps and the key-scheduling of the AES have been implemented in
the same way: the key-scheduling has not been masked and the internal sensi-
tive data manipulated during the linear steps have been protected by bitwisely
adding a random value. We moreover chose to protect all the rounds of the AES
processing.

Since the linear steps are protected by additive masking, the AES S-Box
denoted by S must be modified to securely deal with such a masking of its in-
puts/outputs. To answer this issue, the re-computation method computes the
table of the function x �→ S[x ⊕ min] ⊕ mout for two pre-defined values of
input/output masks and stores it in RAM. For the other methods, S is split
into its affine part and its non-linear part Op which is the power function
x ∈ GF(28) �→ x254 ∈ GF(28). Under this representation, dealing with the
mask propagation for S amounts to deal with the mask propagation for Op. The
methods of Oswald et al. [14, 15] and of Prouff et al. [18] start by representing

Secure Multiplicative Masking of Power Functions 213

Op over an extension field of GF(24) of degree 2 (such a technique is usually
called tower field method) and they only differ in the ways of securely computing
an inversion in GF(24). In [15, 14], the inversion is performed by going down
to GF(22) where this operation is linear. In [18], the inversion is performed for
every element of GF(24) and the correct result is saved in a special location in
memory according to the value of a comparison test. This method is referred
to as the Masking on-the-fly method in Table 3. All the methods mentioned
above achieve perfect security against first-order side channel analysis, which is
not the case of those of Trichina-Korkishko [21] and Oswald-Schramm [16] that
respectively correspond to the 6th and 4th method presented in Table 3.

In Trichina et al.’s method, a primitive element of GF(28) is computed and
every non-zero element of GF(28) is expressed as a power of that element. To
resolve the zero-value problem, Trichina et al. use slightly modified discrete log-
arithm and exponentiation tables that are pre-computed at the beginning of the
processing to evaluate the AES power function. As argued in [16], the method
has a faulty behavior when some intermediate values are null and no sound
correction of the method has been published until now in the literature. As
in [14,15], the method proposed by Oswald-Schramm [16] is based on the tower
field method but some operations are processed by accessing look-up tables at
addresses that depend on both the mask and the masked data. Since such a
variable is dependent on the sensitive variable, the scheme cannot be consid-
ered as first-order SCA resistant with respect to Definition 2 and attacks such
as those exhibited in [17, 22] are possible. Despite the imperfect security of the
two methods discussed above, we chose to implement them for comparison since
they counteract almost all first-order SCA when no pre-processing is performed
(which is for instance the case for the classical DPA [11] and CPA [4]).

Discussion about the Implementations Results. First, since the perfor-
mances have been measured for a particular implementation on a particular
architecture, we draw reader’s attention that Table 3 does not aim at arguing
that a method is better than another but aims at enlightening the main partic-
ularities (timing performances and ROM/RAM requirements) of each method.

As expected, when 256 bytes of RAM memory are available, then the re-
computation method achieves the best timing performances. In this context,
our first proposal is also promising (ranked second behind the re-computation
method). It can even be a valuable alternative to the re-computation method,
when the input/output masks of the S-box calculations are required to change
during the AES processing. As argued for instance by Golić and Tymen [9] or
by Prouff and Rivain [18], such a security requirement can be laid down in order
to increase the resistance against simple higher-order SCA. In this case, the re-
computation becomes prohibitive whereas the performances of our first proposal
stay almost unchanged (the values taken by the input/output mask in Alg. 1−4
are not assumed to be fixed during the AES processing).

As RAM memory is a very sensitive resource in the area of embedded devices,
it is often preferable to value memory allocation reduction over timing reduc-
tion. Except for our first proposal, all the countermeasures listed in Table 3

214 L. Genelle, E. Prouff, and M. Quisquater

are less efficient than the re-computation method but they all require much less
RAM allocation. In memory constrained devices, they therefore are preferred to
the re-computation method. Among them, our second proposal is the most effi-
cient one. Only the method of Oswald-Schramm has close performances, but at
the cost of imperfect security versus 1O-SCA. When compared to the methods
achieving perfect resistance against first-order SCA, our second proposal is at
least 2.5 times faster.

To conclude about the experiment results reported in Table 3, the choice be-
tween the implementations that offer perfect resistance against first-order SCA
essentially depends on two parameters: the size of the RAM memory available on
the device and the necessity to change masks frequently. We sum up our conclu-
sions in Table 4, where we give for different contexts (amount of RAM available
and chosen masking methods) the method(s) which is(are) the most efficient
one(s).

Table 4. Distribution of the 1O-SCA-resistant methods vs the available RAM memory

Method Cycles (×103) ROM (in bytes) Multi-Masking

Device with Large RAM memory (> 256 bytes)

Re-computation Table 10 1553 No.

Proposal 1 26 2795 Yes.

Device with Medium RAM memory (between 40 and 256 bytes)

Proposal 2 28 2960 Yes.

Device with Small RAM memory (< 40 bytes)

Tower Field in GF(22) 77 3195 Yes.

Masking on-the-fly 82 2948 Yes.

6 Conclusion

In this paper, we have proposed a solution to the zero-value problem in the
multiplicative masking. By introducing a scheme that embeds the multiplicative
masking in GF(28) into a multiplicative masking in GF(28)� we obtained a secure
method to protect the implementation of power functions. We proposed two
methods with different timing/memory trade-offs to implement our scheme and
we proved the security of both methods against first-order SCA. We moreover
compared the new solutions with the existing ones for the AES. Based on our
experiments, we argued that our solutions offer very valuable timing/memory
performances. When a large amount of RAM memory can be used, our proposal is
ranked second among the implemented methods and offers better resistance to
simple higher-order SCA than the first ranked method. In memory constrained
devices, our second proposal is ranked first. To the best of our knowledge, it has
the best timing/memory overhead and is therefore a valuable alternative to the
existing methods.

Secure Multiplicative Masking of Power Functions 215

References

1. Akkar, M.-L., Bévan, R., Goubin, L.: Two Power Analysis Attacks against One-
Mask Methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
332–347. Springer, Heidelberg (2004)

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Blömer, J., Merchan, J.G., Krummel, V.: Provably Secure Masking of AES.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
398–412. Springer, Heidelberg (1999)

6. Chung, K.L.: A Course in Probability Theory. Academic Press, London (2001)

7. Courtois, N., Goubin, L.: An Algebraic Masking Method to Protect AES against
Power Attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp.
199–209. Springer, Heidelberg (2006)

8. Damgard, M., Keller, M.: Secure Multiparty AES. In: Financial Cryptography (to
appear, 2010)

9. Golić, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

10. Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed
Field Representations and its Efficient Implementation for AES. In: Nedjah, N.,
Mourelle, L.M. (eds.) Embedded Cryptographic Hardware: Methodologies and Ar-
chitectures, pp. 213–228. Nova Science Publishers, Bombay (2004)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388–397. Springer, Heidelberg (1999)

12. Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

13. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

14. Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES –
A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

15. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

16. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Im-
plementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 292–305. Springer, Heidelberg (2006)

17. Prouff, E., McEvoy, R.P.: First-Order Side-Channel Attacks on the Permuta-
tion Tables Countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 81–96. Springer, Heidelberg (2009)

216 L. Genelle, E. Prouff, and M. Quisquater

18. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

19. Rudra, A., Bubey, P.K., Jutla, C.S., Kumar, V., Rao, J., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

20. Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative Masking
for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

21. Trichina, E., Korkishko, L.: Secure and Efficient AES Software Implementation for
Smart Cards. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp.
425–439. Springer, Heidelberg (2005)

22. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

A Appendix

A.1 Proof of Proposition 2

Proof. We first observe that for any x2 ∈ S and x3 ∈ G,

P(X1 � g(X2) = x3, X2 = x2) = P(X1 � g(x2) = x3, X2 = x2) .

Since X1 and X2 are independent and X1 is uniform over G,

P(X1 � g(x2) = x3, X2 = x2) = P(X1 � g(x2) = x3) ·P(X2 = x2) =
1

| G | ·P(X2 = x2) ,

for any x2 ∈ S and x3 ∈ G. It follows that for any x2 ∈ S and x3 ∈ G,

P(X1 � g(X2) = x3, X2 = x2) =
1

| G | · P(X2 = x2) . (1)

Let us now prove that X3 = X1 � g(X2) is a uniform random variable over G.
According to the law of total probability, for any x3 ∈ G

P(X1 � g(X2) = x3) =
∑

x2∈S

P(X1 � g(X2) = x3 | X2 = x2) · P(X2 = x2) .

By definition of the conditional probability and (1), for any x3 ∈ G

P(X1 � g(X2) = x3) =
∑

x2∈S

1
| G | · P(X2 = x2) .

Noting that
∑

x2∈S P(X2 = x2) = 1, we conclude that X3 = X1 � g(X2) is a
uniform random variable over G. According to (1) and the uniformity of X3, we
have for every (x2, x3) ∈ S:

P(X1 � g(X2) = x3, X2 = x2) = P(X1 � g(X2) = x3) · P(X2 = x2) .

This means that X3 = X1 � g(X2) and X2 are independent. �

Secure Multiplicative Masking of Power Functions 217

A.2 Proof of Proposition 3

Proof. The first and the second statement follow immediately from Proposition 2
particularized to the groups G = (GF(2n),⊕) and G = (GF(2n)∗, ·) respectively.
Let us prove the third statement. Let us first prove that if we have two in-
dependent random variables A ∼ L(GF(2n)∗) and B ∼ U(GF(2n)) then C =
A ·B ∼ U(GF(2n)). Let us denote by A−1 the inverse of A in GF(2n)∗. For any
c ∈ GF(2n), we have

P(C = c) = P(A · B = c) = P(B = c · A−1) = P(B ⊕ c · A−1 = 0) .

Note that B ⊕ c · A−1 is the sum of uniform random variable over GF(2n) and
a random variable that may be considered over GF(2n). According to the first
statement we have B ⊕ c · A−1 ∼ U(GF(2n)). It follows that C ∼ U(GF(2n)).

Consider now the independent random variables X1 ∼ L(GF(2n)∗), X2 ∼
U(GF(2n)) and X3 ∼ L(GF(2n)). Note that X2 ⊕ g(X3) is uniform over GF(2n)
according to the first statement of Proposition 3. Applying the result above to
A = X1 and B = X2 ⊕ g(X3), we deduce that

X4 = X1 · (X2 ⊕ g(X3)) ∼ U(GF(2n)) .

We are left to prove that X4 = X1 · (X2 ⊕ g(X3)) is independent of X3. For any
x3, x4 ∈ GF(2n), we have:

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(x3)) = x4, X3 = x3) .

Since X1, X2 and X3 are independent random variables, it follows that X1 ·(X2⊕
g(x3)) is independent of X3 for any x3 ∈ GF(2n) (see for example Theorem 3.3.2
in Chung [6] p.54). Therefore, we have for any x3, x4 ∈ GF(2n)

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(x3)) = x4) · P(X3 = x3) .
(2)

Now, applying the result above to the random variables A = X1 and B = X2,
we have X1 · X2 ∼ U(GF(2n)). Therefore, considering X1 · g(x3) as a random
variable over GF(2n), we have according to the first statement of this proposition
that

X1 · (X2 ⊕ g(X3)) = X1 · X2 ⊕ X1 · g(x3) ∼ U(GF(2n)) .

We conclude that

P(X1 · (X2 ⊕ g(x3)) = x4) = P(X1 · (X2 ⊕ g(X3) = x4)

for any x3, x4 ∈ GF(2n). Due to (2), we have for any x3, x4 ∈ GF(2n),

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(X3)) = x4) ·P(X3 = x3) .

The result follows. �

	Secure Multiplicative Masking of Power Functions
	Introduction
	Related Work
	Our Results
	Paper Organization

	Theoretical Framework for Security Analysis
	Core Idea of Our Proposal
	Algorithmic of Our Proposal
	From Additive Masking (AM) to Multiplicative Masking (MM)
	Multiplicative Masking of Power Functions
	From Multiplicative to Additive Masking
	Optimization

	Application to the AES
	Conclusion
	References
	Appendix
	Proof of Proposition 2
	Proof of Proposition 3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

