
A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 77–88, 2009.
© IFIP International Federation for Information Processing 2009

Transaction Level Modeling of Best-Effort Channels for
Networked Embedded Devices

Amal Banerjee and Andreas Gerstlauer

Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, Texas 78712, USA

{abanerj,gerstl}@ece.utexas.edu

Abstract. We use Transaction Level Modeling techniques to specify and vali-
date best-effort channels for networked embedded devices, to integrate the
generated specification model in system-level design flow, for prototyping, ex-
ploration and validation of design alternatives. A best-effort channel does not
provide any guarantees on final data delivery or delivery rate. With more em-
bedded devices existing in networked environments, often sharing a common
communication channel, devices compete with each other for all common net-
work resources, e.g., in a wireless sensor network where low power devices
share a low bandwidth best-effort channel. To examine such systems, we spec-
ify Half-Duplex Ethernet using the SpecC language and Transaction Level
Modeling techniques. All models are validated in a multi-station test setup us-
ing Ethernet-based network algorithms.

Keywords: Best-effort Channel, Networked Embedded Systems, Transaction
Level Model (TLM), System Level Design Language (SLDL).

1 Introduction

Most of today’s embedded systems exist in some form of a networked environment.
Inspired by Ethernet as the most cost-effective local area network technology in gen-
eral computing, embedded system designers have adapted it for industrial automation.
In order to understand the behavior of these networked embedded devices, for better
control and reliable inter-device communication, more design support and robust
models are essential. For any communication channel in any network, an arbitration
scheme is required to decide which device can use the channel at any given time.
Such schemes could either be centralized (e.g., ARM AMBA bus) or distributed (e.g.,
Ethernet or wireless networks), the latter often in combination with best-effort chan-
nels. A best-effort communications protocol (e.g., Half-Duplex Ethernet) provides no
guarantees on final data delivery or rate of data delivery. Though replaced by Full-
Duplex Ethernet and variants like Time Triggered Ethernet in wired networks, best-
effort and contention mechanisms resulting in uncertainty and unreliability underlying
the Ethernet protocol are also at the heart of wireless embedded networks [19], e.g.,
mobile device interfaces, wireless local area networks (WLANs) and wireless sensor
networks. As such, modeling concepts developed for Ethernet are applicable to a wide
variety of networked embedded systems.

78 A. Banerjee and A. Gerstlauer

In the ISO/OSI network model, the Ethernet [11] sub-layer of the Data Link layer
manipulates frames coming in/going out (from/to Physical layer). In the beginning,
Ethernet was half-duplex in nature. A half-duplex channel allows two way communi-
cation, but only in one direction at a time, i.e., the transmitter must stop before the
receiver can reply. A Half-Duplex Ethernet channel has active transmitters and pas-
sive receivers. It relies on a contention resolution algorithm, Truncated Binary Expo-
nential Back-Off, that allows a failed transmitter to decide how long to wait before the
next transmission attempt. While communication channels have been modeled using
networks simulators such as ns-2 [22], these do not allow the modeling of complete
systems (hardware and software). In contrast, systems are modeled with a System
Level Design Language (SLDL), combined with Transaction-Level Modeling (TLM)
techniques. To the best of our knowledge, there are currently no network-oriented
TLM channel models.

Transaction-Level Modeling (TLM) [6] allows modeling of digital systems with in-
ter-module communication details abstracted and separated from those of the imple-
mentation of computation modules. Communication mechanisms such as busses or
FIFOs, are modeled as channels, and modules access them via interfaces. Channel
models encapsulate low-level details of the information exchange. Transaction re-
quests occur when modules call interface functions of the channel models. The em-
phasis is on what data is being transferred, rather than how it is being transmitted.
Thus, the system designer can experiment, with different bus architectures (supporting
a common abstract interface) without re-coding models that interact with any of the
buses. Our choice of the SpecC SLDL [21] supports TLM, along with the crucial con-
cept of time with delta cycles, essential for effective hardware/system and network
modeling, unlike traditional network simulators such as ns-2 [22], OPNet [23] or
OMNet++ [24].

1.1 Related Work

The Ethernet protocol [11] was developed in a very straightforward way. One of the
earliest attempts to specify Half-Duplex Ethernet by Weinberg and Zuck [1] uses
Henzinger's real-time models and transition diagrams. Bochmann and Sunshine [2]
provide an overview of formal methods used in communication protocol design while
Schmaltz and Borrione [3] present an ACL2 logic based scheme for the specification
of System-on-Chip (SoC) communication architectures. Georges et al. [4] use con-
cepts of network calculus to formulate a mathematical model of industrial Ethernet,
while Shalunov et al. [5] study the properties of half and full duplex Ethernet to de-
vise techniques to detect mismatch between the two modes in a given communication
channel and its effects on TCP throughput.

With the emergence of TLM techniques, a number of researchers have applied it to
specify existing systems. Cai et al. [6] explain the benefits of the use of TLM tech-
niques. Moussa et al. [7] describe VISTA, a new methodology and tool to analyze
SoCs. Klingauf et al. [8] present a generic interconnect fabric for TLM. Wieferink
et al. [9] use built-in TLM features of SystemC to propose a methodology for explor-
ing SoC multiprocessor systems. Schirner et al. [10] have proposed some novel tech-
niques to address some of the drawbacks of TLM related to efficient communication
modeling. In addition, a number of researchers have applied TLM techniques to

Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices 79

analyzing the AMBA bus, mostly with SystemC [14-17]. Bombieri et al. [18] combine
SystemC's TLM features with the ns-2 network simulator to analyze voice-over-IP
(VOIP) systems using the AMBA bus.

1.2 Goals

Available literature indicates that the focus so far has been on mostly on higher level
concepts/theoretical issues and TLM techniques as applied to the analysis of systems
using widely used system busses. In contrast, our focus is entirely on best-effort
communication channels, which by definition use distributed bus arbitration. Unlike
[18], we do not use any network simulator and create our own specification model for
a best effort communication channel. Our main goals, based on TLM and SLDL prin-
ciples, are to combine the two. Specifically:

• Specification and validation of real-world networked embedded systems based
on best-effort communication channels, e.g., Ethernet, WLANs and wireless
sensor networks.

• Integration of the resulting specification model into the overall system level
design process, i.e., a flexible and robust model of networked embedded de-
vices for prototyping of design alternatives, validation of networking effects
and rapid, early network-level design space exploration [20].

Networked embedded systems, and wireless networks in particular, often use best-
effort communication channels. TLM, with its ability to separate low-level communi-
cation details from actual transferred data provides the best means to understand the
overall behavior of such a system. In accordance with TLM principles, we design our
own abstract Half-Duplex Ethernet channel, including techniques for handling con-
flicts amongst devices attempting to use the channel simultaneously. The final speci-
fication model can be applied as input to system-level design and synthesis tools.

The remainder of this paper is organized as follows. In the next section we intro-
duce our specification/validation model for Half-Duplex Ethernet created with SpecC,
with details of how various SpecC language features were used, along with the TLM
principles on which the specification model is based. In Section 3 we test the accuracy
and validity of our specification model by describing an experiment and its results to
analyze the behavior of a widely-used network quality of service (QoS) protocol that
operates on Ethernet frames. Finally, we conclude with a brief summary of work per-
formed and future possibilities.

2 Specification and Validation of Half-Duplex Ethernet

The Half-Duplex Ethernet [11] sub-layer of the ISO/OSI Data Link layer is a best-
effort protocol, with active senders and passive receivers. Only one of two communi-
cating devices can be sending data at any time. All transmitters share a common
channel with maximum specified bandwidth, and transmitters compete with others to
gain control of the channel. A transmitter which gains control of the channel has ex-
clusive rights to send data to a receiver of its choice, and can retain control of the
channel for as long as it wants. Failed transmitters must wait and use the Truncated
Binary Exponential Back-Off algorithm to decide on the duration. Each failed attempt

80 A. Banerjee and A. Gerstlauer

Fig. 1. Basic Ethernet test bench. Four Ethernet stations share a common half duplex Ethernet
channel. A media access layer (MAC) in each station implements contention resolution and
network access. 'App' is an application exchanging data over the network.

to gain control of the channel is a 'collision'. Each failed transmitter waits for a duration
derived from the slot time and the number of failed attempts to retransmit. After i colli-
sions, a random number of slot times between 0 and 2i − 1 is chosen. For the first colli-
sion, each transmitter might wait 0 or 1 slot times, and after the second collision, each
failed transmitter might wait 0, 1, 2, or 3 slot times. The term 'truncated' indicates that
the retransmission timeout has a strict upper bound, e.g., for a ceiling of i=10, the
maximum delay is 1023 slot times. A slot time is the round-trip time interval for one
ASCII character and is set at 51.2 µs. As transmission delays can cause transmitting
stations to collide, a busy network might have hundreds of senders caught in a single
collision set. Because of this, after 16 attempts at transmission of one particular frame,
the process is aborted.

Our test bench is shown in Fig. 1. Each station can be configured as sender or re-
ceiver, and the test setup consists of two senders talking to two receivers. Fig. 2 shows
our implementation of the core Ethernet channel. The challenges in modeling the
Half-Duplex Ethernet channel are:

• The channel must correctly detect and handle collisions.
• An Ethernet station that has failed to send a frame in the current attempt has to

be able to choose the correct wait duration, depending on the total number of
failed attempts so far to send this frame (provided that the total number of
failed transmission attempts so far do not exceed a pre-defined limit).

The Truncated Binary Exponential Back-Off algorithm is implemented in each sta-
tion. Ethernet frames are 128 bytes long, with 64 byte header and 64 byte payload.

2.1 Half-Duplex Ethernet Channel

As per SpecC design principles, the Ethernet channel implements the Ethernet-
Interface interface. Ethernet receivers are passive devices, and each waits for a da-
taready event to read data from the channel. Most of the activity on the channel is when
a transmitter tries to send a frame.

Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices 81

const unsigned int INTER_FRAME_INTERVAL = 10;
const unsigned int SLOT_TIME = 52;
const unsigned int FRAME_PAYLOAD_INTERVAL = 3328;

interface EthernetInterface
{
 bool send_frame(unsigned char *, unsigned int);
 void recv_frame(unsigned char *);
};

channel EthernetChannel implements EthernetInterface
{
 unsigned int busy;
 unsigned char localbuffer[128];
 unsigned int i;
 bool collision;
 event dataready;

 bool send_frame(unsigned char *frame,
 unsigned int stationID)
 {
 while(busy == 2)

 waitfor(SLOT_TIME*64 + INTER_FRAME_INTERVAL);
 if(busy == 1) {
 collision = true;
 return false;
 }
 busy = 1;
 for(i = 0; i < 64; i++) {
 waitfor(SLOT_TIME);
 if(collision) {
 collision = false;
 busy = 0;
 return false;
 }
 }
 busy = 2;
 waitfor(FRAME_PAYLOAD_INTERVAL);
 memcpy(localbuffer, frame, 128);
 busy = 0;
 collision = false;
 notify(dataready);
 return true;
 }

 void recv_frame(unsigned char *recvframe)
 {
 wait(dataready);
 memcpy(recvframe, localbuffer, 128);
 }
};

Fig. 2. SpecC behavior implementing the basic Half-Duplex Ethernet channel

82 A. Banerjee and A. Gerstlauer

Fig. 3. Ethernet station media access layer state machine

We only consider collisions occurring during sending of the Ethernet header. Once
an Ethernet station has successfully transmitted the frame header, it gains control of the
channel and does not have to check for frame collisions while sending the payload.

In SpecC, only behaviors are associated with threads, channels are passive. If a be-
havior calls a channel method it is a regular function call. Any code in the channel
(including waitfor statements) is executed in the context of the calling behav-
ior/thread.

Now, let an Ethernet station A want to send a frame. It invokes the send_frame
function of the Ethernet channel:

1. A checks if the channel's busy variable has value 2, which indicates that an-
other Ethernet station is sending its payload. A waits in a loop until busy is not
equal to 2. During each iteration of the loop, it waits for a time period equal to
that required to send a 64 byte payload, plus the mandatory inter frame gap.

2. If instead A finds that the busy variable has value 1, then a collision has just
occurred. If not, A sets the busy variable to 1, and starts to send the 64 byte
Ethernet header of the current frame, checking for a collision after sending
each header byte.

3. When A has successfully sent the Ethernet header, it sets the busy variable to 2,
indicating it has acquired complete control over the channel, and starts sending
that Ethernet frame payload. On completion, the frame payload contents are
copied into a local channel buffer. A resets the status variable busy to 0, and
sets an event (dataready) variable to indicate to all receivers that a frame is
available. It is now ready to send/receive any frame to/from any station.

2.2 Media Access Layer

Each Ethernet station is a finite-state machine, with three possible states,
JAM_BACKOFF, RECV and SENSE_TRANSMIT, as shown in Fig. 3:

1. Each Ethernet station starts in the SENSE_TRANSMIT state. It invokes the

send_frame function of the Ethernet channel, which returns a Boolean true if
the frame was sent successfully.

2. If the return value is false, the station transitions to the JAM_BACKOFF state.
The maximum number of times any station might attempt to re-send a frame is
16. In the JAM_BACKOFF state, the station first waits for a mandatory jam
period. It then decides, using the Truncated Binary Exponential Back-Off algo-
rithm and the number of failed attempts so far how long to wait before the next
transmission attempt. At the end of the wait period, the Ethernet station

Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices 83

transitions to the SENSE_TRANSMIT state and attempts to send that frame
again. If the Ethernet station finds in the JAM_BACKOFF state that the maxi-
mum number of transmit attempts for the current frame has exceeded the
pre-defined maximum limit, it drops the frame and transitions back to the
SENSE_TRANSMIT state in order to send or receive the next frame.

3. The Ethernet station transitions between the SENSE_TRANSMIT and RECV
states to send the next frame or to receive frames available on the channel, re-
spectively.

Our specification models for both Half-Duplex Ethernet channels and stations adhere
strictly to TLM design concepts and make extensive use of SpecC's detailed time con-
struct, which allows time to be simulated in two nested loops, an outer time loop and
inner one for events in each simulation step, called the delta cycle. In addition, the
Ethernet channel behavior exploits SpecC's event mechanism to notify receivers when
data is available for them.

In accordance with TLM principles, each Ethernet station invokes the send_frame
function of the Ethernet channel when attempting to send a frame. The channel inter-
nally tackles the frame collision and only informs the transmitter if one has occurred
(by returning a false value). The transmitter in turn can then decide how long to wait
before attempting to retransmit again. The Ethernet channel's underlying data transfer
mechanism is transparent to the transmitter.

3 Experiments

We devised a set of experiments with increasing levels of complexity to determine if
our specification model for Half-Duplex Ethernet meets design goals. We define the
average delay for an Ethernet station (transmitter or receiver) as:

• The average delay for a transmitter is the time interval (averaged over 1000
successful frame transmissions) between the station starting to send a frame (in
SENSE_TRANSMIT state) and returning to same state to send the next frame.

• The average delay for a receiver is the time interval (averaged over 1000 suc-
cessful frame receptions) between the station receiving a frame and it returning
to the same state (RECV) to receive the next frame.

As required for the Truncated Binary Exponential Back-Off algorithm, the wait peri-
ods after a collision in each Ethernet station are strictly bound between lower and
upper limits.

3.1 Channel Model

To simulate realistic network conditions, our specification model includes bursty traf-
fic generators [13]. Bursty traffic is an infinite sequence of frames with sub-sequences
of closely spaced (in time) frames interspersed with sub-sequences of widely spaced
(in time) frames, i.e., a plot of frames over time shows peaks and plateaus. Bursty
traffic has a long tailed (power law) probability distribution and is typically modeled
using a Poisson Pareto Burst Processes with heuristics to enable a close fit to ob-
served data. To circumvent the issue of having to choose correct heuristics, a simple
power law distribution is used in our setup.

84 A. Banerjee and A. Gerstlauer

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100 120 140

Sample

S
im

u
la

te
d

 d
el

ay
 [

µ
s]

Non-bursty

Bursty

Fig. 4. Bursty and non-bursty average transmitter delays

The effect of adding the power law distributed delays is to increase the average de-
lay in all cases when this delay interval is non-zero, see Fig. 4. This is because the
number of collisions increases with the incoming frame rate (bursty traffic). In con-
trast, when the power law distributed delay interval is zero, the average delay has ap-
proximately the same value as if this additional delay is not present at all.

3.2 QoS Application

The next phase of our experiments involves creating specification models for a widely
used network quality-of-service (QoS) algorithm that works at the Ethernet layer.
QoS algorithms share some common characteristics:

1. Always applied to the interfaces of a router, e.g., WAN and LAN interfaces.
2. QoS features work on the producer-consumer model and rely on non-

deterministic queues.

Some common QoS operations on network traffic are:

1. Shaping – delay frames/packets to meet a certain rate
2. Scheduling – rearrange frames/packets for output
3. Classifying – separating traffic into queues
4. Policing – measuring and limiting traffic on queues

With these in mind, the simulated QoS architecture is shown in Fig. 5. One sender and
one receiver on each side of a router exchange frames with a receiver and sender on the
other, respectively. The Token Source/Token Channel pair for each EthernetHandler
behavior implements the chosen QoS algorithm, as will be explained shortly.

The router interconnects the two networks consisting of Ethernet channels 1 and 2,
where behaviors EthernetHandler1 and EthernetHandler2 transfer frames between
channels 1 and 2 via router interfaces 1 and 2. QoS algorithms/features are imposed
on the router via the Token Source/Token Channel combination for each
EthernetHandler. Internally, each EthernetHandler behavior is an Ethernet station
with two ports, one dedicated to transferring frames originating in network 1 to net-
work 2 and vice versa.

Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices 85

Fig. 5. Simulated Quality of Service architecture

The Token Channel is a non-deterministic custom queue that, in addition to block-
ing reads and writes, allows the user to check if it is empty – a feature unavailable for
any built-in SpecC queue. We define the average delay for a router interface as:

• The time interval (averaged over 1000 successful attempts) between the router
interface receiving a frame successfully, sending it out over the other Ethernet
channel, and returning to the state where it can receive the next frame.

This is completely independent of the average delay for the basic Half-Duplex
Ethernet.

3.2.1 Random Early Detection
Random Early Detection (RED) [12] is used for congestion control and manages
queue size intelligently (Fig. 6). Unlike regular queues that drop packets from the tail
when they are full, RED does it in a controlled and gradual way.

Once the queue size attains a certain average length, enqueued packets have a finite
probability of being marked. A marking probability exceeding a predefined threshold
means that the marked packet will be dropped. The marking probability increases
linearly with the queue size up to a maximum dropping probability. The average
queue size used for determining the marking probability is calculated using an Expo-
nential Weighted Moving Average, insensitive to bursts.

When the average queue size is below a preset minimum bound, no packet is
marked. When the average queue size exceeds the minimum queue length, the mark-
ing probability increases linearly until the average queue size attains the preset maxi-
mum queue length. As probability is normally not set to 100%, the queue size might
rise above the maximum preset size. Hence, a limit parameter is provided to set a hard
maximum for the size of the queue.

86 A. Banerjee and A. Gerstlauer

Fig. 6. Random Early Detection (RED) congestion control (AvgQ: average queue length, Max-
Thres: maximum queue length threshold, MinThres: minimum queue length threshold)

3.2.2 Experimental Validation
For the purposes of this experiment, the two Token Source behaviors supply marking
probabilities to the two EthernetHandler behaviors via the token channels. Both token
channels are non-deterministic and non-blocking. Each EthernetHandler behavior can
thus check if a token (marking probability) is available before trying to extract one.
Our implementation of the Token Source/Token Channel pair uses the same functions
and parameters as in [12] to generate the marking probabilities. This allows us to
compare the results generated by our model (specifically queue length and average
queue length) with the original ones in [12].

RED uses a number of predefined and computed parameters. The predefined pa-
rameters are maximum dropping or marking probability, minimum and maximum
queue lengths and queue weight. The parameters computed per iteration are count,
average queue length, queue length and dropping or marking probability. Count is the
number of frames since the last marked frame. For our simulation, we used the same
values for the predefined parameters as in [12]. In addition, the algorithm uses a linear
function of time to determine the time interval since the queue was empty. In our case,
we use simple difference in measured times to achieve this effect.

As the average queue length varies between the minimum and maximum thresh-
olds, the packet marking probability varies between 0 and the maximum probability.
The final marking probability increases linearly as the count since the last marked
packet grows. For each frame that is to be sent out over the Ethernet layer, the average
queue length is computed as in [12]. Fig. 7 represents results for queue size and aver-
age queue size sampled every 1000 successfully transmitted frames for the first 1000
samples at one of the two router interfaces we implemented using SpecC. All to-
gether, simulation of more than 3 million frames successfully transmitted over both
router interfaces required 15 minutes of simulation time on a 2.8 GHz Linux
workstation.

Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices 87

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Sample

Q
u

eu
e

le
n

g
th

Actual Average

Fig. 7. Queue length and average queue length

4 Summary and Conclusions

Embedded devices are being increasingly deployed in networked environments, often
communicating via best-effort channels, e.g., in wireless sensor networks. Using TLM
techniques, we have specified and validated a networked embedded system in which
devices communicate via a shared best-effort channel, specifically the Half-Duplex
Ethernet sub-layer of the ISO/OSI Data Link layer. Our specification model can be
easily integrated into the system level design process, using any appropriate toolset
for exploration, prototyping and evaluation of design alternatives. To test if our speci-
fication model replicates reality, we have validated it using a multi-station bursty traf-
fic scenario and a widely used network QoS protocol that operates at the Ethernet
layer. In the future, we plan to deploy our Ethernet channel for modeling of various
realistic, large-scale networked systems. In addition, future directions include analy-
sis, customization and optimization of QoS algorithms for applications in typical re-
source constrained networked embedded system.

References

1. Weinberg, H.B., Zuck, L.D.: Timed Ethernet: Real-Time Formal Specification of Ethernet.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 370–385. Springer,
Heidelberg (1992)

2. Bochmann, G., Sunshine, C.: Formal Methods in Communication Protocol Design. IEEE
Transactions on Communications 28(4), 624–631 (1980)

3. Schmaltz, J., Borrione, D.: A Functional Approach to the Formal Specification of
Networks on Chip. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp.
52–66. Springer, Heidelberg (2004)

4. Georges, J.-P., Rondeau, E., Divoux, T.: Evaluation of Switched Ethernet in an Industrial
Context using Network Calculus. In: 4th IEEE International Workshop on Factory
Communication Systems, Vasteras, Sweden (August 2002)

5. Shalunov, S., Carlson, R.: Detecting Duplex Mismatch on Ethernet. In: Dovrolis, C. (ed.)
PAM 2005. LNCS, vol. 3431, pp. 135–148. Springer, Heidelberg (2005)

88 A. Banerjee and A. Gerstlauer

6. Cai, L., Gajski, D.: Transaction Level Modeling: An Overview. In: Proceedings of the 1st
International Conference on Hardware/Software Codesign and System Synthesis (2003)

7. Moussa, I., Grellier, T., Nguyen, G.: Exploring SW Performance using SoC Transaction-
Level Modeling. In: Design, Automation and Test in Europe (2003)

8. Klingauf, W., Günzel, R., Bringmann, O., Partfuntseu, P., Burton, M.: GreenBus: A
Generic Interconnect Framework for Transaction Level Modeling. In: Design Automation
Conference (2006)

9. Wieferink, A., Kogel, T., Leupers, R., Ascheid, G., Meyr, H., Braun, G., Nohl, A.: A
System Level Processor/Communication Co-Exploration Methodology for Multiprocessor
System-on-Chip Platforms. In: Design, Automation and Test in Europe (2004)

10. Schirner, G., Doemer, R.: Fast and Accurate Transaction Level Models using Result
Oriented Modeling. In: International Conference on Computer Aided Design (2006)

11. Metcalfe, R.M., Boggs, D.R.: Ethernet: Distributed Packet Switching for Local Computer
Networks. Communications of the ACM 19(7), 395–404 (1976)

12. Floyd, S. and Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Transaction on Networking, 1993.

13. Karasaridis, A., Hatzinakos, D.: Network Heavy Traffic Modeling using Alpha-Stable
Self-Similar Processes. IEEE Transactions on Communications 49(7), 1203–1214 (2001)

14. Caldari, M., Conti, M., Coppola, M., Curaba, S., Pieralisi, L., Turchetti, C.: Transaction
Level Models for AMBA Bus Architecture Using SystemC. In: Design, Automation and
Test in Europe: Designers’ Forum (2003)

15. Schirner, G., Doemer, R.: Quantitative Analysis of Transaction Level Models for the
AMBA Bus. In: Design, Automation and Test in Europe (2006)

16. Pasricha, S., Dutt, N., Ben-Romdhane, M.: Extending the Transaction Level Modeling
Approach for Fast Communicating Architecture Exploration. In: Design Automation
Conference (2004)

17. Xu, S., And Pollit-Smith, H.: A TLM Platform for System-on-Chip Simulation and
Verification. In: VLSI Design, Automation and Test (April 2005)

18. Bombieri, N., Fummi, F., Quaglia, D.: TLM/Network Design Space Exploration for
Networked Embedded Systems. In: International Conference on Hardware/Software
Codesign and System Synthesis (2006)

19. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Whiting, P., Vijaykumar, R.:
Providing Quality of Service Over Shared Wireless Link. IEEE Communications
(February 2001)

20. Bonivento, A., Carloni, L., Sangiovanni-Vincentelli, A.: Platform-Based Design for
Wireless Sensor Networks. Mobile Networks and Applications 11(4) (August 2006)

21. Gajski, D., Zhu, J., Doemer, R., Gerstlauer, A., Zhao, S.: SpecC: Specification Language
and Methdology. Kluwer, Dordrecht (2000)

22. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns
23. OPNET Technologies, Inc.: OPNET Modeler, http://www.opnet.com
24. OMNet++, http://www.omnetpp.org

	Transaction Level Modeling of Best-Effort Channels for Networked Embedded Devices
	Introduction
	Related Work
	Goals

	Specification and Validation of Half-Duplex Ethernet
	Half-Duplex Ethernet Channel
	Media Access Layer

	Experiments
	Channel Model
	QoS Application

	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

