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Abstract. Nonlinear network flow problems with linear/nonlinear side con-
straints can be solved by means of Lagrangian relaxations. The dual problem is
the maximization of a dual function whose value is estimated by minimizing ap-
proximately a Lagrangian function on the set defined by the network constraints.
We study alternative stepsizes in the approximate subgradient methods to solve
the dual problem. Some basic convergence results are put forward. Moreover,
we compare the quality of the computed solutions and the efficiency of these
methods.

1 Introduction

Consider the nonlinearly constrained network flow problem (NCNFP)

minimize
x

f (x) (1)

subject to x ∈ F (2)

c(x) ≤ 0, (3)

where:

– F = {x ∈ Rn | Ax = b, 0 ≤ x ≤ x}, where A is a node-arc incidence m×n-matrix,
b is the production/demand m-vector, x are the flows on the arcs of the network
represented by A, and x is the vector of capacity bounds imposed on the flow of
each arc.

– The side constraints (3) are defined by c : Rn → Rr, such that c = [c1, · · · ,cr]T ,
where ci(x) is linear or nonlinear and twice continuously differentiable on F for
all i = 1, · · · ,r.

– f : Rn → R is nonlinear and twice continuously differentiable on F .

We focus on the primal problem NCNFP and its dual problem

maximize q(μ) = min
x∈F

l(x,μ) (4)

subject to μ ∈ M , (5)

where the Lagrangian function is

l(x,μ) = f (x)+ μT c(x) (6)
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and M = {μ | μ ≥ 0, q(μ)>−∞}. We assume throughout this paper that the constraint
set M is closed and convex. Since q is concave on M , it is continuous on M .
When exact values of q are used, we assume that for every μ ∈ M some vector
x(μ) that minimizes l(x,μ) over x ∈ F can be calculated, yielding a subgradient
c(x(μ)) of q at μ , which allows to solve NCNFP by using primal-dual methods, see
[2]. Nevertheless, a substantial drawback of this kind of methods is the need to obtain at
each iteration an exact solution to the subproblem included in (4). In this paper in order
to allow for inexact solution of this minimization, we consider approximate subgradient
methods [6,8,7] in the solution of this problem. The basic difference between these
methods and the classical subgradient methods is that they replace the subgradients
with inexact subgradients.

Given a scalar ε ≥ 0 and a vector μ ∈M , we say that c is an ε-subgradient (approx-
imate subgradient) at μ if

q(μ) ≤ q(μ)+ ε + cT (μ − μ), ∀μ ∈ Rr. (7)

The set of all ε-subgradients at μ is the ε-subdifferential at μ (i.e. ∂ε q(μ)).
In our context, we minimize approximately l(x,μk) over x ∈ F by efficient tech-

niques specialized for networks [15], obtaining a vector xk ∈ F with

l(xk,μk) ≤ inf
x∈F

l(x,μk)+ εk. (8)

As is shown in [2,8], the corresponding constraint vector, c(xk), is an εk-subgradient at
μk. If we denote qεk(μk) = l(xk,μk), by definition of q(μk) and using (8) we have

q(μk) ≤ qεk(μk) ≤ q(μk)+ εk ∀k. (9)

An approximate subgradient method is defined by

μk+1 = [μk + αkck]+, (10)

where ck is an approximate subgradient at μk, [·]+ denotes the projection on the closed
convex set M , and αk is a positive scalar stepsize.

Different ways of computing the stepsize have been considered:

(a) Constant step rule (CSR) with Shor-type scaling [14].
(b) A variant of the constant step rule (VCSR) of Shor.
(c) Diminishing stepsize rule with scaling (DSRS) [13,5,14].
(d) The diminishing stepsize rule without scaling (DSR) suggested by Correa and

Lemaréchal in [3].
(e) A dynamically chosen stepsize rule based on an estimation of the optimal value

of the dual function by means of an adjustment procedure (DSAP) similar to that
suggested by Nedić and Bertsekas in [12] for incremental subgradient methods.

The convergence of these methods was studied in the cited papers for the case of exact
subgradients. The convergence of the approximate subgradient methods was analyzed
by Kiwiel [6].



372 E. Mijangos

An alternative study of the convergence of some of these methods and their applica-
tion in the solution of nonlinear networks was carried out in [8,7].

In this work some basic convergence results obtained by Shor [14] are extended to
approximate subgradient methods. Moreover, we compare the quality of the computed
solution and the efficiency of the approximate subgradient methods when using CSR,
VCSR, DSRS, DSR, and DSAP over NCNFP problems.

This paper is organized as follows: Sect. 2 presents the stepsize rules with the corre-
sponding convergence results; Sect. 3, the solution to the nonlinearly constrained net-
work flow problem; Sect. 4 puts forward the numerical tests; and Sect. 5 displays the
conclusions.

2 Stepsize Rules and Convergence Results

Throughout this section, we use the notation

q∗ = sup
μ∈M

q(μ), M ∗ = {μ ∈ M | q(μ) = q∗}, (11)

and ‖ · ‖ denotes the standard Euclidean norm.

Assumption 1 (subgradient boundedness). There exists a scalar C > 0 such that for
μk ∈ M , εk ≥ 0 and ck ∈ ∂εk q(μk), we have ‖ck‖ ≤C, for k = 0,1, . . . .

We say that μ is an ε-optimal solution of the dual problem when 0 ∈ ∂ε q(μ), i.e.
when q(μ) ≥ q∗− ε .

In this paper various kinds of stepsize rules have been considered.

2.1 Constant Step Rule (CSR)

As is well known the classical scaling of Shor (see [14])

αk =
sk

‖ck‖ (12)

with sk = s gives rise to an s-constant-step algorithm.
Note that constant stepsizes (i.e. αk = s for all k) are unsuitable because the function

q may be nondifferentiable at the optimal point and then {ck} does not necessarily tend
to zero, even if {μk} converges to the optimal point, see [14].

Next, we show some basic convergence results when ck is an approximate subgradi-
ent, which are similar to the results obtained by Shor [14] in the case of exact subgradi-
ents.

Proposition 1. Consider the ε-subgradient iteration

μk+1 =
[
μk + αkck

]+
, (13)

where αk = sk/‖ck‖ and sk = s > 0 for any k, and ck ∈ ∂qεk(μk), with lim
k→∞

εk = ε ≥ 0.

Then, for any δ > 0 and any dual optimal solution μ∗ ∈M ∗, either one can find k = k,
where μk is an εk-optimal solution, or there exist an index k and a point μ ∈ M such

that q(μ) = q(μk)+ εk and ‖μ − μ∗‖ <
s
2
(1 + δ ).
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Proof. Let μ∗ ∈M ∗ and let δ > 0 be given. If ck = 0 for some k then μk is an εk-optimal
solution.

When ck 	= 0 for all k = 0,1,2, . . . , by the nonexpansiveness of the projection opera-
tion we have

‖μk+1 − μ∗‖2 ≤ ‖μk + s
ck

‖ck‖ − μ∗‖2

= ‖μk − μ∗‖2 + s2 −2s(μ∗− μk)T ck

‖ck‖ . (14)

Let ak(μ∗) = (μ∗ − μk)T ck

‖ck‖ , which is the distance from μ∗ to the supporting hyper-

plane Hk = {μ ∈ M | (μ − μk)T ck = 0}, that is, ak(μ∗) = dist(μ∗,Hk).
On the other hand, we suppose that q(μk)+ εk < q∗, as otherwise 0 ∈ ∂εk q(μk) and

μk is an εk-optimal solution. Therefore, as q(·) is continuous on M we can define the
level set Lε

k = {μ ∈ M | q(μ) = q(μk) + εk}, which is closed. Hence, the distance
bk(μ∗) = dist(μ∗,Lε

k ) is well defined.
Since the set Lε

k and the point μ∗ lie on the same side of Hk and any segment joining
μ∗ with a point of Hk passes through Lε

k , we have ak(μ∗)≥ bk(μ∗). Then, from (14) we
obtain

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 + s2 −2sbk(μ∗). (15)

If bk(μ∗) ≥ s
2
(1 + δ ) for all k = 0,1,2, . . . , then

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 − δ s2 ≤ ‖μ0 − μ∗‖2 − δ (k + 1)s2, (16)

for all k.
But ‖μk+1 − μ∗‖2 ≥ 0. Therefore, k exists such that

bk(μ∗) = dist(μ∗,Lε
k
) <

s
2
(1 + δ ), (17)

and, hence, there exists μ ∈ Lε
k

with q(μ) = q(μk)+ εk that verifies ‖μ −μ∗‖ <
s
2
(1+

δ ). 
�

Corollary 1. If the set M ∗ contains a sphere with radius r > s/2 and the ε-subgradient
method is applied with αk = s/‖ck‖, then there exists k∗ such that μk∗ is an εk∗ -
optimal solution.

Proof. By Proposition 1, for any δ > 0 there exists k such that μ ∈ Lε
k

where q(μ) =

q(μk)+ εk with ‖μ∗− μ‖ <
s
2
(1 + δ ) for any μ∗ ∈ M ∗.

Let r > s/2, then we take δ such that 0 < δ <
r− s/2

s/2
, for which some k∗ must exist

such that
dist(μ∗,Lε

k∗) <
s
2
(1 + δ) < r,
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for which there exists μ̂ ∈ Lε
k∗ such that

‖μ∗ − μ̂‖ <
s
2
(1 + δ) < r,

then μ̂ ∈ S(μ∗;r) ⊂ M ∗, that is, q(μ̂) = q∗.
Since q(μ̂) = q(μk∗)+ εk∗ (by definition of Lε

k∗ ), then q(μk∗)+ εk∗ = q∗ and μk∗ is
an εk∗ -optimal solution. 
�
Note that if εk = 0 for all k, we have Corollary 2 of Theorem 2.1 in [14]. In this work
by default s = 100.

2.2 Variant of the Constant Step Rule (VCSR)

Since ck is an approximate subgradient, there can exist a k such that ck ∈ ∂εk q(μk) with
‖ck‖ = 0, but εk not being sufficiently small. In order to overcome this trouble we have
considered the following variant

αk =
s

δ +‖ck‖ , (18)

where s and δ are positive constants. The following proposition shows its kind of con-
vergence (see [7]).

Proposition 2. Let Assumption 1 hold. Let the optimal set M ∗ be nonempty. Suppose
that a sequence {μk} is calculated by the ε-subgradient method given by (10), with the
stepsize (18), where ∑∞

k=1 εk < ∞. Then

q∗ − limsup
k→∞

qεk(μk) <
s
2
(δ +C). (19)

Note that for very small values of δ the stepsize (18) is similar to Shor’s classical
scaling; in contrast, for big values of δ (with regard to sup{‖ck‖}) the stepsize (18)
looks like a constant stepsize. As a result we have chosen by default δ = 10−12 with
s = 100.

2.3 Diminishing Stepsize Rule with Scaling (DSRS)

It can be seen from the proof of Proposition 1 that at each iteration of (13) the reduction
in the distance to the optimal set M ∗ is guaranteed only outside a certain neighborhood
of that set, with the size of that neighborhood depending on the value of the steplength s.
Therefore, to obtain standard convergence results it is necessary to require that sk tends
to zero. The reduction of steplengths, however, should not be too rapid. In particular, if
the series ∑∞

k=1 sk is convergent then the sequence {μk} has a limit, but this limit may lie
outside M ∗. So for (13), with αk = sk/‖ck‖, we have arrived at the classical conditions:

sk > 0, {sk}→ 0 as k → ∞, and
∞

∑
k=1

sk = ∞. (20)
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There are several alternative proofs of convergence of this method for exact subgra-
dients [13,5]. Below we present our version of the proof of the convergence of the
approximate subgradient method, which is based on Theorem 2.2 given by Shor in [14]
for exact subgradients (see also [6]).

Proposition 3. Let {εk} → 0. Consider the ε-subgradient iteration (13) for αk =
sk/‖ck‖, where sk > 0 is such that limk→∞ sk = 0 and ∑∞

k=1 sk = ∞. Assume that M ∗

is closed, bounded, and non-empty. Then either an index k exists such that μk ∈ M ∗ or
else

lim
k→∞

dist(μk,M ∗) = 0, lim
k→∞

q(μk) = q∗, (21)

and limk→∞ qεk(μk) = q∗.

Proof. Let μ∗ ∈ M ∗. If there exists a k such that μk ∈ M ∗, the proposition holds.
Assume that this k does not exist, i.e μk 	∈ M ∗ for all k. Then μk can be an εk-optimal
solution or not. If μk is not an εk-optimal solution, like in the proof of Proposition 1
(see (15)), we obtain

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 + s2
k −2skbk(μ∗). (22)

For a fixed a > 0, consider the set {μ ∈M | q(μ)≥ q∗−a} and its boundary Γq∗−a. By
assumption, the set M ∗ is closed and bounded. Thus Γq∗−a is compact, as q is concave
over M convex, and, hence, it is continuous (see Proposition B.9 in [2]).

Since {εk} → 0, there exists Nε , such that for all k ≥ Nε , a > εk. Furthermore,
M ∗ ∩Γq∗−a = /0 and there exists a number

ρ(a) = dist(Γq∗−a,M
∗) = min

μ∗∈M ∗,λ∈Γq∗−a

‖λ − μ∗‖. (23)

Since {sk}→ 0, one can find Nρ(a) ≥ Nε such that for all k > Nρ(a), sk < ρ(a) and
a > εk.

If q(μk) < q∗ −a, then bk(μ∗) > ρ(a) and from (22) we have

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 −ρ(a)sk, ∀k > Nρ(a), (24)

as by adding the inequalities s2
k < ρ(a)sk and −2skbk(μ∗) < −2skρ(a) we obtain

s2
k −2skbk(μ∗) < −ρ(a)sk for all k > Nρ(a).

By adding (24), we have

‖μk+1 − μ∗‖2 ≤ ‖μ0 − μ∗‖2 −ρ(a)
k

∑
i=1

si, (25)

and as ∑∞
k=1 sk = ∞, there must exist Na > Nρ(a) such that for all k ≥Na it holds q(μk)≥

q∗ −a.
From here on both cases (when μk is an εk-optimal solution and when it is not) are

unified. Note that if μk is an εk-optimal solution, we have q(μk) ≥ q∗ − εk > q∗ −a.

Define d(a) = max
λ∈Γq∗−a

{ min
μ∗∈M ∗ ‖λ − μ∗‖}. If q(μk) ≥ q∗ − a, then min

μ∗∈M ∗ ‖μk −
μ∗‖ ≤ d(a).
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By the nonexpansiveness of the projection operator for all k it holds

‖μk+1 − μ∗‖ ≤
∥∥∥∥
(

μk + sk
ck

‖ck‖
)
− μ∗

∥∥∥∥ ≤ ‖μk − μ∗‖+ sk. (26)

Therefore, for k = k we have

min
μ∗∈M ∗ ‖μk+1 − μ∗‖ ≤ min

μ∗∈M ∗ ‖μk − μ∗‖+ sk ≤ d(a)+ sk, ∀k ≥ Na. (27)

On the other hand, for all k > Nρ(a) with q(μk) < q∗ −a, by (24), we have

‖μk+1 − μ∗‖ ≤ ‖μk − μ∗‖, (28)

and hence,
min

μ∗∈M ∗ ‖μk+1 − μ∗‖ ≤ min
μ∗∈M ∗ ‖μk − μ∗‖. (29)

By combining (27) and (29) we obtain

‖μk+1 − μ∗‖ ≤ d(a)+ max
k>Na

{sk} (30)

for all k > Na > Nρ(a).
Since d(a) → 0 as a → 0, for all δ > 0 there exists aδ such that d(aδ ) ≤ δ/2.
Next, one can find an index Nδ such that q(μk)≥ q∗−aδ and sk ≤ δ/2 for all k > Nδ .

Therefore, for all k > Nδ , by (30) we have

min
μ∗∈M ∗ ‖μk − μ∗‖ ≤ δ . (31)

This proves that lim
k→∞

(
min

μ∗∈M ∗ ‖μk − μ∗‖
)

= 0.

By continuity of q, we have lim
k→∞

q(μk) = q∗. Moreover, as {εk}→ 0, by the inequal-

ities (9) we obtain lim
k→∞

qεk(μk) = q∗, which completes the proof. 
�

An example of such a stepsize is

αk =
sk

‖ck‖ , with sk = s/k̂, (32)

for k̂ = �k/m�+ 1. We use by default s = 100 and m = 5.

2.4 Diminishing Stepsize Rule (DSR)

The convergence of the subgradient method using a diminishing stepsize was shown by
Correa and Lemaréchal, see [3]. Next, we consider the special case where ck is an
εk-subgradient and αk = sk in (13).

The following proposition is proved in [8].
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Proposition 4. Let the optimal set M ∗ be nonempty. Also, assume that the sequences
{sk} and {εk} are such that

sk > 0,
∞

∑
k=0

sk = ∞,
∞

∑
k=0

s2
k < ∞,

∞

∑
k=0

skεk < ∞. (33)

Then, the sequence {μk}, generated by the ε-subgradient method, where ck ∈ ∂εk q(μk)
(with {‖ck‖} bounded), converges to some optimal solution.

An example of such a stepsize is

αk = sk = s/k̂, (34)

for k̂ = �k/m�+ 1. In this work we use by default s = 100 and m = 5.
An interesting alternative for the ordinary subgradient method is the dynamic stepsize

rule

αk = γk
q∗ −q(μk)

‖ck‖2 , (35)

with ck ∈ ∂q(μk) and 0 < γ ≤ γk ≤ γ < 2, [13,14].

Unfortunately, in most practical problems q∗ and q(μk) are unknown. Then, the
latter can be approximated by qεk(μk) = l(xk,μk) and q∗ replaced with an estimate
qk

lev. This leads to the stepsize rule

αk = γk
qk

lev −qεk(μk)
‖ck‖2 , (36)

where ck ∈ ∂εk q(μk) is bounded for k = 0,1, . . . .

2.5 Dynamic Stepsize with Adjustment Procedure (DSAP)

An option to estimate q∗ is to use the adjustment procedure suggested by Nedić and
Bertsekas [12], but fitted for the ε-subgradient method

In this procedure qk
lev is the best function value achieved up to the kth iteration, in

our case max0≤ j≤k qε j(μ j), plus a positive amount δk, which is adjusted according to
algorithm’s progress.

The adjustment procedure obtains qk
lev as follows:

qk
lev = max

0≤ j≤k
qε j(μ j)+ δk, (37)

and δk is updated according to

δk+1 =

⎧⎪⎨
⎪⎩

ρδk, if qεk+1(μk+1) ≥ qk
lev,

max{β δk,δ}, if qεk+1(μk+1) < qk
lev,

(38)

where δ0, δ , β , and ρ are fixed positive constants with β < 1 and ρ ≥ 1.
The convergence of the approximate subgradient method for this stepsize was ana-

lyzed in [8]; see also [6].
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3 Solution to NCNFP

An algorithm is given below for solving NCNFP. This algorithm uses the approximate
subgradient method described in Sect. 1.

The value of the dual function q(μk) is estimated by minimizing approximately
l(x,μk) over x ∈ F (the set defined by the network constraints) so that the optimal-
ity tolerance, τk

x , becomes more rigorous as k increases, i.e. the minimization will be
asymptotically exact [1]. In other words, we set qεk(μk) = l(xk,μk), where xk mini-
mizes approximately the nonlinear network subproblem NNSk

minimize
x∈F

l(x,μk) (39)

in the sense that this minimization stops when we obtain an xk that verifies the KKT
conditions with τk

x accuracy, which implies that the norm of the reduced gradient holds

‖ZT ∇xl(xk,μk)‖ ≤ τk
x , (40)

where limk→∞ τk
x = 0 and Z represents the reduction matrix whose columns form

a base of the null subspace generated by the rows of the matrix of active network
constraints of this subproblem (including the active capacity constraints on the flows
of each arc), see [11]. Let xk be the minimizer of this subproblem approximated
by xk. Then, it can be proved (see [8]) that there exists a positive w, such that
l(xk,μk) ≤ l(xk,μk) + wτk

x for k = 1,2, . . . . If we set εk = ωτk
x , this inequality be-

comes (8). Moreover, as

τk+1
x = στk

x , for a fixed σ ∈ (0,1), (41)

then ∑∞
k=1 εk < ∞, and so limk→∞ εk = 0. Consequently, to solve this problem we can

use the approximate subgradient methods with the stepsizes described in Sect. 2. We
denote qεk(μk) = l(xk,μk), which satisfies the inequality (9). In this work, σ = 10−1

by default. Note that in this case, εk = τk
x ω = 10−(k−1)τ1

x ω .

Algorithm 1 (Approximate subgradient method for NCNFP)

Step 0: Initialize. Set k = 1, Nmax, τ1
x , εq, εμ and τμ . Set μ1 = 0.

Step 1: Compute the dual function estimate, qεk(μk), by solving NNSk with accuracy
τk

x , then xk ∈ F is an approximate solution, qεk(μk) = l(xk,μk), and ck = c(xk) is
an εk-subgradient of q in μk.

Step 2: Check the stopping rules for μk.

T1: Stop if max
i=1,...,r

{
(ck

i )
+
}

< τμ , where (ck
i )

+ = max{0,ci(xk)}.

T2: Stop if
|qk − (qk−1 + qk−2 + qk−3)/3|

1 + |qk| < εq , where ql = qεl (μ l).

T3: Stop if
1
5

4

∑
i=0

‖μk−i − μk−i−1‖∞ < εμ .

T4: Stop if k reaches a prefixed value Nmax.
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If μk fulfils one of these tests, then it is deemed approximately optimal, and
(xk,μk) is an approximate primal-dual solution.

Step 3: Update the estimate μk by means of the iteration

μk+1
i =

⎧
⎪⎨
⎪⎩

μk
i + αkck

i , if μk
i + αkck

i > 0

0, otherwise

(42)

where αk is computed using some stepsize rule. Go to Step 1.

In Step 0, for the stopping rules, τμ = 10−5, εq = 10−7, εμ = 10−3 and Nmax = 200
have been taken. In addition, τ1

x = 10−2 by default.
Step 1 is carried out by the code PFNL (described in [9]), which is based on the

specific procedures for nonlinear network flows [15] and the active set procedure [11],
using a spanning tree as the basis matrix of the network constraints.

In Step 2, alternative heuristic tests have been used for practical purposes. T1 checks
the feasibility of xk, as if the violation of the side constraints has been sufficiently
reduced, then (xk,μk) is an acceptable primal-dual solution for NCNFP. T2 and T3

mean that μ does not improve for the last iterations. T4 is used to stop the algorithm
when this is not able to find a good enough solution.

To obtain αk in Step 3, we have used the iteration (10) (see Sect. 1) with the five
stepsize rules considered in Sect. 2: CSR, VCSR, DSRS, DSR, and DSAP. In the imple-
mentation of DSAP we use ρ = 2, β = 1/ρ , δ0 = 0.5‖(c1)+‖, and δ = 10−7|l(x0,μ1)|,
where x0 is the initial feasible point for Step 1 and k = 1.

The values given above have been heuristically chosen. The implementation in
Fortran-77 of the previous algorithm, termed PFNRN05, was designed to solve large-
scale nonlinear network flow problems with nonlinear side constraints.

4 Numerical Tests

In order to obtain a computational comparison of the performance of the stepsizes CSR,
VCSR, DSRS, DSR, and DSAP, some computational tests are carried out, which con-
sist in solving nonlinear network flow problems with nonlinear side constraints using
PFNRN05 code with the alternative stepsizes, where the objective functions are strictly
convex and the side-constraint functions are convex. Therefore, these problems have a
unique primal solution x∗ and the duality gap is zero. The numerical tests have been
carried out on a Sun Enterprise 250 under UNIX.

The problems used in these tests were created by means of the DIMACS-random-
network generators Rmfgen and Gridgen (see [4]). These generators provide linear
flow problems in networks without side constraints. The side constraints are defined
by convex quadratic functions and were generated through the Dirnl random generator
described in [9,10].

These test problems have up to 4008 variables, 1200 nodes, and 1253 side con-
straints, see [7]. The objective functions are nonlinear and strictly convex, and are either
Namur functions (n1) or polynomial functions (e2). The polynomial functions give rise
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to problems with a moderate number of superbasic variables (degrees of freedom) at
the optimizer, whereas the Namur functions [15] generate a high number of superbasic
variables. More details in [7].

In Table 1 we compare the quality of the solution by means of the value of maximum
violation of the side constraints at the optimal solution, c∗ = ‖[c(x∗)]+‖∞, and the effi-
ciency by the CPU times (in seconds) used to compute the solution. Note that c∗ offers
information about the feasibility of this solution and, hence, about its duality gap.

Table 1. Comparison of the quality/efficiency for the stepsizes

Prob. CSR VCSR DSRS DSR DSAP
c15e2 10−5/4.5 10−5/4.4 10−4/8.5 10−4/2.9 10−8/2.2
c17e2 10−5/6.0 10−5/7.2 10−4/13.7 10−4/6.3 10−6/3.1
c18e2 10−5/21.3 10−5/30.7 10−4/67.0 10−2/24.3 10−5/38.0
c13n1 10−6/64.3 10−6/54.5 10−6/64.3 10−5/84.6 10−6/44.2
c15n1 10−6/82.3 10−6/61.4 10−6/83.2 10−4/426.9 10−8/99.8
c17n1 10−5/78.9 10−5/75.2 10−5/79.1 10−4/361.1 10−6/92.3
c22e2 10−5/3.8 10−5/3.9 10−4/8.5 10−4/2.5 10−6/2.0
c23e2 10−5/6.3 10−5/6.2 10−4/6.0 10−3/5.0 10−7/5.9
c24e2 10−5/15.9 10−5/15.9 10−4/94.8 10−2/40.4 10−9/5.2
c34e2 10−6/4.8 10−6/5.3 10−6/4.9 – 10−8/5.1
c35e2 10−6/2.0 10−6/2.3 10−6/2.0 10−7/2.9 10−9/2.4
c38e2 10−6/8.2 10−5/7.4 10−6/8.4 10−5/12.4 10−8/8.0
c42e2 10−7/19.0 10−7/14.1 10−7/18.9 10−7/14.1 10−7/14.5
c47e2 10−5/404.9 10−5/401.0 10−5/448.0 – 10−7/657.1
c48e2 10−5/114.4 10−5/132.2 10−5/116.7 – 10−7/257.6

Table 1 points out that the quality of the solution computed by PFNRN05 for the
stepsize DSR is lower than that of DSRS, whereas that of this stepsize is slightly lower
than that of CSR and VCSR. Also, the quality of the solution obtained with the stepsize
DSAP is clearly higher than that computed for the rest of stepsizes.

Regarding the efficiency of PFNRN05 for these stepsizes, we observe that the ef-
ficiency when we use DSAP is similar to that obtained for CSR, VCSR, and DSRS,
whereas our code for DSR is less efficient and robust than for the other stepsizes.

5 Conclusions

In this work some basic convergence results of subgradient methods for the step-
sizes CSR and DSRS have been extended to approximate subgradient methods. More-
over, in the numerical tests carried out over convex nonlinear problems of nonlinearly
constrained networks we have observed that the quality of the solution obtained by
PFNRN05 for the dynamic stepsize rule DSAP is higher than that obtained for the
other stepsizes, while the efficiency is similar.

The results of the numerical tests encourage to carry out further experimentation with
other kind of problems and to compare the efficiency with that of well-known codes.
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Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 757–766. Springer,
Heidelberg (2006)

8. Mijangos, E.: Approximate subgradient methods for nonlinearly constrained network flow
problems. Journal of Optimization Theory and Applications 128(1), 167–190 (2006)

9. Mijangos, E., Nabona, N.: The application of the multipliers method in nonlinear network
flows with side constraints. Technical Report 96/10, Dept. of Statistics and Operations Re-
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