
Using Ownership to Reason about Inherent

Parallelism in Object-Oriented Programs

Andrew Craik and Wayne Kelly

Queensland University of Technology
2 George St GPO Box 2434

Brisbane QLD 4001 Australia
a.craik@qut.edu.au, w.kelly@qut.edu.au

Abstract. With the emergence of multi-cores into the mainstream, there
is a growing need for systems to allow programmers and automated sys-
tems to reason about data dependencies and inherent parallelism in imper-
ative object-oriented languages. In this paper we exploit the structure of
object-oriented programs to abstract computational side-effects. We cap-
ture and validate these effects using a static type system. We use these as
the basis of sufficient conditions for several different data and task paral-
lelism patterns. We compliment our static type system with a lightweight
runtime system to allow for parallelization in the presence of complex data
flows. We have a functioning compiler and worked examples to demon-
strate the practicality of our solution.

1 Introduction

Imperative programming languages have an inherently sequential semantics, but
programs in these languages may contain sections which can be safely executed
concurrently. The problem of automatically detecting and exploiting this inher-
ent parallelism is long-standing but still beyond the current state-of-the-art for
general programs. The emergence of multi-core computing into the mainstream
has only increased the need for solutions. Rapid growth in the number of cores
per chip is projected and so scalability of proposed solutions is becoming a key
concern. Given the difficulty of the problem, we must find a way to reformulate
it so that it becomes more tractable even if we loose some precision. We seek
a solution that yields sufficient conditions for parallelism that are permissive
enough to be useful while allowing programmers and automated systems to eas-
ily reason about inter-procedural data dependencies and inherent parallelism in
large complex applications.

Parallelism research has traditionally focused on scientific applications where
data-flow analysis has tended to be used to solve complicated array index
expressions and pointer may-alias questions. We believe that these traditional
approaches have met with limited success outside the realm of scientific applica-
tions for two main reasons: (1) the analyses are too fine grained and (2) they do

Funding provided by Microsoft Research and the Queensland State Government

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 145–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 A. Craik and W. Kelly

not facilitate abstraction and composition. These traditional approaches employ
very complex and detailed dependence analyses which do not support abstrac-
tion. This lack of abstraction hinders their ability to reason across method and
component barriers. At the heart of the problem is the fact that, tradition-
ally, method signatures provide no information about side-effects. This makes
it impossible to reason about inter-procedural dependencies without examining
method implementations and all those which may be called. The pervasive use
of dynamic linking and late binding in modern componentized software systems
further exacerbates this problem.

Current approaches to parallelizing applications tend to follow one of two
main schools of thought: (1) statically determine potential conflicts and prevent
them from occuring or (2) allow conflicts to occur and incurr a runtime penalty
to resolve them. Both approaches have different strengths and weaknesses and
have been used to solve different types of problems. In this work we have chosen
to use static analysis, but there is also valuable and interesting work in the field
of runtime conflict resolution. Ultimately, some combination of these approaches
may prove the best compromise.

We address the problem of reasoning about inherent parallelism in the spe-
cific context of imperative object-oriented languages for two reasons. Firstly,
the emergence of multi-cores means that parallelism will now enter the domain
of general purpose desktop and server applications; imperative object-oriented
languages dominate this development space. Secondly, the object-oriented pro-
gramming model provides structure to the memory allocated by the program
and we seek to exploit this structure to facilitate reasoning at higher levels of
abstraction. The use of these higher levels of abstraction allow our techniques to
scale across large and complex applications unlike traditional data flow analysis
techniques.

Capturing the side-effects of methods is difficult as they may, directly or in-
directly, access a virtually uncountable number of memory locations with no
easily describable structure. To simplify reasoning about data dependencies we
abstract these effects by exploiting the hierarchical “ownership” relationships
which inherently exist within object-oriented programs. Objects contain other
objects as part of their representation and we view this as providing a large
tree structure to all of the objects in the program’s heap. We can, therefore,
summarize method side-effects in terms of the subtrees which may be accessed
or modified. To reason that two computations are independent (i.e. can be ex-
ecuted in parallel) we can reason about the parts of this ownership tree that
could, potentially, be accessed instead of reasoning about the individual mem-
ory locations themselves. If the sub-trees accessed are disjoint then there can
be no data dependencies. This approach sacrifices some precision so that we
can perform inter-procedural dependency analyses in a scalable and composable
manner.

We have developed a static type system based on Ownership Types[1–6]
which is a type system formulated to capture this “ownership” tree. Our system
captures, computes, and validates computation side-effects in terms of these

Using Ownership to Reason about Inherent Parallelism 147

ownerships. Because of the hierarchical nature of ownership, we can describe
side-effects at different levels of granularity. The side-effects in turn can be used
to statically reason about the presence of inherent parallelism.

Complex inter-procedural data flows in addition to dynamic linking and late
binding reduce our ability to statically determine the relationship between some
contexts at compile time. Because of this, we have complemented our static type
system with a runtime representation of these ownership relationships that allow
us to determine the disjointness of effects at runtime in O(1) time. Such runtime
tests result in conditional parallelism and allow us to parallelize more cases.

To help demonstrate the efficiency and effectiveness of our system for real
applications we have created an extension of the C� language with support for
ownership and effect annotations (the same could easily be done using Java as
the base language). We have implemented a compiler for this extended language
that performs type checking and generates parallelized C� source code as output.
Complete source code for our compiler and runtime system is available from our
web site [7] together with some examples that we have applied our system to.
Snippets from one of those examples are presented in Section 7 together with
runtime results.

The reader is asked to note that this paper only addresses the question of
where inherent parallelism can be found. We address neither the question of
which parallelism should be exploited nor how best to exploit it.

Our specific contributions in this paper are:

– Application of Ownership Types to the problem of automatically paralleliz-
ing programs; the use of which has been suggested, by several authors, but
there have been no experiments performed to determine if these reasoning
systems work in practice for detecting inherent parallelism [3, 6–8].

– Sufficient conditions for the safe parallelization of data parallel foreach loops
and several task parallelism patterns based on our framework for abstracting
and reasoning about side-effects and data dependencies.

– A lightweight runtime ownership system which allows our techniques to op-
erate in the presence of complex data flows. Our runtime implementation
provides effect disjointness tests in constant time.

2 Background

To facilitate discussion of our parallelism analyses in subsequent sections, we
first provide the reader with background information on Ownership Types and
our static type system. We begin by providing a brief introduction to Ownership
Types.

2.1 Introduction to Ownership Types

Consider the following code snippet:

private Object[] signers;
public Object[] getSigners() {...return signers;}

148 A. Craik and W. Kelly

Note that despite the private annotation on the signers field, it is possible for
the getSignersmethod to return the object referenced by this field. The private
annotation on the field only protects the name of the field and not the data it
contains. This code was the source of the infamous getSigners bug in Java 1.1.1
for precisely this reason [9]. Ownership Types [1–6] is one of the systems originally
proposed to enforce this kind of protection in a rigorous manner.

Enforcing encapsulation requires each object to track: (1) which object’s rep-
resentation it is part of and (2) which objects are part of its representation.
In Ownership Types this tracking is achieved through the notions of ownership
and object contexts (here after referred to as contexts). As Clark, Noble, and
Potter eloquently described it, “Each object owns a context, and is owned by
a context that it resides within” [1]. This definition creates a tree of ordered
contexts rooted in the top context called world. Each object has a context in
which it may store its representation (the object’s this context). Encapsulation
enforcement in these systems is achieved by only permitting the object itself to
name its this context. If one is unable to name a context one cannot name the
type of a reference to an object in that context.

In the getSigners example, the signers field would have been denoted as
owned by the this context which would have prevented its contents being re-
turned and directly accessed by external components. Such invariants are useful
from the perspective of parallelism analysis because we can reason that others
are not accessing the protected data; that is we have some means of containing
the scope of effects.

2.2 Ownership Syntax

Our system’s ownership syntax is similar to that used by Effective Ownership
Types [6]. Ownership Types are a form of constructed type similar to the idea
of generic types. While generic types are constructed by providing a list of ac-
tual type parameters, Ownership Types are constructed by providing a list of
contexts. Methods are normally parameterized by data values. In generic types,
methods can also be parameterized by types; in a similar manner, we allow meth-
ods to be parameterized by context parameters. In the case of class definitions,
the first formal context parameter in the list, by convention, represents the con-
text that owns the object. Any other formal context parameters, if they exist,
can be used as actuals to construct other types used within the class. In our ex-
tended C� language we support both generics and ownership types, so a class can
have both type parameters and context parameters. Our syntax for ownership
types uses square brackets for delineating the list of formal context parameters
and vertical bars for delineating the list of actual context parameters. Whilst
contexts are associated with objects, we cannot refer to the context of arbitrary
objects, the only contexts that we can name are the special contexts this and
world and formal context parameters visible in the current lexical scope. Below
is an example showing this syntax:

Using Ownership to Reason about Inherent Parallelism 149

class LinkedList<T>[x] {
private Link<T>|this| head;
...

}
class Link<T>[y] {
private Link<T>|y| next;
private T dt;
...

}

In the above example, the head node is part of the representation of the
linked-list and so is owned by the this context of the linked-list. The next field
of the node class is defined recursively to also be owned by the same linked-list
object. Simply having a private reference to an object does not imply that you
own it. It is up to the programmer to decide the logical ownership relationships.

We also allow an objects’ state to be subdivided into a set of named sub-
contexts to allow effects to be described at a sub-object level of granularity.
Aldrich and Chambers were the first to propose such a subdivision of an object
as part of their Ownership Domains system[10]. Section 7 demonstrates how
these subcontexts are used in practice.

Finally, it is important to note that the built-in value types like int, double,
and string as well user defined value types in the form of structs do not have
have owners because they cannot be aliased; they are passed and copied by value
not by reference like classes.

2.3 Side-Effects

Our system partitions effects into stack and heap effects. Stack effects only ap-
pear as part of local data-dependency analysis. Heap effects are captures by
listing the contexts read and written. Programmers are required to specify heap
read and write effects as lists of contexts on method signatures. The type rules
for our language enforce the invariant that if an expression or statement reads
some value on the heap then the context that owns the value or one of its an-
cestors is included in the computed read effect set and similarly for writes. The
type rules for our language can be found in our companion technical report [11].

Note that the scope of effects can be described at different levels of abstraction
due to the hierarchical nature of contexts. The scope of effects can be thought
of as similar to street addresses. We could describe an effect as being limited to
a very precise location, for example 5th Avenue, Manhattan. It is also correct,
but less precise, to say that the effect is limited to New York City or indeed
to the United States. If we were then to observe an effect occurring in Boston
we would know that the effect in New York and the effect in Boston could not
interfere because they are in different cities. If, however, we were to observe an
effect occurring in New York City, we know that the effect could interfere with
our effect on 5th Avenue.

Consider our previous linked-list example, the following shows the syntax for
declaring effects:

150 A. Craik and W. Kelly

class Link<T>[o] {
private Link<T>|o| next;
private T data;
public Link<T>|o| getNext() reads<this> writes<> {
return next;

}
public T getNextData() reads<o> writes<> {
return next.data;

}
}

In the above example, the getNext method reads a field from the current
object which is captured as a read of this. The getNextData method reads the
current object, generating a read effect of this. It also causes a read of the object
referenced by next which is owned by o. The read effect contains only o because
this is part of o’s representation and so a read of o includes a read of this.

This idea and style of effect annotation has been used before by other authors
for different purposes. Geenhouse and Boyland were amongst the first to propose
an effect system in terms of ownership style contexts[8]. Clarke and Drossopoulou
extended these ideas to show how effects could be used for the purposes of vali-
dating program properties[3]. Lu and Potter have also proposed effect systems for
reasoning about programs[6]. Other authors then took these effect systems and
applied them to the problem of verifying locking protocols/ordering in already
parallelized programs. Examples of such systems include the work of Boyapati,
Lee, and Rinard[12] and Cunningham et al.[13]. Note that this is a very a differ-
ent, and we believe less interesting, problem than the problem of automatically
detecting the inherent parallelism in a sequential problem.

To support legacy components written without any context or effect anno-
tation we employ two strategies. By default, any object without an owner is
assumed to be owned by world and any method that does not have declared ef-
fects is assumed to read and write world. Such code will prevent parallelization
but is guaranteed to be safe. In addition, we have invented a syntactic construct
that allows programmers to specify ownerships and effects for existing legacy
classes. The added ownership and effect information is treated as programmer
assertions which are accepted on trust rather than being verified.

2.4 Separating Ownership from Encapsulation

The original ownership type systems[1] were designed to enforce strong encap-
sulation. They both provide a notation for describing which objects were owned
by which other objects and placed strong restrictions on which contexts could be
read or written from other contexts. Our proposed use of Ownership Types can
work with such restrictions; however, they are not strictly necessary for our pur-
poses. Like many recent Ownership systems, including MOJO [2] and Jo∃[14],
we choose to omit such strong encapsulation enforcement to make programming
easier; we only need to track reads and writes of the heap, not restrict them.

Using Ownership to Reason about Inherent Parallelism 151

3 Ownerships and Data Dependencies

The key idea of this paper is that we can use the overlap of the read and write
effect sets of sections of code to determine if data dependencies can exist. Data
dependencies can be classified as either flow, output, or anti-dependencies. If the
write set of one section of code does not overlap with the read set of some other
then a flow dependence cannot exist. Similarly for output and anti dependencies.

When considering the overlap of effect sets we consider stack and heap ef-
fects separately as they represent disjoint sets of memory locations. Sets of stack
effects overlap if they contain the same local variable or parameter names. Deter-
mining if sets of heap effects overlap is harder because context parameters with
different names do not necessarily represent disjoint subtrees of the ownership
tree. One context’s relationship to another can be said to be:

– equal (=) they are one and the same
– dominating (<) one context is directly or indirectly owned by that on the

other
– disjoint (|) they appear on different branches of the ownership tree

Two context sets S1 and S2 overlap if any of the contexts in the two sets overlap:

overlaps
(
S1, S2

)
= ∃s ∈ S2 ∃t ∈ S2 ¬(

s # t
)

In some cases we can statically determine that all of the relevant contexts do
not overlap and so we can safely parallelize the code. Similarly, in other cases
we can statically determine that the effect sets are not disjoint and so we will
not try to parallelize the code. In the remaining cases we may not be able to
statically determine if the relevant effects can overlap, but we can determine this
dynamically with our runtime system. As we will describe in Section 4, we can
compute the relationship of two arbitrary contexts in constant time. It is impor-
tant to note that presence of a runtime system does not require modifications
to our static type system or our sufficient conditions for parallelism.

The following section discusses how the relationship between contexts can
be tested at runtime. Following our discussion of our runtime system, we will
formulate sufficient conditions for parallelism based on the data dependency
techniques developed in this section.

4 The Runtime Representation

Consider the following code snippet of a method parameterized with two context
parameters:

public void method[c1,c2](...) reads<c1> writes<c2> { ... }

Note that the relationship between c1 and c2 is not known until the method
is invoked. There may be some calls where c1|c2 and others where they are

152 A. Craik and W. Kelly

not. Producing code for every possible combination of context relationships is
not feasible in general and so we need to be able to ask questions about the
relationship of contexts at runtime.

Our runtime system compliments the static system by allowing context rela-
tionships to be checked at runtime. Further, each individual context relationship
test can be done in O(1) time even though the program may have a theoretically
unbounded number of memory locations in use.

4.1 Context Testing

What we are trying to do is to find the relationship between two nodes in a tree.
There are three different relationships which we may want to test for: equality,
domination, and disjointness. What we are trying to do is determine if one
context is included in the ownership subtree rooted at a second context. This
problem is analogous to trying to determine if one type is a sub-type of a second
type in an object-oriented language with single inheritance; this is known as the
type-extension problem[15].

We map contexts to objects at runtime; this means that an object’s this con-
text is represented by the object itself; the distinction between the this context
and this variable is, therefore, removed at runtime. The naive implementation
of a runtime system would have each object maintain a single parent pointer to
its owner. Context relationship tests could then be performed by chasing point-
ers in the same way that Wirth performed type-extension tests in Oberon[15].
This solution consumes a constant amount of space per object and provides
constant-time object creation overhead, but O(n) time relationship tests where
n is the height of the hierarchy.

The runtime testing of context relationships is a potentially frequently ex-
ecuted operation. We have, therefore, chosen to use Cohen’s solution to the
type-extension problem[16] which uses Dijkstra’s views[17]; each object main-
tains an array of pointers to its ancestors. This solution allows us to perform
relation tests in O(1) time at the cost of O(n) creation time and space per object,
where n is the height of the hierarchy. Fortunately, the maximal depth of owner-
ship hierarchies tends to be low according to recent studies applying ownership
to larger programs [18]. Alternative hybrid approaches, like the use of skip lists
[19], could be used to provide implementations with time and space performance
between these extremes.

4.2 Static Test Minimization

Even with the efficient runtime system outlined, it is necessary to minimize the
number of disjointness tests required. We use two techniques to achieve this:

Static Reasoning. At compile time there are a limited number of context
relationships which are statically known for any given class:

Using Ownership to Reason about Inherent Parallelism 153

– An object’s this context is dominated by its owning context
– All of the declared subcontexts are dominated by the this context
– All subcontexts of an object are disjoint from one another

This information can be used to make some parallelization decisions at compile
time without runtime tests.

Context Constraints. We have added syntax to our language which allow
programmers to statically constrain the relationship between context parame-
ters on classes or methods, similar to C�’s constraints on generic type parameters.
The programmer can specify the relationship between contexts to be domination
(<) or independence (|). The constraints are preserved by the type system dur-
ing type extension, abstraction, and overriding. The compiler statically enforces
these constraints during type checking. The example below shows a class with
such constraints; specifically that o is dominated by d and d is independent of
context t.

class Foo[o,d,t] where o < d where d | t

5 Task Parallelism

Imperative programs are composed out of sequence, selection, and repetition
constructs. Selection is an inherently sequential operation in the absence of spec-
ulative execution so we focus on the parallelization of sequence and repetition
constructs.

If a programmer has a set of operations that need to be performed, the im-
perative paradigm requires them to be listed in some arbitrary sequence thereby
imposing a total order on the them. In actuality, the data dependencies between
operations may only imply a partial order to the steps. The difference between
this partial order and the total order represents potential for parallelism. We can
construct the partial order by computing the data dependencies between oper-
ations. Our effects system allows us to build a Data Dependency Graph (DDG)
easily to allows to detect and exploit this parallelism.

6 Loop Parallelism

Repetition parallelism can take many different forms. In this paper we focus
on data parallel loops; those in which the structure of any available parallelism
is based around the data. In C� data parallel loops most commonly take the
form of the foreach loop which are the only type of loop considered in this
section. We will present sufficient conditions for two parallelism patterns for such
loops: (1) data parallelism where loop iterations execute independently and are
distributed across multiple processors and (2) pipelining where the execution
of a loop iteration is divided up into stages and distributed across multiple
processors.

154 A. Craik and W. Kelly

6.1 Loop Parallelism

The data parallelism pattern can only be safely applied if there are no inter-
iteration dependencies. We begin by considering the following simple loop:

foreach (T|c| element in collection)
element.operation();

We now state informal conditions which are sufficient to ensure there are no such
dependencies:

– Loop Condition 1: There are no control dependencies which would prevent
loop parallelization.

– Loop Condition 2: The objects traversed by the iterator are all different.
Note that they all share the same owner so this implies their contexts are
all disjoint.

– Loop Condition 3: The operation only mutates the representation of
its “own” element and does not read the state owned by any of the other
elements.

Detecting the control dependencies which are the subject of Loop Condition 1 is
a much simpler problem than detecting data dependencies; we do not claim any
new contribution with respect to detecting control dependencies in this paper.
Loop condition 2 can be satisfied in one of two ways. Either we can dynami-
cally test the uniqueness condition just prior to loop execution or we can have
the programmer assert the uniqueness condition. In the case of a programmer
assertion we have the option of verifying the uniqueness invariant at runtime
or turning off such assertion checking in order to improve efficiency. If checked,
such a uniqueness invariant could be verified either when an insertion takes place
or just prior to when the invariant actually needs to hold. The uniqueness as-
sertion can be made by annotating either the collection itself or its enumerator
(a collection may contain duplicates, but if its enumerator only returns unique
elements then the condition is still effectively met). The uniqueness annotation
could be placed on the collection class, or just on specific instances of that col-
lection class. Which of the above possibilities is used to ensure loop condition 2
is met will depend on programmer preferences and performance considerations
- we therefore do not stipulate a single mechanism.

Loop Condition 3 says that the write set of operation can contain at most
this. The read set can contain this, but it may also contain other contexts r,
provided that we know r to be disjoint from c.

We now more formally state our sufficient conditions for parallelism: Let R
and W represent the read and write effects of operation:

1. Loop Condition 2: The values in the collection traversed by the iterator
are asserted to be unique meaning that
∀i ∈ 1..|iterated values| ∀j ∈ 1..|iterated values| i �= j ⇒
iterated values[i] �= iterated values[j]

2. Loop Condition 3:
∀w ∈ W w � this ∧ ∀r ∈ R r � this ∨ (

r �= c
)

Using Ownership to Reason about Inherent Parallelism 155

If any one of the conditions is known not to hold, then we must execute the
original sequential loop to preserve program correctness. We may not be able
to decide if conditions 2 and 3 hold at compile-time depending on the contexts
concerned. Context relationships may not be known until runtime and so condi-
tionally parallel code is emitted when this is the case:

if (/*runtime test: all r’s are disjoint from c*/)
parallel.foreach (element in collection) { element.op(); }

else
foreach (element in collection) { element.op(); }

Facilitating Upward Data Access. So far we have formulated a sufficient
condition for data parallel loops designed to allow reading of disjoint and de-
scendent contexts. We now look at facilitating access to ancestor contexts.

Figure 1 illustrates the ownership tree we would like to be able to support.
We have a collection of elements d1...dn which are owned by some object c. From
context c we wish to read data from context r. If context r is not in scope (ie
we cannot name it) then we must access r through context b, an upward access.

Fig. 1. Ownership relationships between contexts at runtime used for example of cap-
turing context disjointness

Abstracting a safe read of the disjoint context r to be a read of b suddenly
makes the read unsafe in our current scheme. To avoid this problem, we introduce
the notion of sub-contexts to allow us to partition contexts like b.

With sub-contexts, context b would “own” a finite number of named sub-
contexts b1 and b2. We only permit the this context to be subdivided into sub-
contexts. Using these sub-contexts reading r could be summarized as a read of
b1 rather than b itself. If the elements returned by the enumerator are located
in sub-context b2, then we could safely allow the read of b1 as it is disjoint
from c. The idea of sub-contexts has been presented previously by other authors
including Clarke and Drossopoulou who used them to provide more precise effect
information[3].

Within each class, the programmer can decide if they wish to declare sub-
contexts and if they do, they can declare as many as they desire. In the extreme
case, each private field might be given its own sub-context, but programmers
would more commonly create a sub-context to encapsulate a group of related
private fields. The more sub-contexts, the more information that needs to be

156 A. Craik and W. Kelly

passed as context arguments on types; the creation of sub-contexts is a trade-
off between precision and complexity. Sub-contexts are limited in scope to their
class of declaration. To children they look like any other context passed down
from the parent while to parents they appear to be part of the owning class’
representation.

Loop Body Re-writing. Now that we have explored the sufficient conditions
for the parallelization of a simple data parallel loop, the question of how to
generalize these conditions to handle arbitrary foreach loop bodies arises.

Consider the following loop:

class Foo[o] {
foreach (T|e| elem in collection)
// sequence of statements possibly including local variable defs

}

Fortunately, generalization to arbitrary loop bodies is a natural extension of
our existing techniques. We can conceptually re-write the loop body as:

class Foo[o] {
foreach (T|e| elem in collection)
elem.loopBody|o|(this);

}

where o is the owner of the class containing the loop and conceptually becomes
a method of the element type T:

class T {
void loopBody[c](Foo|c| me) {
// same sequence of statements replacing all elem by this
// and all this by me

}}

6.2 Pipelining

The data parallelism pattern for loop parallelization can only be applied to loops
without inter-iteration dependencies. Consider the following loop:

foreach (T|o| elem in collection) {
S_A; S_B; S_C; S_D;

}

This loop may, for example, have both intra- and inter-loop iteration depen-
dencies as depicted in Figure 2. Despite the presence of the dependencies it is
possible, for example, to execute iteration 1 of S B in parallel with iteration 2 of
S A (provided iteration 1 of S A has already completed execution).

The only form of dependence that we must rule out is a dependence from an
iteration p of statement Si to a later iteration q of some statement Sj where

Using Ownership to Reason about Inherent Parallelism 157

Fig. 2. Diagram showing the permitted data dependencies between stages and itera-
tions. SA through SA represent four pipeline stages and Iteration1 through Iteration3
represent three iterations.

j < i. In Figure 2, these dependencies would take the form of diagonal edges
moving down and to the left.

To determine which dependencies exist we must first compute the loop body’s
“virtual” effects of each statement within the loop body using the techniques
from Section 6.1. So if a statement reads or writes any part of the representation
of the loop iteration variable elem then that will show-up as this in the virtual
effect set of that statement.

We now formalize the sufficient conditions for the safe pipelining of a data
parallel loop with stages S1..Sn:

1. the enumerated values are asserted to be unique which means that
∀i ∈ 1..|iterated values| ∀j ∈ 1..|iterated values| i �= j ⇒
iterated values[i] �= iterated values[j]

2. There does not exist a dependence (flow, output, or anti) from Si to Sj

where j < i. The presence of such dependencies is determined as described
previously based on the disjointness of the read and write virtual effect sets
of the statements in question.

A number of techniques for detecting and scheduling loops for pipelined execu-
tion have been developed over the years [20]. All of these techniques consume a
data dependency graph (DDG), like that used for the separation of code blocks
into sequences for concurrent execution (see Section 5).

As with full loop parallelization, pipelining relies on specific relationship be-
tween the contexts being read and written. If these relationships cannot be stat-
ically determined, both the sequential and pipelined versions of the loop can be
produced and the choice of which to execute deferred until runtime.

6.3 Data Parallel for Loops

Our techniques only work on data parallel which typically take the form of
foreach loops in C�. We cannot handle arbitrary for loops as they provide no
means of associating iterations with distinct data elements. There are, however,
some loops expressed as for loops, which are data parallel in nature and could
conceptually be converted to foreach. This is not done in many cases due to
the semantic restrictions of foreach loops. Specifically, foreach loops only give us

158 A. Craik and W. Kelly

access to the value of each element, but do not allow you to change the elements
of the collection in place. Further, for loops are often used we need not just the
value of each element, but also the index of the element within the collection:

for (int i = start; i < list.Count; ++i)
list[i] = func(i, list[i], ...);

To support such cases, we have extended the syntax and semantics of foreach
loops, over collections which support indexing, to address both of these problems.
The following shows our syntax for expressing such a loop as a foreach loop:

foreach (ref ElemType e at Index i in list)
e = func(i, e, ...);

One remaining problem with foreach loops is how to efficiently execute them in
parallel across multiple processors. In the case of a for ranging over index values,
it is relatively easy to express the subranges to be assigned to each processor.
A common approach to parallelizing such loops to use a preliminary inspector
phase which sequentially extracts each of the elements prior to the actual loop
which then processes partitions of these elements in parallel. In specific cases,
the inspector phase can be avoided by using custom collection traversal code. In
the case of a list, this produces the same code as the equivalent parallel for loop.

The above syntax can only be used on collections which have specific support
for such enhanced iteration. This support can be added to existing classes using
C�’s extension method mechanism and ref call parameters (source available on
our website[7].

6.4 Proof of Correctness

Finally, in this section we present a proof that loop conditions 1, 2 and 3 as
presented in Section 6.1 are sufficient to safely parallelize a foreach loop without
synchronization. Proofs of the correctness of the sufficient conditions for the
other patterns we have presented are very similar and straightforward.

As demonstrated in our technical report [11], our static type system guaran-
tees that if a code fragment directly or indirectly writes a field of an object then
the owning context of the object, or one of the contexts which dominates it will
appear in the computed write set of the expression. Similarly for read sets.

A loop can be parallelized provided no data or control dependencies ex-
ist between iterations. Loop Condition 1 tells us that no problematic control
dependencies, such as exceptions, exist. Data dependencies take one of three
forms as previously described: output dependencies, flow dependencies, and anti-
dependencies.

Assume, by way of contradiction, that an output dependence exists
between iterations. The collection must contain two separate elements e1 and e2

such that e1.operation() writes to a field of some object x and
e2.operation() writes to that same field of x.

Using Ownership to Reason about Inherent Parallelism 159

Fig. 3. The relationships between e1, e2, and x

The write set of operation() may contain only this, so we know that
e1.operation() can only write to objects that are either e1 or strictly dom-
inated by e1. Similarly, e2.operation() can only write object that are either e2

or strictly dominated by e2. Figure 3 shows this set of relationships.
Each object is owned by a unique context. If x is dominated by e1 and e2, it

must be the case that either e1 dominates e2 or e2 dominates e1. But, e1 and e2

are directly owned by the same owner c and e1 �= e2 by Loop Condition 1 which
provides the contradiction.

Assume now, by way of contradiction, that a flow dependence exists. The
collection must contain two elements e1 and e2 such that e1.operation()writes
to some field x and e2.operation() reads that same field x. We know from the
previous step of the proof above that there is no x that is part of both e1’s and
e2’s representation.

The only other source of such a flow dependence would be if e2.operation()
reads the same field x via some context r such that r is disjoint with respect to
e1’s and e2’s owning context c. Figure 4 shows the relationship between c, e1,
e2, and x.

Fig. 4. Relationship of e1,e2,c,r, and x and the separation of c and r for the proof of
the absence of flow dependencies

So, x is dominated by e1 which is dominated by c. But x must also be dom-
inated by r which is not possible as c # r. Therefore, no flow dependence can
exist. A mirror argument can be made to prove the absence of anti-dependencies.

7 Worked Example

In this section we will present an example of the parallelization of a ray tracing
application. This much example demonstrates inter-procedural effect analysis
and conditional parallelization based on runtime context relationship testing.
The original application was released by Microsoft as part of its Samples for
Parallel Programming with the .NET Framework 4 [21]. Note that this example

160 A. Craik and W. Kelly

has already been manually parallelized by Microsoft programmers. We are not
trying to do a better job of parallelizing the application, we are simply trying to
demonstrate that our system can automatically detect the known data parallel
loops. Traditional data dependency analysis based systems would struggle to
handle the inter-procedural data dependencies found in the program.

The key source of parallelism in this application is the loop in the Render
method, where the color of each pixel is determined by tracing rays from the
light sources in the scene to the camera. Each ray only reads the state of the
scene as its path and color are computed which allows us to trace multiple rays
at the same time. The original formulation of this loop is presented below:

internal void Render(Scene scene, Color[] scr) {
Camera camera = scene.Camera;
for (int y = 0; y < screenHeight; y++) {
int stride = y * screenWidth;
for (int x = 0; x < screenWidth; x++) {
scr[x + stride].color = TraceRay(new Ray(camera.Pos,

GetPoint(x, y, camera)), scene, 0);
}}}

The first problem is that the loop is in not in the form of a foreach loop.
Note that the loop is actually iterating over the elements of the scr array and
so can be transformed using our modified foreach loop syntax. We then add the
ownership annotations to this modified loop to produce the following code:

internal void Render[s,t](Scene|s| scene, Color[]|t| scr)
reads<this,s,t> writes<t> {
Camera|s| camera = scene.Camera;
foreach(ref Color pixel at int Index in scr) {
pixel = TraceRay|s|(new Ray(camera.Pos,GetPoint|s|(
Index % screenWidth, Index / screenWidth, camera)), scene, 0);

}}

The power of our system becomes evident when we attempt to determine if
the loop can be safely parallelized. In traditional systems the required data de-
pendence analysis would be very complicated because of the aliasing possibilities
and number of methods invoked. Our system, on the other hand, allows us to
look at the declared effects of the TraceRay and GetPoint methods. They read
contexts s t and write nothing. Our compiler and the type system it implements
ensures that the method body effects are consistent with the declared effects;
the method body cannot cause side-effects not listed in the declared effects. For
example, the Normal method indirectly called by TraceRay:

abstract class SceneObject[o] {
public abstract Vector Normal(Vector pos) reads<this> writes<>;

}

Using Ownership to Reason about Inherent Parallelism 161

class Sphere[o] : SceneObject|o| {
public override Vector Normal(Vector pos) reads<this> writes<>...
}
class Plane[o] : SceneObject|o| {
public override Vector Normal(Vector pos) reads<this> writes<>...
}

Note that our compiler also enforces effect consistency in the presence of over-
riding so that we do not need to determine which SceneObject implementation
is being used. The read effect of this is abstracted to become context s (the
owner of the scene) in TraceRay.

From the loop body’s effects of reading contexts this, s and t and writing
t and our sufficient conditions, the sufficient conditions for safely executing the
foreach loop in parallel are (1) the elements of scr are unique, (2) this is
disjoint from or a child of t, and (3) s is disjoint from or a child of t. Because
the relationship between the relevant contexts is not known until runtime, the
loop is conditionally parallelized by the compiler subject to these being true.

Table 1. The number of frames rendered per second by the sample ray tracing appli-
cation. The original sequential and parallel values were obtained from the unmodified
application. The enhanced foreach value was obtained from the ownership annotated
code.

Implementation Frames / sec
original sequential 0.325
original parallel 0.707
enhanced foreach 0.609

Table 1 shows the average number of frames per second rendered with each of
the three implementations. The original parallel and sequential values were ob-
tained using the original code supplied by Microsoft, while the enhanced foreach
value was obtained using the automatically parallelized version of the appli-
cation. The performance runs were conducted on an Intel Core 2 Duo T5800
with 4GB of RAM running Windows 7 Professional 64bit Edition and the .NET
4 Beta 1 runtime. Overall the results show that the performance of the auto-
matically parallelized application is very close to that of the hand parallelized
version. There is some performance degradation which can be attributed to a
combination of the overheads added by the runtime ownership tracking system
and by the overheads incurred in the use of the new enhanced foreach loop; these
overheads can be reduced with further development and optimization. Overall,
our system is lightweight and efficient at identifying exploitable parallelism.

To annotate the program, after applying the loop transformation discussed
earlier in this section, we had to modify 99 lines out of 619 lines of the original
application (15%). The majority of these changes were adding method effect lists
to method signatures and the addition of context parameters to types. While

162 A. Craik and W. Kelly

somewhat burdensome, smart defaulting and ownership inference could reduce
this annotation overhead while still providing the benefits outlined previously.

8 Related Work

As was highlighted in the introduction we are not the first to propose captur-
ing effects using ownership contexts nor are we the first to propose many of
the language features discussed in this paper. We are the first to apply Own-
ership Types to the problem of automatically parallelizing existing imperative
programs. Others have applied Ownership Types to the simpler, and we feel
less interesting, problem of verifying lock ordering in parallelized programs to
prevent deadlocks and data races [12, 13]. We now discuss a few of the most
directly related works in this area of automated parallelization.

A large body of work has been previously published on the use of local dataflow
analysis to extract parallelism from complex iterative algorithms expressed in
imperative languages. One example of such work is that of Rus, Pennings and
Rauchwerger [22]. These techniques proved very good at extracting fine-grained
parallelism from the complex iterative numerical kernels common in the HPC
workloads at which they were targeted. Our work has focused on extracting
a more course-grained parallelism which scales across method and component
boundaries. This kind of course-grained parallelism will become increasingly im-
portant as the number of cores per chip grows and more general purpose appli-
cations need to exploit parallelism.

Marron, Stefanovic, Kapur, and Hermenegildo proposed techniques for rea-
soning about data dependencies in Java [23]. Their approach is to perform com-
plex analyses at compile-time on unmodified programs and not try to facilitate
programmer reasoning directly as we do. They employ static analysis to deter-
mine data dependencies, but need to examine the implementation of any method
called to compute dependencies. They do memoize their method analyses, but
do not provide the consistency guarantees on overriding like we do and do not
make their effects part of the programmers conceptualization. They do, how-
ever, handle looping constructs other than foreach loops. It is unclear how
their techniques would work for large programs.

Various parallel programming languages have also been developed, but they
are largely designed for expressing parallelism rather than facilitating the pro-
cess of parallelizing an existing application by automatically detecting inherent
parallelism. X10 [24] is a programming language under development by IBM as
part of the DARPA HPCS program which is designed to support parallel pro-
gramming. Its syntax and features are inspired by Java, but a number of different
parallelization and synchronization mechanisms have been purposely included in
the language syntax. Our language and X10 serve different purposes. X10 helps
programmers familiar with parallelism write and debug parallel applications.
We aim to provide a framework for programmers and automated tools to reason
about inherent parallelism in sequential programs. Our work and X10 can be
viewed as complimentary.

Using Ownership to Reason about Inherent Parallelism 163

9 Conclusions and Future Work

In this paper we have presented an effects system based on topological ownerships
which allow us to reason about the data dependencies in modern imperative
object-oriented languages. We have presented sufficient conditions for the safe
exploitation of several different patterns of task and data parallelism. We have
demonstrated the need for a complimentary runtime ownership system and how
such a system can be efficiently implemented.

In the future we hope to expand our techniques to include other looping
patterns and continuing to loosen the sufficient conditions for parallelization.
To reduce the burden on the programmer we would like to explore automated
ownership inference. It would be interesting to explore how our techniques can
be applied to C�’s pointers, possibly similar to Cyclone [25]. We hope to continue
to add our annotations to further real applications to gain further understanding
in how our extensions affect program development and how much of the available
parallelism we are able to successfully exploit. We do not claim that our system
is ready for production use, but we feel that some kind of framework to facilitate
reasoning about inherent parallelism is necessary. We hope that this work will
stimulate further exploration of this space.

References

1. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: 13th ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 48–64. ACM Press, New York (1998)

2. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple ownership. In: 22nd
annual ACM SIGPLAN conference on Object-Oriented Programming Systems and
Applications, pp. 441–460. ACM Press, New York (2007)

3. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type
and effect. In: OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 292–
310. ACM, New York (2002)

4. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic java.
In: OOPSLA 2006: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pp. 311–324.
ACM, New York (2006)

5. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-
standing. In: OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 311–
330. ACM, New York (2002)

6. Lu, Y., Potter, J.: Protecting representation with effect encapsulation. In: POPL
2006: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp. 359–371. ACM, New York (2006)

7. Craik, A., Kelly, W.: Mquter parallelism research (2009),
http://www.mquter.qut.edu.au/par

8. Geenhouse, A., Boyland, J.: An object-oriented effects system. In: Guerraoui, R.
(ed.) ECOOP 1999. LNCS, vol. 1628, p. 205. Springer, Heidelberg (1999)

http://www.mquter.qut.edu.au/par

164 A. Craik and W. Kelly

9. Sun Microsystems, Jdk 1.1.1 signing flaw (March 1997)
10. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from

mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

11. Craik, A.: Ownership types for reasoning about parallelism - type system and
semantics. Technical report, QUT ePrints, Queensland University of Technology
(2009), http://eprints.qut.edu.au/

12. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: 17th ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 211–230. ACM
Press, New York (2002)

13. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universes for race safety. In: 1st
International Workshop on Verification and Analysis of Multi-Threaded Java-like
Programs (2007)

14. Cameron, N., Drossopoulou, S.: Existential quantification for variant ownership.
In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 128–142. Springer, Hei-
delberg (2009)

15. Wirth, N.: Type extensions. ACM Trans. Program. Lang. Syst. 10(2), 204–214
(1988)

16. Cohen, N.H.: Type-extension type test can be performed in constant time. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13(4), 626–629
(1991)

17. Dijkstra, E.W.: Recusive programming. Numerische Mathematik 2(1), 312–318
(1960)

18. Abi-Antoun, M., Aldrich, J.: Compile-time views of execution structure based on
ownership. In: International Workshop on Aliasing, Confinement, and Ownership
in Object-Oriented Programming 2007 (2007)

19. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

20. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Com-
put. Surv. 27(3), 367–432 (1995)

21. Microsoft Corporation, Samples for parallel programming with the .net framework
4 (May 2009)

22. Rus, S., Pennings, M., Rauchwerger, L.: Sensitivity analysis for automatic paral-
lelization on multi-cores. In: ICS 2007: Proceedings of the 21st annual international
conference on Supercomputing, pp. 263–273. ACM, New York (2007)

23. Marron, M., Stefanovic, D., Kapur, D., Hermenegildo, M.: Identification of heap-
carried data dependence via explicit store heap models. In: Amaral, J.N. (ed.)
LCPC 2008. LNCS, vol. 5335, pp. 94–108. Springer, Heidelberg (2008)

24. Saraswat, V., Nystrom, N.: Report on the experiment language x10. Technical
Report 1.7.5, IBM (2009)

25. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, 2002, pp. 282–293. ACM
Press, New York (2002)

http://eprints.qut.edu.au/

	Using Ownership to Reason about Inherent Parallelism in Object-Oriented Programs
	Introduction
	Background
	Introduction to Ownership Types
	Ownership Syntax
	Side-Effects
	Separating Ownership from Encapsulation

	Ownerships and Data Dependencies
	The Runtime Representation
	Context Testing
	Static Test Minimization

	Task Parallelism
	Loop Parallelism
	Loop Parallelism
	Pipelining
	Data Parallel for Loops
	Proof of Correctness

	Worked Example
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

