Drawing Hamiltonian Cycles with No Large
Angles

Adrian Dumitrescu'*, Janos Pach?**, and Géza Téth3***

! Department of Computer Science, University of Wisconsin-Milwaukee, USA
ad@cs.uwm.edu
2 Ecole Polytechnique Fédérale de Lausanne and City College, New York
pach@cims.nyu.edu
3 Alfred Rényi Institute of Mathematics, Budapest, Hungary
gezaCrenyi.hu

Abstract. Let n > 4 be even. It is shown that every set S of n points
in the plane can be connected by a (possibly self-intersecting) spanning
tour (Hamiltonian cycle) consisting of n straight line edges such that the
angle between any two consecutive edges is at most 27/3. For n = 4
and 6, this statement is tight. It is also shown that every even-element
point set S can be partitioned into at most two subsets, S1 and S2, each
admitting a spanning tour with no angle larger than 7 /2. Fekete and
Woeginger conjectured that for sufficiently large even n, every n-element
set admits such a spanning tour. We confirm this conjecture for point
sets in convex position. A much stronger result holds for large point sets
randomly and uniformly selected from an open region bounded by finitely
many rectifiable curves: for any € > 0, these sets almost surely admit a
spanning tour with no angle larger than e.

1 Introduction

Consider a set of n > 2 points. A spanning tour is a directed Hamiltonian cycle,
drawn with straight line edges; if n = 2 the tour consists of the two edges, with
opposite orientations, connecting the two points. When three points, p1, p2, and
ps, are traversed in this order, their rotation angle Zpipaps is the angle in [0, 7]
determined by segments pips and paps. If ps is on the left (resp. right) side of
the oriented line p1p3 then we say that the tour, or path makes a left (resp. right)
turn at po. If a tour (or path) makes only right turns, we call it pseudo-convex.
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Fig. 1. (a) acute (b) obtuse (c) obtuse and pseudo-convex (d) acute and pseudo-convex

If all of its rotation angles are at most 7/2, we call it an acute tour (or path). If
all rotation angles are at least 7/2, the tour (or path) is obtuse; see Figure [I1

Given a set A of angles, the angle-restricted tour (ART) problem is to decide
whether a set S of n points in the plane allows a (possibly self-intersecting)
spanning tour such that all the n angles between consecutive segments belong
to the set A; see [10].

Fekete and Woeginger [10] proved that every finite set of at least five points
admits a pseudo-convex tour and a non-intersecting pseudo-convex spanning
path. They also noticed that every n-element point set S admits an acute span-
ning path. To see this, start at any point p; € S. Assuming that the initial
portion pj ...p; of such a path has already been defined and i < n, let p; 11 be
an element of S\ {p1,...,p;} farthest away from p;. It is easy to check that the
resulting path py . .. p, is acute. It is also clear that such a path cannot be always
completed to an acute tour. Indeed, if all points are on a line and n is odd, then
along any (spanning) tour, one of the rotation angles must be equal to 7.

The question arises: Does every even-element point set admit a tour with
small rotation angles? More precisely, given an n-element point set S in the
plane, where n is even, let « = «(S) > 0 denote the smallest angle such that S
admits a (spanning) tour with the property that all of its rotation angles belong
to [0,a]. Finally, let a(n) be the maximum of «(S) over all n-element point
sets in the plane. Trivially, «(2) = 0. The 4-element point set formed by the 3
vertices and the center of an equilateral triangle shows that «(4) > 27/3. The
6-point configuration depicted in Fig. I (left) shows that «(6) > 27/3.

In this note we show that a(n) < 27/3, for all even n > 4.

Theorem 1. Let n > 4 be even. Every set of n points in the plane admits a
spanning tour such that all of its rotation angles are at most 2w /3. This bound
is tight for n = 4,6. Such a tour can be computed in O(n*/? log'™e n) time, for
every € > 0.

It remains open whether the bound 27 /3 can be replaced by 7/2, for every even
n > 8, as was conjectured in [10]. In other words, every n-element set may admit
an acute tour, whenever n > 8 is even. The point set depicted in Fig. [ (right)
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Fig. 2. Left: Aabc is an isosceles triangle with Zbac = 27 /3. Point a and the 3 points
below it are placed on the altitude of the triangle, and very closely inter-spaced. Every
tour on these 6 points has a rotation angle of at least 2w /3 —e. Right: n — 1 equidistant
points very closely inter-spaced on a small arc of a circle, and one point at the center.
Every tour on these n points has a rotation angle of at least 7/2 — €.

demonstrates that this statement, if true, cannot be improved. That is, we have
a(n) > /2, for all even n > 8.

We confirm three weaker versions of this statement. In Section Hl we show
that if we enforce acute rotation angles, two tours instead of one will certainly
suffice.

Theorem 2. Let n > 8 be even.

(i) Every set of n points in the plane can be partitioned into two even parts,
each of which admits an acute spanning tour. Given the n points, the two tours
can be computed in O(n) time.

(ii) Ewvery set of m points in the plane can be partitioned into two parts of
sizes 2| | and 2[7)], each of which admits an acute spanning tour. Given the n
points, the two tours can be computed in O(n4/3 log' ¢ n) time, for every e > 0.

In Section B we prove the existence of an acute tour in the special case when
the points are in convex position.

Theorem 3. Every even set S of n points in the plane in convex position, with
n > 12, admits an acute spanning tour. Given the n points, such a tour can be
computed in O(n) time.

A much stronger statement holds for random point sets, uniformly selected from
a not necessarily connected region.

Theorem 4. Let B be an open region in the plane bounded by finitely many
rectifiable Jordan curves and let S be a set of n points, randomly and uniformly
selected from B. Then, for any € > 0, the point set S almost surely admits a
spanning tour with no rotation angle larger than €, as n tends to infinity.

The last result easily generalizes to higher dimensions.

Related problems and results. Various angle conditions imposed on geometric
graphs (that is, graphs with straight-line edges) drawn on a fixed vertex set have
been studied in [2I3/415]. For instance, sharpening an earlier bound of Bérény,
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Pér, and Valtr [5], Kynél [T1] proved that any point set admits a (possibly self-
intersecting) Hamiltonian path, in which each rotation angle is at least 7/6. This
result conjectured by Fekete and Woeginger [I0] cannot be improved.

Aichholzer et al. [2] studied similar questions for planar geometric graphs.
Among other results, they showed that any point set in general position in the
plane admits a non-intersecting Hamiltonian (spanning) path with the property
that each rotation angle is at most 37/4. They also conjectured that this value
can be replaced by 7/2. Arkin et al. introduced the notion of reflexivity of a
point set, as the minimum number of reflex vertices in a polygonalization (i.e.,
simple polygon) of the set [4]. They gave estimates for the maximum reflexivity
of an n-element point set. Recently, Ackerman et al. have made further progress
on this problem [IJ.

2 Balanced Partitions

It is well known (see, e.g. [8], Section 6.6) that every region (every continu-
ous probability measure) in the plane can be cut into four parts of equal area
(measure) by two orthogonal lines. This statement immediately implies:

Lemma 1. Given a set S of n > 8 points in the plane (n even), one can always
find two orthogonal lines £1,0> and a partition S = S; U S U S35 U Sy with
|S1] = [Ss| = |} ], [S2| = |S4| = [} ] such that Si and Sz belong to two opposite
closed quadrants determined by 1 and {2, and Sy and Sy belong to the other two

opposite quadrants.

Proof. By astandard compactness argument, it is sufficient to prove this state-
ment for point sets S in general position, in the sense that no 3 points of S are
on a line, no 3 determine a right angle, and no two segments spanned by 4 points
are orthogonal to each other. Choose a very small € > 0 and replace each point
p € S by a disk of radius € around p. Applying the above mentioned result from
[8] to the union of these n disks, we obtain two orthogonal lines that meet the
requirements of the lemma. a

Lemma 2. Given a set S of n points in the plane (n even), there exist three
concurrent lines such that the angle between any two of them is w/3, and there
is a partition S = Sy U...U Sg with |S1| = |S4|, |S2| = |Ss|, and |Ss| = |Se|,
such that S; is contained in the i-th closed angular region (wedge) determined
by the lines, in counterclockwise order.

Proof. Just like before, by compactness, it is sufficient to prove the statement
for point sets in general position. This time, it is convenient to assume that no
3 points of S determine an angle which is an integer multiple of 7/3, and there
are no 2 pairs of points such that the angle between their connecting lines is an
integer multiple of 7/3.

Choose again a very small € > 0 and replace each point p € S by a disk D,
of radius € centered at p. Approximate very closely the union of these disks by
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a continuous measure p which is strictly positive on every Jordan region in the
plane and for which p(R?) = n and |u(D,) — 1| < € for every p € S.

We say that a line £ is a bisecting line with respect to the continuous measure
o if the measures of both half-planes bounded by ¢ are equal to n/2. Clearly,
there is a unique bisecting line parallel to every direction, and this line changes
continuously as the direction varies. Choose three bisecting lines ¢4, {5, {3 such
that the angle between any two of them is 7/3. By changing the direction of ¢1,
we can achieve that these lines pass through the same point. Indeed, as we turn
{1 by /3, the crossing point of the other two lines moves from one side of ¢; to
the other. Therefore, there is an intermediate position in which the three lines
pass through the same point.

An easy case analysis shows that if € was sufficiently small, then either no
{; intersects any disk D, or there is one ¢; that intersects two D,’s and the
others do not intersect any. In the former case, the lines satisfy the conditions
in the lemma, in the latter one, they can be slightly perturbed so as to meet the
requirements. g

Given a set S of n points in general position in the plane (i.e., no three points
are collinear), a line passing through two elements of S is called a halving line
if there are | (n — 2)/2] points on one of its sides and [(n — 2)/2] points on the
other [12]. The number of halving lines of an n-element point set in the plane is
bounded from above by O(n*/?), as was established by Dey [9]. Tt is also known
that the set of halving lines can be computed in O(n*/?log"**n) time [6], for
every € > 0.

Remark. Starting with an arbitrary halving line ¢ and following the rota-
tion scheme described in [I2], one can enumerate all halving lines for S. Using
this approach, one obtains algorithmic proofs of Lemmas [1 and [ that run in
O(n*?log' ™ n) time, for every & > 0.

3 Making a Tour with Rotation Angles at Most 27 /3

In this section, we prove Theorem [l As we mentioned in the Introduction, for
small even values of n, namely for n = 4 and n = 6, we need to allow rotation
angles as large as 27/3. Here we show that this value suffices for all even n.

Let 1,05, ¢3 be three concurrent lines satisfying the conditions of Lemma
They divide the plane into six wedges.

Let X,Y, Z, X', Y', Z' denote the six wedges in counterclockwise order, labeled
as in Fig. Bl Note that the angle between the z-axis and any edge p;_1p; of a
tour with p;—; € X and p; € X', say, belongs to the interval [0,7/3]. A piece
Dpi—1pipi+1 of a tour is of the form X X'X, say, if p;—1,pi+1 € X and p; € X'.

Observation 1. Consider a piece of a tour, which is of the form XQX, where
Q =Y', X', or Z. Then the rotation angle at the middle point of this piece, which
belongs to Q, is at most 27w/3. The same holds for any other piece consisting of
two edges, which starts and ends in the same wedge, and whose middle point
belongs to one of the three opposite wedges.
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Fig. 3. Three concurrent bisecting lines of S: {1, {2, (3, at angles 0, 7/3, and 27/3

Observation 2. Consider a piece of a tour, which is of the form XX'Y or
XX'Z'. Then the rotation angle at the middle point of this piece, which belongs
to X', is at most 27/3. The same holds for any other piece of the form X'XZ,
X'XY'YY'X,YY'Z, YYX,Y'YZ, 6 ZZ'Y, ZZ'X', Z'ZX, Z'ZY".

Proof of Theorem [Il We distinguish two cases:

Case 1. There are at most two nonempty double wedges. If all points are con-
tained in a unique double wedge, say X X’ then, by Observation [ they can be
connected by an acute tour of the form (X X’)*. The tours starts in X, ends in
X', and alternates between the wedges X and X’ until all points in X U X’ are
exhausted. Assume now that there are exactly two nonempty double wedges,
X X' and YY”, say, and refer to Fig. @l Consider a spanning tour of the form
(XX)*(YY')*, where (XX')* and (YY')* are point sequences that alternate
between the corresponding opposite wedges until all points in those wedges are

Fig. 4. Case 1: points in two double wedges. A tour of the form X X' XX'XX'YY'YY’
is shown; its starting vertex in X is drawn as an empty circle.
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Fig.5. Case 2: points in three double wedges. Left: a tour of the form
X'XY'YY'Yy vz 2y is shown; its starting vertex in X’ is drawn as an empty circle.
Right: a tour of the form Y'YY'Yy 222’ Z% z'y is shown; its starting vertex in Y’ is
drawn as an empty circle.

exhausted. By Observations [[l and 2] at each vertex of this tour the rotation
angle is at most 27/3.
Case 2. There are exactly three nonempty double wedges; refer to Fig.

Arbitrarily pick one point from each wedge: x € X,y €Y,z € Z, 2’ € X/,
y €Y' 2 € Z'. Consider the two triangles Axzy’ and Ayz’z’. The sum of the
interior angles of the two triangles is obviously 2xw. By averaging, there is one
pair of points lying in opposite wedges, say x and 2/, whose angles sum up to
at most 27/3. Thus, each of these angles is at most 27/3: Zzxy' < 27/3, and
Lyx'z < 27/3.

If IXNnS| = |X'NnS| > 2, consider a spanning tour of the form
(X' X)VY YY)y 22(Z'Z)T2'2'y. Here (X' X )T denotes a nonempty alternating
path between the wedges X’ and X, that starts in X', ends in X, and involves all
points except 2 and 2’. The notations (Y'Y)T and (Z'Z)T are used analogously.
An example is depicted in Fig. [ (left). By Observations [[l and Bl and by our
choice of z,y, z,2',y/, 2, all rotation angles along this tour are at most 27/3, as
required.

If X NS|=|X'"NS| =1, consider a spanning tour (Y'Y y'zz(Z'Z)*2'2'y;
see Fig. [ (right). The arguments justifying that all rotation angles are at most
27 /3 are the same as before.

The proof of Theorem [I] is now complete.

4 Covering by Two Acute Tours

Proof of Theorem [2l (i) Take a horizontal line £ and a partition of our point
set S = ST US™ into two subsets, each of size n/2, such that ST and S~ are in
the closed half-planes above and below ¢, respectively. If some points of S lie on
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Fig. 6. Even set covered by two tours with 6 and 2 points, respectively; a = 3, and
b =1 (A double-edge counts as a tour.)

¢, we can include them in either of these sets so as to satisfy the condition. Next,
take a vertical line ¢ which gives rise to another equipartition of S. Assume for
simplicity that £ and ¢’ coincide with the x and y coordinate axes. See Fig. [6]
for an illustration.

Thus, we obtain a partition S = S; U Sy U S3 U Sy such that all points of
S; belong to the i-th closed quadrant determined by the axes (enumerated in
the counterclockwise order), |Si| = |S3| = a, and |S3| = |S4] = b for some
integers a and b with a+b = n/2. Connect now all elements of S; US3 by a tour
of length 2a alternating between S; and Ss3. Similarly, connect the elements of
SoU Sy by an alternating tour of length 2b. Obviously, both tours are acute. The
above procedure can be performed in linear time, using any linear time selection
algorithm [7].

(ii) Find two orthogonal lines and a partition S = S; U Sy U S3 U Sy satis-
fying the conditions of Lemma [Il Using the notation of the proof of part (i),
now we have a = [/| and b = [} ]. As above, we obtain two acute tours, of
lengths 2[ | and 2['} ], respectively. This completes the the proof of part (ii) of
Theorem [I1 O

By keeping only the larger tour, Theorem [2 immediately implies

Corollary 1. For any even n, every n-element point set in the plane admits an
acute even tour covering at least half of its elements.

5 Acute Tours for Points in Convex Position

Throughout this section, let S denote a set of n > 8 points in the plane, in convex
position and let S = 57 US2 U S3U Sy be a partition satisfying the conditions in
Lemma[ll A 3-edge path (on 4 points) is called a hook if the rotation angles at
its two intermediate vertices are acute.

Lemma 3. Let P = {p1,p2,ps,ps} be the vertex set of a convex quadrilateral,
with p; € S;, 1 = 1,2,3,4. Then at least one of the following two conditions is
satisfied.
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(i) p1pspap2 and pspipapa are hooks, or
(ii) p1pspaps and pspipaps are hooks.

Proof. At least one of the two angles defined by the diagonals p1ps and papy
is larger or equal to 7/2. Let  denote the crossing point of these diagonals.
If Zpyxpe > /2, then the two 3-edge paths p1pspaps and p3pipaps are hooks,
while if Zpaaps > /2, then p1pspaps and p3pipaps are hooks. O

We say that a convex quadrilateral P, as in Lemma [3 is of type 1 if Zpizps >
/2, and of type 2, otherwise (i.e., if Zpaxps > 7/2).

Lemma 4. Let P = {p1,p2,p3,pa}, @ = {q1,92,q3,qa}, and R = {r1,72,73,74}
be three vertex-disjoint conver quadrilaterals with p;,q;,m; € S;, fori=1,2,3,4.
Then there exist two hooks induced by two of these quadrilaterals such that the
two endpoints of the first one and the two endpoints of the second one lie in
different parts of the partition S1 U Sy U Sz U Sy. Two such hooks are called
opposite. (See Fig.[7 (left).)

Fig. 7. Left: pipspap2 and r3rirars are two opposite hooks. Right: an acute tour of S
of the form (Sng)+p1p3p4p2(S4Sz)+q4q2q1q3, starting at s € S.

Proof. By the pigeonhole principle, two out of the three quadrilaterals, say P
and @, must have the same type. By Lemma [l one can find a hook in each of
them such that their endpoints are all in different parts of the partition, i.e., two
opposite hooks. a

Proof of Theorem [3l Consider a partition S = S7 U S5 U S3U Sy satisfying the
conditions in Lemmal[ll Since |\S| > 12, we have |S;| > 3. Pick 3 points from each
S;, and using these points construct three vertex-disjoint convex quadrilaterals,
P, Q, and R. By Lemmall, two of these quadrilaterals, P and @, say, determine
opposite vertex-disjoint hooks. Suppose without loss of generality that P and @
are of type 1, and these two hooks are p1pspap2 and q4q2q1qs, where p;, q; € 5,
i=1,2,3,4. See Fig. [[(right).
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Let (S;5;)" denote a polygonal path starting in S;, ending in S;, alternating
between S; and S, and exhausting all points of S; U S}, except for p;, p;, ¢, q;-
The following tour is acute: (S1.53) p1p3pap2(S152)Tqaqaqigs, and this com-
pletes the proof. O

6 Random Point Sets

We first verify Theorem [ for centrally symmetric convex bodies, and then in its
full generality.

Lemma 5. Let B be a centrally symmetric convez body in the plane and let S
be a set of n points, randomly and uniformly selected from B. Then, for any
e >0, S almost surely admits a spanning tour with no rotation angle larger than
€, as n tends to infinity.

Proof. Let ¢ be fixed, and let o denote the center of B. Assume without loss
of generality that area(B) = 1. Any chord through o divides the area of B into
two equal parts. Therefore, there is a positive constant 6 = §(B,¢), depending
only on B and ¢, such that for every wedge W with angle at most = — 5 and
apex at o, we have that area(W N B) < 1/2 —§. Let m = [n/2].

Let p1,p2,...pn be n random points, independently and uniformly selected
from B, listed in their circular order of visibility from o. The indices are taken
modulo n, so that p,+; = p;. Note that almost surely all points p; are distinct
and different from o.

If n is odd, consider the spanning tour C' = p1ppm+1P2Pm+2 - - - Pmp1. For every
1, almost surely we have

€ €
T, < Zpiopmyi-1 < T+ 9’

and
13 13
T < Zpiopmyi < T+ 9"

Therefore, we almost surely have Zpy,+i—1pipm+i < €, for every i, and the tour
C' meets the requirements.

If n is even, we choose two odd numbers ni,n, with ny + ne = n such that
0 <ny—no < 2. That is, ny is m or m+ 1 while no is m or m — 1. Connect the
points p; by two disjoint cycles, C; and Cs, of length nq and ns, with property
that (1) in the cyclic order around o, the points p1, ps, ... belong alternately to
C1 and Cs, as much as possible; and (2) every edge of C and Co connects two
points, p; and p;, with |j —¢ —m| < 3 (mod n). We distinguish two cases.

Case 1. n;y = ny = m. Let
C1 = p1P24+mP3P4+mDP5 - - - Pn—1Pm,

Cy = pap3+mPaPs5+mP6 - - - PnPltm-
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Switching between these two cycles at two points, we can combine them into a
single spanning tour C, as follows.

C= P1P24+mP3P4+mP5 - + - Pn—1PmP2P3+mPAP5+mP6 - - - PnP1+m-

It remains true that |j — i —m| < 3 (mod n) for every edge p;p; of C, so that
almost surely all rotation angles of C' will be smaller than .

Case 2.n1 =m—+1, ng =m — 1. Let
C1 = p1P24mP3Pa+mP5 - - - PnPm+1,

Cy = pap3+mPaPs5+mP6 - - - Pn—1Pm-

We can combine them into a single spanning tour C, as follows.

C= P1P24+mP3P4+mP5 - - - PnPm+1P2P34+mP4P5+mP6 - - - Pn—1Pm -

It remains true that |j —i —m| < 3 (mod n) for every edge p;p; of C, so that
almost surely all rotation angles of C' will be smaller than . O

To prove Theorem M in its full generality, we need the following technical lemma.
Tts proof is very similar to that of Lemma[5l The minor modifications are left to
the reader.

Lemma 6. Let B be a centrally symmetric convez set in the plane with nonempty
interior. Let o denote the center of B, let € > 0 be fixed, let s and t be two points
of B, and let S’ be a set of at most en/4 points not belonging to B.

Then, for any set S of n points randomly and uniformly selected from B, the
set SU S’ almost surely admits a spanning path satisfying the following condi-
tions, as n — oQ:

(1) all of its turning angles are at most €;
(ii) its first two points are py and ps such that Zopips < e/3, Zsops < €/3;
(iii) its last two points are g2 and q1 such that Zogiqs < /3, Ltogr < /3.

Proof of Theorem [l Assume without loss of generality that area(B) = 1.
Consider a square lattice of minimum distance 9, for some § > 0 to be specified
later. Let A = A(0) denote the total area of all cells (lattice squares of side length
0) completely contained in B, and let A’ = A’(§) denote the total area of all
those cells that intersect B, but are not completely contained in it. Obviously,
A+ A’ > 1. Since the boundary of B is the union of finitely many rectifiable

curves, we have
/

limA=1, I < 0.
fig A =1, limsup’y <oc
Therefore, we can choose ¢ > 0 so that A’ < /6.
Let X1, Xo,..., X,, denote the cells completely contained in B, in some ar-
bitrary order, and let o; denote the center of X;. For any 1 <i < m, let s; be a
point on the line 0;0;_1 such that o; belongs to the segment s;0;_1. Analogously,
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let ¢; be a point on the line 0,0,11 such that o; belongs to the segment t;0;41.
Here the indices are taken modulo m.

Let S be a set of n points in B, selected independently, randomly, and uni-
formly. Let S; = SNX;, for 1 <i < m, and let ' = S\ U™, S;. Divide S’ into m
almost equal parts, 57,55, ...,5;, with [[S]| —[S}|| < 1, for any i,j = 1,...,m.

For each 1 < i < m, apply Lemma [@ with S;, S}, s;, and ¢;, to obtain a

spanning path P;. The spanning tour P, P, ... P, obtained by the concatenation
of these paths now meets the requirements. a
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