
PCAL: Language Support for

Proof-Carrying Authorization Systems

Avik Chaudhuri1 and Deepak Garg2

1 University of Maryland, College Park
2 Carnegie Mellon University

Abstract. By shifting the burden of proofs to the user, a proof-carrying
authorization (PCA) system can automatically enforce complex access
control policies. Unfortunately, managing those proofs can be a daunting
task for the user. In this paper we develop a Bash-like language, PCAL,
that can automate correct and efficient use of a PCA interface. Given a
PCAL script, the PCAL compiler tries to statically construct the proofs
required for executing the commands in the script, while re-using proofs
to the extent possible and rewriting the script to construct the remaining
proofs dynamically. We obtain a formal guarantee that if the policy does
not change between compile time and run time, then the compiled script
cannot fail due to access checks at run time.

1 Introduction

Proof-carrying authorization (PCA) [3, 5, 6, 17, 18] is a modern access control
technology, where an access control policy is formalized as a set of logical for-
mulas, and a principal is allowed to perform an operation on a resource only
if that principal can produce a proof showing that the policy entails that the
principal may perform the operation on the resource. While this architecture
allows automatic enforcement of complex access control policies, it substantially
increases the burden of the user, since each request to perform an operation
must be accompanied by one or more proofs. Furthermore, even if the user em-
ploys a theorem prover to construct the proofs, the user must still ensure that
enough proofs are generated for each request to succeed, while minimizing the
costs of proof construction at run time. In this paper we develop a program-
ming language that can assist the user in performing such tasks correctly and
automatically in a system with PCA. We have implemented a compiler for our
language and tested it with a PCA-based file system, PCFS [17].

Our language, PCAL, extends the Bash scripting language with some PCA-
specific annotations; the PCAL compiler translates programs with these anno-
tations to ordinary Bash scripts, to be executed in a system with PCA. More
precisely, PCAL annotations can specify what proofs the programmer expects
to hold at particular program points. Based on these annotations, the compiler
performs the following tasks.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 184–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

PCAL: Language Support for PCA Systems 185

1. It checks that the programmer’s expectations about proofs suffice to allow
successful execution of every shell command in the script. For this, the com-
piler needs to know what permissions are required to execute each shell
command. We provide this information through a configuration file.

2. Next, the compiler uses a theorem prover and information about the ac-
cess control policy to try to statically construct proofs corresponding to the
programmer’s annotations. In cases where static proof construction fails, be-
cause the annotations do not convey enough static information, the compiler
generates code that constructs the proof at run time by calling the theorem
prover from the command line.

3. Finally, the compiler adds code to pass appropriate proofs for each shell
command to the PCA interface.

Thus, the output of the compiler is a Bash script which, beyond the usual com-
mands, contains some code to generate proofs at run time (when it cannot gen-
erate such proofs at compile time), and some code to pass the proofs, generated
either statically or dynamically, to the PCA interface.

Using PCAL offers at least two advantages over a naive approach, where a
user generates and passes to the PCA interface enough proofs of access before
running an unannotated script.

1. Because of the static checks and dynamic code generated by the compiler,
it is guaranteed that the resulting script will at least try to construct all
necessary proofs of access. Thus, the script can fail only if the user does not
have enough privileges to run it, and not because the user forgot to create
some proofs. Indeed, we formally prove that if compilation of a program
succeeds and the policy does not change between compilation and program
execution, then the program cannot fail due to an access check (Theorem 2).
This is very significant for scripts where the user cannot determine a priori
what operations the script will perform.

2. Since the compiler sees all commands that the script will execute, it re-uses
proofs to the extent possible and reduces the proof construction overhead,
which a naive user may not be able to do. This is particularly relevant for
POSIX-like policies where accessing a file requires an “execute” permission
on all its ancestor directories. If several files in a directory need to be pro-
cessed, there is no need to construct proofs for the ancestor directories again
and again. The PCAL compiler takes advantage of this and other similar
structure in policies and combines it with information about a program’s
commands to minimize proof construction.

By design, PCAL and its compiler are largely independent of the logic used to
express policies. The compiler requires a theorem prover compatible with the
logic used, but it does not analyze formulas or proofs itself. Thus, the compiler
can be (trivially) modified to use a different logic. Similarly, the compiler is
parametric in the shell commands it supports. It assumes a map from each shell
command to the permissions needed to execute it, and a single command to
pass proofs to the PCA interface. By replacing this map and the command, the
compiler can be used to support any PCA interface, not necessarily a file system.

186 A. Chaudhuri and D. Garg

PCAL is distinct from other work that combines PCA with a programming
language [18,4]. In all such prior work, the language is used to enforce access con-
trol statically. On the other hand, PCAL uses a combination of static checks and
dynamic code to ensure compliance with the requirements of the PCA interface.
Static enforcement is a special case of this approach, where an input program is
rejected unless the compiler can construct all required proofs at compile time.
Furthermore, in all prior work proofs are data or type structures and program-
mers must write explicit code to construct them. In particular, programmers
must understand the logic. In contrast, PCAL separates proofs from programs,
and shifts the burden of constructing proofs (and understanding the logic) from
programmers to an automatic theorem prover. We believe that this not only
makes PCAL’s design modular, but also easier to use.

Contributions. We believe that we are the first to propose, design, and imple-
ment a language that uses a combination of static checks and dynamic code to
optimize the proof burden of a PCA-compliant program. This setting presents
some unique technical challenges, and our design and implementation require
some novel elements to deal with those challenges.

1. While we would like to discharge as many proofs as possible statically, we
must be concerned about possibly invalidating the assumptions underlying
those proofs at run time. For instance, the state of the system may not
remain invariant between compile time and run time. This requires a careful
separation of dynamic state conditions from static policies.

2. Programmer annotations in PCAL have both static and dynamic seman-
tics. Statically, they specify authorization conditions and other constraints
that should hold at run time, thereby aiding verification of correctness by
the compiler. Dynamically, they verify any assumptions on the existence of
authorization proofs and other constraints made by the compiler, thereby
allowing sound optimizations.

3. We prove formally that the behavior of a compiled program is the same
as that of the source program (Theorem 1) and that successfully compiled
programs cannot fail due to access checks (Theorem 2). The proofs of these
theorems require a precise characterization of assumptions on the theorem
prover, the proof verifier, and the relation between the environment in which
the program is compiled and that in which it is executed. We believe that
this characterization is a significant contribution of this work, because it is
fundamental to any architecture that uses a similar approach.

There are two other notable aspects of PCAL’s implementation, that we men-
tion only briefly (details are presented in a technical report [10]). First, the
PCAL compiler sometimes constructs proofs which are parametric over program
variables whose values are not known at compile time. These variables are substi-
tuted at run time to obtain ground proofs. Second, functions and predicates are
treated at different levels of abstraction in different parts of our implementation.
Whereas in a script functions and predicates may have concrete implementations,
the compiler only partially interprets them with abstract rewrite rules, so that

PCAL: Language Support for PCA Systems 187

the script can be analyzed with symbolic techniques. Further, calls to the the-
orem prover are simplified, so that proof search need not interpret functions at
all. This makes PCAL compatible with many different provers.

The rest of this paper is organized as follows. After closing this section with a
brief review of related work, in Section 2 we discuss some background material
covering PCA, and the assumptions we make about the interface it provides.
Section 3 introduces PCAL and its compiler through an example. Details of the
language, its compilation, correctness theorems, and implementation are covered
in Section 4. Section 5 concludes the paper.

Related Work. There are two prior lines of work on combining proofs of autho-
rization with languages. The first line of work includes the languages Aura [18]
and PCML5 [4], where PCA as well as a logic for expressing policies are embed-
ded in the type system, and proofs are data or type structures that programs can
analyze. This contrasts with PCAL, where proofs cannot be analyzed. PCAL’s
approach is advantageous because it decouples the logic from the language, thus
making it easy to use the same compiler with different logics. It also alleviates
the programmer’s burden of understanding the logic. On the other hand, in Aura
and PCML5, parts of proofs can be re-used in different places, thus allowing po-
tentially more efficient proof construction than in PCAL. However, it is unclear
whether this advantage extends when automatic theorem provers are used in
either Aura or PCML5.

The second line of work includes several languages that culminate in the most
recent F7 [14, 8]. These languages use an external logic like PCAL, but the
objective is to express logical conditions. The programmer can introduce logical
assumptions at different program points, and check statically at other program
points that those assumptions entail some other formula(s). In PCAL it is not
necessary that each programmer annotation about a proof succeed statically; if
it fails, code to construct the proof at run time is automatically inserted. This
approach is similar to hybrid typechecking [13], especially as applied to recent
security type systems [9,11]. Indeed, PCAL departs from previous lines of work
in that it does not try to enforce security on its own; instead it is meant as a
tool to help programs comply with a PCA interface that enforces security.

PCA, the architecture that PCAL supports, was introduced by Appel and
Felten [3]. It has been applied in different settings including authorization for
web services [5], the Grey system [6], and the file system PCFS [17]. The latter
implementation is the basic test bench for PCAL. The specific logic used for
writing policies in this paper (and PCFS) is BL [15, 17]. It is related to, but
more expressive than, many other logics and languages for writing access policies
(e.g., [1, 2, 16, 7, 12]).

2 Background

In this section we provide a brief overview of PCA, and list particular assump-
tions that PCAL makes about the underlying PCA-based system interface.

188 A. Chaudhuri and D. Garg

PCA [3, 5, 6, 17, 18] is a general architecture for enforcing access control in
settings that require complex, rule-based policies. Policy rules are expressed as
formulas in some fixed logic, and enforced automatically using formal proofs.
Let L denote a set of formulas that represent the access policy (see Section 3 for
an example). The system interface grants user A permission η (e.g., read, write
on a resource t (e.g., a file) only if A produces a formal proof γ which shows
that L entails a formula auth(A, η, t) in the logic’s proof system. The formula
auth(A, η, t) means that A has permission η on resource t. Its exact form depends
on the logic in use and the resources being protected, but is irrelevant for the
purposes of this paper. (Here it suffices to assume that auth(A, η, t) is an atomic
formula.) The system interface checks the proof that A provides to make sure
that it uses the logic’s inference rules correctly, and that it proves the intended
formula. The system interface must provide a mechanism by which users can
submit proofs either prior to or along with an access request. Even though users
are free to construct proofs by any means they like, it is convenient to have an
automatic theorem prover to perform this task.

Assumptions. PCAL’s compiler supports rich logics for writing policies, in
which proofs may depend not only on the formulas constituting the policy, but
also on system state (e.g., meta-data of files and clock time). Let H denote the
system state. We write γ :: H ;L � s to mean that γ is a formal proof which
shows that in the system state H , policies L entail formula s. (In particular, s
may be auth(A, η, t).)

PCAL assumes that an automatic theorem prover for the logic is available,
both through an API and as a command line tool. A call to the theorem prover
(either through the API or the command line) is formally summarized by the
notation H ;L � s ↘ γ, which means that asking the theorem prover to construct
a proof for s from policy L in state H results in the proof γ. Dually, H ;L � s �↘
means that the theorem prover fails to construct a corresponding proof. The
latter does not imply the absence of a proof in the logic, since the theorem
prover may implement an incomplete search procedure. The following command
is assumed to invoke the prover from the command line and store in the file pf a
proof which establishes auth(A, η, t) from the policies in /pl and the prevailing
system state.

prove auth(A, η, t) /pl > pf

For passing proofs to the system interface, we assume a simple protocol: a com-
mand inject is called from the command line to give a proof to the system
interface, which puts it in a store that is indexed by the triple (A, η, t) autho-
rized by the proof. During the invocation of a system API, relevant proofs are
retrieved from this store and checked. For example, the following command in-
jects the proof in the file pf into the interface’s store.

inject pf

PCAL: Language Support for PCA Systems 189

3 Overview of PCAL

In this section, we work through a small example to demonstrate the steps of
our compilation. (PCAL is formalized in Section 4.) For this example, let there
be a predicate extension and functions path and base, such that (informally):

– extension(f, e) holds if file f has extension e;
– path(d, x) = p if path p is the concatenation of directory d and name x;
– base(p) = x if path(d, x) = p for some directory d.

Consider the program P in Figure 1, written in PCAL. This program iterates
through the files in some directory foo (unspecified), copying them to a directory
bar (set to "/tmp"). Furthermore, it touches those files in foo that have extension
"log". The reader may ignore the assert statements (in lines 2, 8, 12, and 13)
in a first reading; we explain their meaning below.

The system is configured to check, for any command, that certain permissions
are held on certain paths in order to execute that command. Let us assume the
following configuration:

Configuration

– Iterating over directory d requires permission read on d.
– Executing the shell command touch(f) requires permission write on file f .
– Executing the shell command cp(f1, f2) requires permission read on file f1,

and permission write on file f2.

The assert statements in P serve to establish, at run time, that the principal
running the script has particular permissions on particular paths. The compiler
tries to statically identify assert statements that must succeed at run time, and
eliminate them at compile time.

Assume that member is a predicate such that member(f, d) holds if file f is in
directory d. Consider the following policy, written in a first-order logic with the
convention that implication ⇒ is right associative.

Policy

∀A.∀x. auth(A, write, path("/tmp", x)).
∀A.∀x.∀y. member(x, y) ⇒ auth(A, read, y) ⇒

(auth(A, read, x) ∧
(extension(x, "log") ⇒ auth(A, write, x))).

Informally, the policy asserts the following:
– any principal A has permission write on any file in the directory "/tmp"
– for any principal A, file x, and directory y, if x is in y and A has permission

read on y, then A has permission read on x, and furthermore, if x has
extension "log" then A has permission write on x.

190 A. Chaudhuri and D. Garg

Program P

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 assert (write, z);

13 assert (read, y);

14 shell cp(y, z)

15 }

Program Q

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 -- assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 -- assert (write, z);

13 -- assert (read, y);

14 shell cp(y, z)

15 }

Script S
!/bin/bash

function base { _RET=${1##*/} }

function path { _RET=$1/$2 }

function extension { if [${1##*.} = $2]; then _RET="ok"; fi }

_PRIN="User"

1 bar="/tmp"

2 prove auth ($_PRIN, read, $foo) /pl > pf

inject pf

3 for x in ‘ls $foo‘; do x=$foo/$x

4 y=$x

5 _RET="_"; base $x; x=$_RET

6 _RET="_"; path $foo $x; z=$_RET

7 _RET="_"; extension $z "log"; if [$_RET = "ok"]; then

8 inject /pf/1 -subst $_PRIN $z $x $y $bar $foo

9 touch $z

10 fi

11 _RET="_"; path $bar $x; z=$_RET

12 inject /pf/2 -subst $_PRIN $z $x $y $bar $foo

13 inject /pf/3 -subst $_PRIN $z $x $y $bar $foo

14 cp $y $z

15 done

Fig. 1. Translation of an input program P , via an intermediate program Q, to an output
script S . (The configuration, policy, and rewrite theory provided to the compiler are
shown elsewhere.).

PCAL: Language Support for PCA Systems 191

Finally, consider the following theory on the function symbols path and base,
that abstracts the concrete semantics of these functions.

Theory

∀x.∀y. member(x, y) ⇒ path(y, base(x)) = x

Given the configuration, policy, and theory above, our compiler automatically
translates P to the intermediate program Q in Figure 1. In Q, all assert state-
ments except that in line 2 are eliminated, since the compiler can infer that they
must succeed at run time. Such inference requires collection of path conditions,
partial evaluation of terms modulo the given equational theory, and calls to the
theorem prover. (A description of partial evaluation modulo equational theories
is deferred to the related technical report [10]; remaining details are presented
in Section 4.)

In particular, for the assert statement in line 8, the compiler reasons auto-
matically as follows. Let _PRIN be the principal running the script. Line 8 is
reached only if the following conditions hold for some z, x, x′, and foo:

(1) extension(z, "log").
(2) z = path(foo, x).
(3) x = base(x′).
(4) member(x′, foo).
(5) The statement assert (read, foo) in line 2 succeeds.

From condition (5), we can conclude that
(6) auth(_PRIN, read, foo).

Simplifying conditions (2), (3), and (4) using the given theory, we have

(7) z = x′.

Now from conditions (1), (4), (6), and (7) and the given policy, the theorem
prover can conclude that auth(_PRIN, write, z), which is sufficient to eliminate
the assert statement in line 8.

Next, we want to be able to run the intermediate program Q on a file system
that supports PCA. The compiler translates Q to the equivalent Bash script S
in Figure 1. The commands prove and inject perform functions described in
Section 2. The header (the part of S before the numbered lines) defines unin-
terpreted functions and predicates path, base, extension occurring in P . The
implementations of such functions and predicates are sound with respect to the
equational theory used by the compiler. The value of _PRIN is provided by the
user at the time of compilation (see Section 4).

We close this section by discussing our trust assumptions. A policy is trusted,
so any interpreted predicates in a policy (such as member and extension) must
have trusted implementations (provided by the system). In contrast, a program
is not trusted. The compiler may or may not be trusted. If the compiler is
trusted, then the system can trust scripts produced by the compiler, and run
such scripts without checking the proofs that they inject. This is significant in

192 A. Chaudhuri and D. Garg

implementations where proofs may be large and proof verification may be costly.
However, such a compiler cannot assume semantic properties of the functions
used in a program (such as base and path) unless those functions have trusted
implementations that are provided by the system. On the other hand, if the
compiler is not trusted then the system must run all scripts with access checks.
We implicitly assume the latter scenario in the sequel, and provide additional
guarantees for the scenario in which the compiler is trusted (Theorem 2).

4 PCAL: Syntax, Semantics, and Compilation

We now describe the PCAL language and its compiler. We present the syntax of
PCAL programs, define their operational semantics, formalize our compilation
procedure and show that it preserves the behavior of programs.

For simplicity of presentation, we abstract various details of the implementa-
tion. Instead of Bash, we consider an extension of PCAL as the target language
for compilation; programs in this target language can be easily rewritten to
Bash. We also treat all function symbols as uninterpreted, although in principle,
equations over terms may be freely added in the run time semantics (to model
concrete implementations) and in the compiler (to model abstract properties of
such implementations).

We assume that η, x, and t range over permissions, variables, and terms whose
grammars are borrowed from the logic used to represent policies. ϕ denotes a
logical predicate whose truth depends only on the system state (i.e., a predicate
that is not defined by logical rules). PCAL programs are sequences of statements
e described by the grammar below. Directories, files, and paths are represented
as terms, and χ is a special variable that is bound to the principal running a
program.

Syntax

e ::= statements
for x in t {P} for each file f in directory t, bind x to f and do P
test ϕ {P} if condition ϕ holds, do P
x = t assign t to x
shell n(t1, . . . , tk) call shell command n with parameters t1, . . . , tk
assert (η, t) assert that principal χ has permission η on path t

P, Q ::= programs
e; Q run e, then do Q
end skip/halt

We also consider below an extension of PCAL which acts as the target language
for the compiler. α = prove (η, t) and inject (η, t) γ are formal representations
of the commands prove and inject from Section 2. γ ranges over proofs and α
denotes a variable bound to a proof (which, in the actual implementation, is a
temporary file that stores the proof).

PCAL: Language Support for PCA Systems 193

Extended syntax

e ::= statements
. . .
α = prove (η, t) prove that principal χ has permission η on path t

and bind the proof to α
inject (η, t) γ inject proof γ that authorizes (χ, η, t)

Semantics. A PCAL program runs in an environment θ of the form (Δ,L),
where Δ is a function from shell command names to lists of permissions (config-
uration) and L is the set of logical formulas used to determine access (policy).
Informally, if Δ(n) = η1, . . . , ηk then executing shell command n(t1, . . . , tk) re-
quires permissions η1, . . . , ηk on paths t1, . . . , tk respectively.

A state ρ is a triple (H, S, ξ), where H is an abstract, logical representation
of the part of the system state on which proofs of access depend, S is a function
from paths to terms (data store), and ξ is a partial function from triples (A, η, t)
to proofs (proof store). H must contain, at the least, information about members
of directories. We write members(H, t) to denote the list of files in directory t in
the system state H . Proofs injected using inject (η, t) γ are added to ξ.

Reductions are of the form ρ, P
θ,χ−→ ρ′, P ′, meaning that program P at state

ρ, run by principal χ in environment θ, reduces to program P ′ at state ρ′. The

reduction rules are shown in Figure 2. H, S
n(t1,...,tk)

� H ′, S′ means that executing
the shell command n(t1, . . . , tk) updates the system state H and data store S
to H ′ and S′ respectively. H |= ϕ means that ϕ holds in H , and H �|= ϕ means
that ϕ does not hold in H . In practice, whether ϕ holds in H or not is decided
using a trusted decision procedure provided by the system.

– (Reduct for) unrolls a loop P for each file x in a directory t. (Reduct test)
simplifies test ϕ {P}; Q to P ; Q if H |= ϕ, and to Q otherwise. (Reduct
assign) is straightforward.

– (Reduct shell) finds proofs γ1, . . . , γn needed to authorize the shell com-
mand n(t1, . . . , tk) in the proof store ξ. It then checks these proofs (premise
γi :: H ;L � auth(χ, ηi, ti)), and executes the shell command (premise

H, S
n(t1,...,tk)

� H ′, S′).
– (Reduct assert) calls the theorem prover to construct a proof γ which

shows that χ has permission η on path t (premise H ;L � auth(χ, η, t) ↘ γ),
and passes it to the system interface by placing it in the store ξ.

– (Reduct prove) constructs a proof γ and binds α to it. (Reduct inject)
places a proof γ in the proof store ξ. By these rules, the effect of the command
sequence α = prove (η, t); inject (η, t) α is exactly the same as the command
assert (η, t). However, assert (η, t) occurs only in source programs whereas
prove (η, t) and inject (η, t) γ occur only in compiled programs.

Compilation. Next, we formalize compilation of PCAL programs. As the com-
piler traverses a program, it maintains a database of facts that must be true

194 A. Chaudhuri and D. Garg

Reduction ρ,P
θ,χ−→ ρ′, P ′

(Reduct for)
ρ = (H, ,) members(H, t) = t1, . . . , tk

ρ, for x in t {P}; Q θ,χ−→ ρ, P{t1/x}; . . . ; P{tk/x}; Q

(Reduct test)
ρ = (H, ,) H � ϕ

ρ, test ϕ {P}; Q θ,χ−→ ρ, P ; Q

ρ = (H, ,) H �� ϕ

ρ, test ϕ {P}; Q θ,χ−→ ρ, Q

(Reduct assign) ρ, x = t; Q
θ,χ−→ ρ, Q{t/x}

(Reduct shell)

θ = (Δ,L) Δ(n) = η1, . . . , ηk ρ = (H,S, ξ)
ξ(χ, ηi, ti) = γi γi :: H ;L � auth(χ, ηi, ti)

H,S
n(t1,...,tk)

� H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk); P
θ,χ−→ ρ′, P

(Reduct assert)

θ = (,L) ρ = (H,S, ξ)
H ;L � auth(χ, η, t) ↘ γ ρ′ = (H,S, ξ[(χ, η, t) �→ γ])

ρ, assert (η, t); P
θ,χ−→ ρ′, P

(Reduct prove)
θ = (,L) ρ = (H, ,) H ;L � auth(χ, η, t) ↘ γ

ρ, α = prove (η, t); P
θ,χ−→ ρ, P{γ/α}

(Reduct inject)
ρ = (H,S, ξ) ρ′ = (H,S, ξ[(χ, η, t) �→ γ])

ρ, inject (η, t) γ; P
θ,χ−→ ρ′, P

Fig. 2. Reduction rules

at the program point that the compiler is looking at. These facts are formally
represented by Γ = (σ, Φ, Ξ).

– σ is a list of substitutions of the form {t/x}. The latter means that program
variable x is bound to term t.

– Φ is a list of interpreted predicates ϕ that can be assumed to hold at
a program point. These are gathered from commands test ϕ {. . .} and
for x in t {. . .}. In particular, ϕ may be of the form member(t′, t), meaning
that path t′ is in directory t; and we assume that members(H, t) = t1, . . . , tk
implies H � member(t1, t) ∧ . . . ∧ member(tk, t).

– Ξ is a partial function from triples (A, η, t) to authorization proofs that the
compiler has already constructed.

Figure 3 shows the rules to derive judgments of the form Γ � P
H,θ,χ� P ′, meaning

that under assumptions Γ , program P compiles to program P ′ in environment
θ and system state H . χ is given to the compiler at the time of invocation; it

PCAL: Language Support for PCA Systems 195

represents the user who is expected to run the compiled program. H is the state
of the system in which the compiled program is expected to run. It may either be
the system state at the time of compilation (if it is expected that the compiled
program will run in the same state), or it may be a state that the user provides.
Both χ and H are needed to call the theorem prover during compilation.

For any syntactic entity E, we write Eσ to denote the result of applying
the substitution σ to E. W(P) denotes the variables that are assigned in the
program P , and σ\x̃ denotes the restriction of σ that removes the mappings for
all variables in x̃. Finally, |Ξ| and 〈Ξ〉 extract the formulas and proofs in Ξ (

∏

denotes tupling of proofs):

|Ξ| =
∧

(A,η,t)∈dom(Ξ)

auth(A, η, t) 〈Ξ〉 =
∏

γ∈rng(Ξ)

γ

– (Comp end) terminates compilation when end is seen.
– (Comp for) compiles for x in t {P}; Q by compiling P to P ′ under the added

assumption member(x, tσ) (which must hold inside the body of the loop),
and compiling Q to Q′. In each case, any prior substitutions for variables x̃
assigned in P are removed from σ, because they may be invalidated during
the execution of the loop (premises x̃ = W(P) and σ′ = σ\x̃).

– (Comp test) is similar to (Comp for); in this case the assumption ϕσ is
added when compiling the body P of the test branch.

– (Comp assign) records the effect of assignment x = t by augmenting sub-
stitution σ with {tσ/x}. This augmented substitution is used to compile the
remaining program.

– (Comp shell) checks that there is a proof in the set of previously con-
structed proofs Ξ to authorize each permission needed to execute a shell
command n(t1, . . . , tk). (Proofs are added to this set in the next two rules).

– (Comp static) and (Comp dynamic) are used to compile the command
assert (η, t) in different cases. To decide which rule to use, the compiler tries
to statically prove |Ξ| ⇒ auth(χ, η, tσ) by calling the theorem prover. The
context in which the proof is constructed not only contains H and the policy
L, but also information about directory memberships and predicates tested
in outer scopes (Φσ). If a proof γ′ can be constructed, rule (Comp static)
is used: assert (η, t) is replaced by inject (η, t) γ, which passes the statically
generated proof γ = γ′ 〈Ξ〉 to the system interface at run time. (γ′ 〈Ξ〉 is
the proof of auth(χ, η, tσ) obtained by eliminating the connective ⇒ from
|Ξ| ⇒ auth(χ, η, tσ)). Also, the fact that the new proof exists is recorded by
updating Ξ to Ξ ′ = Ξ[(χ, η, tσ) �→ γ], and using Ξ ′ to compile the remaining
program P . If the proof construction fails, rule (Comp dynamic) is used:
the compiler generates code both to construct the proof at run time and to
inject it into the system interface. Accordingly, assert (η, t) is compiled to
α = prove (η, t); inject (η, t) α. Even in this case, it is safe to assume that a
proof of auth(χ, η, tσ) will exist when P executes (else α = prove (η, t) will
block at run time), so Ξ is updated to Ξ ′ = Ξ[(χ, η, tσ) �→ α].

196 A. Chaudhuri and D. Garg

Compilation Γ � P
H,θ,χ� P ′

(Comp end) Γ � end
H,θ,χ� end

(Comp for)

Γ = (σ, Φ, Ξ) x̃ = W(P) σ′ = σ\x̃
x fresh in Γ Φ′ = Φ, member(x, tσ)

(σ′, Φ′, Ξ) � P
H,θ,χ� P ′ (σ′, Φ, Ξ) � Q

H,θ,χ� Q′

Γ � for x in t {P}; Q H,θ,χ� for x in t {P ′}; Q′

(Comp test)

Γ = (σ, Φ, Ξ) x̃ = W(P) σ′ = σ\x̃ Φ′ = Φ, ϕσ

(σ, Φ′, Ξ) � P
H,θ,χ� P ′ (σ′, Φ, Ξ) � Q

H,θ,χ� Q′

Γ � test ϕ {P}; Q H,θ,χ� test ϕ {P ′}; Q′

(Comp assign)
Γ = (σ, Φ, Ξ) σ′ = σ[x �→ tσ] (σ′, Φ, Ξ) � P

H,θ,χ� P ′

Γ � x = t; P
H,θ,χ� x = t; P ′

(Comp shell)

θ = (Δ,) Δ(n) = η1, . . . , ηk Γ = (σ, , Ξ)

(χ, ηi, tiσ) ∈ dom(Ξ) for each i Γ � P
H,θ,χ� P ′

Γ � shell n(t1, . . . , tk); P
H,θ,χ� shell n(t1, . . . , tk); P ′

(Comp static)

Γ = (σ, Φ, Ξ) θ = (,L)
H, Φ;L � |Ξ| ⇒ auth(χ, η, tσ) ↘ γ′ γ = γ′ 〈Ξ〉

Ξ ′ = Ξ[(χ, η, tσ) �→ γ] Γ ′ = (σ, Φ, Ξ ′) Γ ′ � P
H,θ,χ� P ′

Γ � assert (η, t); P
H,θ,χ� inject (η, t) γ; P ′

(Comp dynamic)

Γ = (σ, Φ, Ξ) θ = (,L)
H,Φ;L � |Ξ| ⇒ auth(χ, η, tσ) �↘ α fresh in Γ, P

Ξ ′ = Ξ[(χ, η, tσ) �→ α] Γ ′ = (σ, Φ, Ξ ′) Γ ′ � P
H,θ,χ� P ′

Γ � assert (η, t); P
H,θ,χ� α = prove (η, t); inject (η, t) α; P ′

Fig. 3. Compilation rules

Formal Guarantees. We close this section by stating two theorems that guar-
antee correctness of compilation. Proofs of these theorems can be found in the
related technical report [10]. We begin by defining a preorder ≤ on system states.
Roughly, H ≤ H ′ if any formula that holds under H also holds under H ′.

Definition 1 (≤). For any H and H ′, let H ≤ H ′ if for all ϕ, γ, L, and s,
(1) H � ϕ implies H ′ � ϕ, and (2) γ :: H ;L � s implies γ :: H ′;L � s.

Next, we assume the following axioms for the various external judgments. Roughly,
Axiom (1) states that system states are updated monotonically by shell com-
mand executions. Axioms (2), (3), and (4) state that verification of proofs must

PCAL: Language Support for PCA Systems 197

be closed under substitution, modus ponens, and product. Axiom (5) states that
the theorem prover produces only verifiable proofs (i.e., the theorem prover is
sound). Axiom (6) states that the theorem prover always produces a proof if
some proof exists (i.e., the theorem prover is complete).

Axioms

(1) if H, S
n(t1σ,...,tkσ)

� H ′, S′ then H ≤ H ′

(2) if γ :: H ;L � s then γσ :: Hσ;L � sσ
(3) if γ :: H ;L � s and γ′ :: H ;L � s ⇒ s′ then (γ′ γ) :: H ;L � s′

(4) if γi :: H ;L � si for each i ∈ 1..n, then (
∏

i∈1..n

γi) :: H ;L �
∧

i∈1...n

si

(5) if H ;L � s ↘ γ then γ :: H ;L � s
(6) if γ :: H ;L � s then H ;L � s ↘ γ′ for some γ′.

We can now show that compilation preserves the behavior of programs. More
precisely, if a program P compiles to a program P ′ under a system state H , and
the programs are run from a system state H ′ such that H ≤ H ′, then P and P ′

evaluate to the same state.

Theorem 1 (Compilation correctness). Suppose that Axioms (1–6) hold,

and (∅, ∅, ∅) � P
H,θ,χ� P ′. Then for all A and ρ = (H ′, ,) such that H ≤ H ′,

we have ρ, P
θ,A

−→� ρ′, Q for some Q if and only if ρ, P ′ θ,A

−→� ρ′, Q′ for some Q′.

(
θ,A

−→� denotes the reflexive-transitive closure of
θ,A−→)

Finally, we show that a compiled program can never fail due to an access check,
if the policy does not change between compile time and run time. Formally,
compilation preserves the behavior of programs even if the compiled programs
are run without access checks.

Definition 2 (=⇒). Let =⇒ be the same reduction relation as −→ except that
the rule (Reduct shell) is replaced by the following rule, which differs from the
earlier version in that its premises do not mention any proofs.

θ = (Δ,L) Δ(n) = η1, . . . , ηk

ρ = (H, S, ξ) H, S
n(t1,...,tk)

� H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk); P
θ,χ−→ ρ′, P

Theorem 2 (Access control redundancy). Suppose that Axioms (1–6) hold,

and (∅, ∅, ∅) � P
H,θ,χ� P ′. Then for all A and ρ = (H ′, ,) such that H ≤ H ′,

we have ρ, P ′ θ,A

−→� ρ′, Q for some Q if and only if ρ, P ′ θ,A

=⇒� ρ′, Q′ for some Q′.

Before we close this section, let us point out some consequences of our axioms.
Axioms (2), (3), (4), (5) represent standard expectations from the proof system

198 A. Chaudhuri and D. Garg

and the theorem prover. Axiom (6) is required to prove soundness of the compiler
(“if” direction of Theorem 1) since, in its absence, there is no guarantee that a
statically provable authorization will be successfully proved in the rule (Reduct
assert) when executing the source program directly. Axiom (1) is needed for a
similar purpose; without this axiom, the compiler must throw away assumptions
on the system state in the continuation of any shell command. However, the
axiom may seem too strong and invalid in practice. Fortunately, weaker versions
of this axiom suffice to prove our theorems for specific programs. In particular,
the definition of H ≤ H ′ may be qualified to require that H � ϕ imply H ′ � ϕ
for only those ϕ that appear in a program of interest (and their substitution
instances).

Implementation. We have implemented a prototype PCAL compiler and tested
it on the proof-carrying file system PCFS [17]. The specific logic currently used
in our implementation is BL [15,17]. Further details of the implementation and
some additional examples of use may be found in our technical report [10].

5 Conclusion

PCAL combines static checks and dynamic theorem proving to automate correct
and efficient use of a PCA-based interface. PCAL’s compiler is modular: it is
parametric over both the shell commands (system interface) and the logic it
supports. Although this makes the compiler flexible, the interaction between
the core language, shell commands, and the logic is subtle and requires careful
design. The compiler is made practical through a combination of simple user
annotations, static constraint tracking, dynamically checked assertions, and run
time support from a command line theorem prover. We prove formally that these
ideas work well together. It is our belief that PCAL’s design is novel, and that
it will be a useful stepping stone for languages that support rule-based access
control interfaces in future.

There are several interesting avenues for future work. An obvious one is to
run realistic examples on PCAL, to determine what other features are needed
in practice. Another possible direction is a code execution architecture where a
trusted PCAL compiler is used to generate certified scripts that are run with
minimal access control checks. Finally, it will be interesting to apply ideas from
PCAL, particularly the use of an automatic theorem prover, in the context of
language-based security for access control interfaces (e.g., [18, 4]).

Acknowledgments. Avik Chaudhuri was supported by DARPA under grant no.
ODOD.HR00110810073. Deepak Garg was supported partially by the iCAST
project sponsored by the National Science Council, Taiwan, under grant no.
NSC97-2745-P-001-001, and partially by the Air Force Research Laboratory un-
der grant no. FA87500720028.

PCAL: Language Support for PCA Systems 199

References

1. Abadi, M.: Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science 172, 5–31 (2007); Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin

2. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Sys-
tems 15(4), 706–734 (1993)

3. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: ACM Conference
on Computer and Communications Security (CCS 2009), pp. 52–62. ACM Press,
New York (1999)

4. Avijit, K., Datta, A., Harper, R.: PCML5: A language for ensuring compliance
with access control policies (2009); Draft, personal communication

5. Bauer, L.: Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University (2003)

6. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the grey system. In: Zhou, J., López, J., Deng, R.H., Bao,
F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 431–445. Springer, Heidelberg (2005)

7. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentral-
ized authorization language. In: IEEE Computer Security Foundations Symposium
(CSF 2007), pp. 3–15. IEEE Computer Society Press, Los Alamitos (2007)

8. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A., Maffeis, S.: Refinement types
for secure implementations. In: IEEE Computer Security Foundations Symposium
(CSF 2008), pp. 17–32. IEEE, Los Alamitos (2008)

9. Chaudhuri, A., Abadi, M.: Secrecy by typing and file-access control. In: IEEE
Computer Security Foundations Workshop (CSFW 2006), pp. 112–123. IEEE, Los
Alamitos (2006)

10. Chaudhuri, A., Garg, D.: PCAL: Language support for proof-carrying autho-
rization systems. Technical Report CMU-CS-09-141, Carnegie Mellon University
(2009)

11. Chaudhuri, A., Naldurg, P., Rajamani, S.: A type system for data-flow integrity on
Windows Vista. In: ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS 2008), pp. 89–100. ACM, New York (2008)

12. DeTreville, J.: Binder, a logic-based security language. In: IEEE Symposium on
Security and Privacy (S&P 2002), pp. 105–113. IEEE, Los Alamitos (2002)

13. Flanagan, C.: Hybrid type checking. In: ACM Symposium on Principles of Pro-
gramming Languages (POPL 2006), pp. 245–256. ACM, New York (2006)

14. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization in dis-
tributed systems. In: IEEE Computer Security Foundations Symposium (CSF
2007), pp. 31–48. IEEE, Los Alamitos (2007)

15. Garg, D.: Proof search in an authorization logic. Technical Report CMU-CS-09-
121, Carnegie Mellon University (2009)

16. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In:
IEEE Computer Security Foundations Workshop (CSFW 2006), pp. 283–293.
IEEE, Los Alamitos (2006)

17. Garg, D., Pfenning, F.: A proof-carrying file system. Technical Report CMU-CS-
09-123, Carnegie Mellon University (2009)

18. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.:
Aura: A programming language for authorization and audit. In: ACM International
Conference on Functional Programming (ICFP 2008). ACM, New York (2008)

	PCAL: Language Support for Proof-Carrying Authorization Systems
	Introduction
	Background
	Overview of PCAL
	PCAL: Syntax, Semantics, and Compilation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

