
A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 12–23, 2009. 
© IFIP International Federation for Information Processing 2009 

Automatic HW/SW Interface Modeling for Scratch-Pad 
and Memory Mapped HW Components in Native Source-

Code Co-simulation∗ 

Héctor Posadas and Eugenio Villar 

University of Cantabria  
ETSIIT, Av. Los Castros s/n,39005 Santander, Spain 
{posadash,villar}@teisa.unican.es 

Abstract. Native execution of instrumented code is commonly used for early, 
high-level SW simulations. SW code developed for a target platform is exe-
cuted in a host computer for fast functional verification and performance esti-
mations. However, as the native platform is different than the target platform, 
directly writing the peripheral registers or handling scratch pad memories 
makes the native execution to crash. Previous works require manual recoding to 
solve this problem. This paper presents a library that automatically solves the 
problem of simulating directly, fixed memory accesses. HW accesses are de-
tected at run-time in the native execution and redirected to a target platform 
model. Thus, native HW/SW co-simulation is performed without any recoding 
effort. Both peripherals only requiring data transfers and peripherals also requir-
ing communication event delivery are automatically managed.   

Keywords: High-level modeling, native co-simulation, HW/SW interface, 
memory access, scratch-pad modeling. 

1   Introduction 

The constant increase of embedded system complexity is making early, high-level 
system co-simulations more and more important. Efficient design flows for HW/SW 
systems requires virtual platforms where the SW code can be developed meanwhile 
the HW platform is being optimized. Virtual platforms allow designers to verify the 
SW code functionality. Furthermore, performance information can be obtained to 
explore the best system architecture, resource mapping or platform configuration.  

To obtain early and fast virtual platform models, native execution of the SW code 
are used. In this simulation technology the SW code is annotated with time informa-
tion and executed in the host computer together with a TLM model of the target plat-
form. Native execution is much faster than other SW modeling techniques, so it is 
really useful at the first design steps. Design space exploration, resource allocation 
and platform requirement dimensioning can be efficiently performed. The target  
                                                           
∗ This work was supported by the Spanish MICyT and EC through MULTICUBE FP7-216693 

and the TEC2008-04107 projects. 
 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 13 

platform model provides the functionality associated to the HW peripherals to allow 
correct system execution. The platform model also contains timing information of the 
HW components. Thus, not only the functional behavior, but also the performance 
effects can be considered in the system co-simulation. 

One of the main problems in native co-simulation is the modeling of HW/SW com-
munication. When directly executing the SW code in the host computer, HW transfers 
are delivered to the host peripherals, not the target platform model. Thus, the native 
execution crashes. Previous works require manual recoding the SW to solve the prob-
lem. When the HW accesses are performed through system calls, it is feasible. How-
ever, when HW is accessed directly reading and writing bus addresses the solution is 
not valid. In target platforms without MMU, HW accesses are performed through 
pointer accesses.  

HW accesses through pointers are used for HW peripherals, shared memory re-
gions and scratch-pads. When the scratch-pad is controlled by the user, not by the 
compiler, pointers are set in the code to refer to the scratch pad memory area. These 
pointers are scattered along the code. In that case, manual recoding is really ineffi-
cient, time consuming and error prone. This recoding is even unfeasible if pointer 
addresses are not fixed but resolved at runtime. Thus, at compilation time it is un-
known if the pointer accesses a peripheral or not. 

The solution is also valid for Software in the Loop (SiL) simulations. The usual 
approach for enclosing the interaction between the system and the physical environ-
ment is the Hardware in the Loop (HiL) test. Unfortunately, most of the hardware 
components needed for the test process are available quite late.  

To solve that, SiL test has been proposed. Instead of the usage of physical inter-
faces, software interfaces provided by the operating system are used to connect the 
SW and the environment model. However, when accessing peripherals through point-
ers, it is required a method to detect and handle these accesses as if they was per-
formed as system calls. Summarizing, the problem is mainly the same than for virtual 
platforms. 

The only generic way to easily solve this problem is modifying the way the native 
execution is performed, not the code itself. It is required a method to automatically 
redirect the HW accesses to the platform model instead to the host peripherals. To 
redirect the accesses it is required to handle both data value transfers and communica-
tion events or only data (Fig 1).  This depends on the type of HW component: 

 

Fig. 1. Types of Processor-HW communication 

 



14 H. Posadas and E. Villar 

• When accessing HW components like an scratch-pad or a shared memory, 
only data value management is required. Scratch-pad memories do not per-
form any functional operation when the processor accesses the data. Thus, in 
a native co-simulation it is not required deliver a communication event.  

• When accessing a HW peripheral, a read or write access usually implies a 
peripheral action. For example, when some data is delivered to a co-
processor, the co-processor must start computing. Thus, these communica-
tions does not only requires transferring the values between processor and 
peripherals; the event must be delivered to the peripheral. Only that way the 
peripheral model starts performing the adequate actions. 

 
Applying this behavior to native co-simulations is a really difficult task. HW accesses 
modeled with direct pointer operations do not provoke any event. In the host com-
puter, this is just a read or write operation in a variable. 

This paper proposes an automatic technique to dynamically detect data transfers 
and deliver communication events in native co-simulations. HW accesses from the 
SW code are detected and redirected at run-time to access a virtual platform model. 
The technique has been applied to SystemC simulations. As a result, some SW codes 
developed for target platforms have been simulated in a native co-simulation, without 
any recoding effort. Data values and communication events are handled independ-
ently. This separation allows minimizing the simulation overhead, as not all HW pe-
ripherals require both solutions.  

Once presented the state of the art, data value management is presented in  
section 3. Detection and delivering of communication events is described in section 4. 
The application of these techniques in a native co-simulation environment is pre-
sented in section 5. 

2   Related Work 

Integrating models of the HW processors in the system simulation allows obtaining 
very accurate performance estimations. Commercial tools have solved this challenge 
[1][2] using ISS that can be connected with a SystemC platform. However, integra-
tion of processor models produces a large overload when modeling SW-centric sys-
tems. The speed is deeply decreased when running binary code over an ISS with  
respect to executing directly the source code in the simulation. As a consequence, 
several approaches have been proposed to improve the results provided by commer-
cial tools. In [3] a SystemC infrastructure developed to model architectures with mul-
tiple ARM cores is presented. This approach provides a wide set of tools that allow 
designers to efficiently design SW applications (OS ports, compilers, etc.). However, 
it cannot be used to evaluate platforms not based on ARM processors. 

In [4] a generic design environment for multiprocessor system modeling is pro-
posed. The environment enables transparent integration of instruction-set simulators 
and prototyping boards. GDB’s remote debugging features are used to include ISSs in 
the co-simulation environment.  

Another improvement proposed is the modification of the OS running over the ISS. 
As the OS is in fact the interface between SW applications and the rest of the system, 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 15 

it can be used to save simulation time. In [5], a technique based on virtual synchroni-
zation is presented to faster execute several SW tasks in the ISS. Only application 
tasks run over the ISS. The OS is modeled in the co-simulation backplane. However, 
although these simulations have improved the simulation speed with respect to com-
mercial tools, the use of an ISS still implies a large overload. Thus, to obtain really 
fast simulations, the best option is to integrate SW source code directly in the system 
simulation. ISS accuracy cannot be obtained, but it can be given up in exchange of 
speed up when dimensioning the system at the first steps of development. 

Several estimation and annotation techniques have been developed to model SW at 
in native co-simulation [6-10].  Even commercial tools have been developed to auto-
matically estimate and annotate the SW code [11]. However, SW cannot be ade-
quately modeled only using these techniques. SW requires an OS to execute. When 
several SW tasks run in the same processor, they cannot run at the same time. They 
have to be scheduled adequately. Furthermore, SW/SW communication commonly 
uses mechanisms not included in SystemC. Thus, OS models are required in the simu-
lation environment to model SW execution. 

Several works on OS modeling for SW native simulations from abstract OS [12-
14] to real OS [15-16] have been proposed. These works also dedicate a large effort in 
accurately integrating time annotation and OS modeling with HW/SW communica-
tion, especially for HW interrupt management. In fact, communication in native simu-
lations has been specifically considered in some works [16-18]. However all this 
works use function calls to perform communications.  Accesses through pointers are 
not solved in any of them. In case the code contains this kind of accesses manual re-
coding is unavoidable.  

To overcome this limitation, in this paper, an automatic way to perform communi-
cation between native simulation and virtual platform models is presented. The tech-
nique eliminates the need of SW recoding. 

3   Memory Remapping of HW Data Values 

In native co-simulations the operating system prevents the application code to access 
specific HW addresses. When the SW code tries to access a fixed HW address, the 
memory management unit (MMU) detects a failure as there is no a physical address 
associated to the required virtual address. As a consequence, the memory manage-
ment system provokes a segmentation fault.  The way to solve the problem is to force 
the operating system to create a page of virtual memory at the desired memory ad-
dress. Thus, when the SW under simulation wants to read or write the HW values, 
values are correctly stored in the host memory.  

To force the native operating system to create this memory page, the standard 
POSIX “mmap” function can be used. The “mmap( )” function shall establish a map-
ping between a process’ address space and a file, shared memory object, or typed 
memory object. The format of the call is as follows: 

“pa=mmap(addr, len, prot, flags, fildes, off);” 
 

The mmap( ) function shall establish a mapping between the address space of the 
process at an address “pa” for “len” bytes to the memory object represented by the file 
descriptor “fildes” at offset “off”. The value of pa is an implementation-defined  
 



16 H. Posadas and E. Villar 

Table 1. Possible “flag” and “prot” values for mmap function 

Symbolic Constant Description Symbolic Constant Description 

MAP_SHARED Changes are shared. PROT_READ Data can be read. 

MAP_PRIVATE Changes are private. PROT_WRITE Data can be written. 

MAP_FIXED Interpret addr exactly. PROT_EXEC Data can be executed. 

  PROT_NONE Data cannot be accessed. 
 

 
function of the parameter “addr” and the values of flags. A successful mmap( ) call 
shall return “pa” as its result. To indicate how the system obtains “pa” from “addr”, 
the parameter “flags” is used (Table 1). Parameter flags provide information about the 
handling of the mapped data. The value of “flags” is the bitwise-inclusive OR of these 
options. 

To ensure that the memory page created will provide support to the HW addresses 
required by the SW code under simulation, the option MAP_FIXED must be selected. 
The parameter “prot” determines whether read, write, execute, or some combination 
of accesses are permitted to the data being mapped. The “prot” shall be either 
PROT_NONE or the bitwise-inclusive OR of one or more of the other flags in the 
following table. For modeling HW memory addresses, PROT_READ and 
PROT_WRITE flags must be activated.    

To apply this solution to a co-simulation infrastructure, it is required to call this 
function when the platform model is being created. When a peripheral is instantiated, 
the associated memory address in the target platform is decided. Then the “mmap” 
function must be called, for the specified address and the indicated memory length. 
The required code can be shown in figure 2. In that code, a file is created to store the 
information of the associated memory. It is important to note that the maximum size 
of the mapped memory is equivalent to the size of the associated file. As a conse-
quence, if an empty file is used, no values can be read or written. The solution applied 
is to assign a size of “len” to the file before calling “mmap”. To do so, the standard 
POSIX function “ftruncate” is used. 

If the initial address does not correspond with the beginning of a memory page, 
special management is required. Memory pages always start in an aligned position. 
Thus the memory activated will start at the corresponding aligned address and will 
cover “len” bytes. To adjust the addresses, there are two possibilities. First the “off-
set” parameter can be used to indicate where exactly the mapped memory area must 
start. The second solution is to increase “len” with the offset of “addr”. In the pro-
posed code (fig 2) the second solution has been used. Furthermore, for debugging 
purposes is interesting to note that the values stored in the scratch-pad model can be 
shown by reading the associated file.  

The solution is really effective when modeling scratch-pad memories in native co-
simulations. It automatically allows executing SW code using fixed HW addresses 
 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 17 

Fig. 2.  Code for mapping the HW model memory 

with a negligible simulation overhead. As no cache misses or any other event is pro-
voked internally by scratch-pad memories, only the ability of reading and writing  
values at these addresses is required. More specific details of internal scratch-pad op-
eration are not handled at high level.  

4   Capturing Communication Events 

HW peripherals as co-processors require receiving information about the communica-
tion events. Peripherals are not designed to make polling of any variable. They react 
to read or write accesses from the system processors. High-level models of the HW 
peripherals used in native co-simulations emulate their operation mechanisms in the 
same way. When applying the technique presented in the previous section, the storage 
is done but the peripheral does not receive any event informing that a read/write op-
eration has been performed in their registers. 

The only way to produce the event is to not apply the solution of the previous sec-
tion at the beginning of the simulation and let the simulation crash. When the simula-
tion is going to crash due to the segmentation fault, the error can be captured, solved 
and then the simulation can continue. The result of that process is that the HW access 
is detected and the event can be sent to the peripheral model. When the SW tries to 
access an invalid memory address, the native operating system raises a SIGSEGV 
signal. This signal can be captured with an appropriate signal handler. This prevents 
the program to terminate. However, the HW access cannot be performed at the signal 
handler. Neither the access type (read/write) nor the value are known at the handler.  

To obtain the data, the memory remapping technique transfer presented in the pre-
vious section is used. At the signal handler the memory mapping is activated and the 
code returns to repeat the pointer access. To perform a correct access, in reading ac-
cesses, the read transfer to the virtual platform is done first, updating the adequate 
memory address. Thus, when retrying the pointer read, the value obtained is correct. 
For writing accesses, the pointer access is performed first, and after that the value 
written is sent to the virtual platform. 

Performing an “mmap” allows retrying the instruction, but once an access has been 
performed, the memory page is active and further accesses are not detected. To solve 
that, the memory page must be unmapped. However, when the code returns to the 
failed instruction and it continues normally, that is, without unmaping the page.  A 
possible solution is to create a parallel thread that wait a certain time and then unmaps 
the page. However, this is a really unsafe solution. There is no guarantee that there  
 

void initialize_periph (void *addr, int len){
 fd = open("tmp.txt",O_CREAT|O_RDWR,0x01b6); 
 ftruncate(fd,get_page_size()); 
 
  len += addr - page_aligned(addr); 

    mmap(addr,len,PROT_READ|PROT_WRITE,MAP_FIXED|MAP_SHARED,fd,0); 
} 



18 H. Posadas and E. Villar 

   

  
 
 
Application 

SW 
 

… 
*addr = value; 

… 
 
 

Native 
Simulation 

Peripheral 
Access 

SIGBUS raise 
and capture 

Start-transfer 
event 

Map memory 
region 

Code 
injection 

2dn Peripheral 
Access 

Injected code 
execution 

End-transfer 
event 

Unmap 
memory area 

Code 
recovering 

  

Fig. 3. Process for complete handling of HW accesses directly using pointers 

will be no more accesses before the unmap step, and even there is no guarantee that 
the unmap is done once the application SW code continue the native simulation. 

To unmap the memory page properly, the SW code itself must do it. Just after the 
memory access is performed, the page must be unmapped. To do that, the original SW 
code must be modified. The solution applied is to dynamically inject code after the 
load/store assembler instruction that provoked the error. This injected code disables 
the memory page, re-establish original SW code and continues the execution. As a 
consequence, the HW access is performed, the peripheral model is informed and the 
simulation status returns to the correct point to detect new accesses. Although the 
memory page is unmapped the data stored are not lost. The values are saved in the file 
associated to the memory page. The entire process is summarized in figure 3. 

Detecting if a pointer access is a reading or a writing one is also complex. A possi-
ble solution is to disassemble the binary code of the instruction provoking the error, 
but this solution is non portable. Furthermore, in x86 processors both reading and 
writing accesses are performed with “mov” instructions, so it is not easy to distin-
guish both.  

The portable solution is to force the system to raise different signals for read and 
write accesses. When executing an I/O pointer access, a SIGSEGV signal is obtained 
if the memory address has not been mapped. If the address has been mapped but the 
associated file has 0 size, a SIGBUS signal is raised. Thus at initialization the address 
is only activated for reading accesses with an empty file. Thus, a SIGSEGV raises at 
writing accesses (there is no writing permission) and a SIGBUS raises at reading ac-
cesses (there is no area in the associated file).  

4.1   Capturing Signals 

When the peripheral address is accessed, the memory manager of the native operating 
system raises a SIGBUS or a SIGSEGV signal. These signals can be captured using 
an interrupt handler that can be loaded using the standard POSIX “signal” function.   

 
 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 19 

Fig. 4. Signal handler for SIGBUS and SIGSEGV signals 

 
The handler (fig 4) obtains the address provoking the error and checks that it is a 

valid I/O access. Using the data address the required memory region can be mapped 
to allow a retry. The active memory mapping with read-only access and an empty file 
is replaced by a read/write access with a valid file. Once the memory is mapped, the 
code injection must be performed. 

4.2   Code Injection 

To guarantee the memory region is unmapped properly, a new code must be injected 
after the peripheral access. To inject the code (fig 5), the memory region where the 
code will be placed is declared a read/write region, using the “mprotect” function call. 
Then the original code is saved in a buffer and the new code is injected. 

 
 

Fig. 5. Code in charge of performing the code injection 

 
To make the solution portable for C-based simulation environments, the code to be 

injected is also written in C, avoiding specific assembler code. Two “asm volatile” 
marks are added to the C code to know where it starts and ends. The code injected has 
to be small (fig 6). The injected code is composed just by two function calls: one to 
get the current context and one to perform the writing access and the system  
recovering. 

 

void Inject_code(ucontext_t *ucp){
  struct sigcontext *sc; 
  sc = (&(ucp->uc_mcontext))->gregs; 
  as_addr = sc->eip + instruct_size(sc->eip); 
 
  mprotect( page, getpagesize(), PROT_READ|PROT_WRITE|PROT_EXEC ); 
 
  memcpy(backup, as_addr, injectSize); 
  memcpy(as_addr, &injectStart,  injectSize); 

} 
 

void signal_handler(int sig, siginfo_t* info, void* data){
  
 bus_address = (int)info->si_addr; 
 if(!is_HW_addr(bus_address)) raise(SIGINT); 
 
 unmmap(bus_address); 
 file = get_no_empty_file(bus_address); 

  mmap(bus_address, LEN, PROT_READ|PROT_WRITE, MAP_FIXED, file, 0); 
 
  if(is_read = (sig == SIGSEGV))  
 * bus_address=bus_read(bus_address); 
 Inject_code(data); 

} 
 



20 H. Posadas and E. Villar 

Fig. 6. Code to be injected 

4.3   System Recovering 

The recovering function (fig 7) starts performing a writing access in the HW platform 
model if required. Then the function unmaps the memory region using the “unmmap” 
function, and maps the address in read-only mode with an empty file. The original 
code is recovered using a “memcpy” function call, and the processor status is re-
stored, continuing with the normal execution. The restoring of the processor status is 
preformed using the “setcontext” function from the "asm/sigcontext.h" library. When 
restoring the instruction pointer, the execution jumps to the initial code, after the 
pointer access. 

 

Fig. 7. Function that recovers the initial status to continue the simulation 

5   Application into a Native Co-simulation Tool 

The solutions presented above have been applied to a state-of-the-art native co-
simulation infrastructure to check their validity. SCoPE tool has been selected for this 
purpose. The selected infrastructure provides facilities to generate HW platform mod-
els (fig 8). Performance estimations of the SW code and the entire system can be ob-
tained. The infrastructure also provides a complete RTOS model. This RTOS model 
allows directly executing SW code developed for a target platform. Recoding of the 
system calls is not required to perform the SW native simulation.  

When applying the solutions proposed in this paper with the SCoPE features, the 
target SW code can be automatically simulated. The access to both SW (RTOS) and 
HW resources (peripherals) is dynamically handled by the simulation engine. To  
 

int (*getContext)(ucontext_t *ucp)=&getcontext;
void (*recoverFunction)() = &recoverFunction; 
 
asm volatile( "injectionStart:" ); 
 
(*callGetContext)( &uc_auxiliar_ucp ); 
(*callreturningFunction)( ); 
  
asm volatile( "injectionEnd:" ); 

void recoverFunction(){
 

  if(!is_read) bus_write(bus_address,*bus_address); 
  
 unmmap(bus_address); 
 file = get_empty_file(bus_address); 

  mmap(bus_address, LEN, PROT_READ, MAP_FIXED, file, 0); 
 
  memcpy(as_addr, backup, injectSize); 
  setcontext(&uc_auxiliar_ucp); 

} 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 21 

 
 
 
 
 
 
 

Fig. 8. Platform model built using SCoPE tool 

extend SCoPE with the proposed solutions for HW communication modeling, it is 
required to load the bus error signal handler and to create a module that generates the 
required bus accesses when the communication events are delivered. To do so, the 
functions “bus_model->transport” can be used to send the transfers through the bus of 
the platform model. No other modifications have been required. This means that the 
proposed solutions can be also easily applied to any other native co-simulation infra-
structure.  

To show the usefulness of the proposed solutions, an example of a GSM system 
has been proposed. The GSM system is composed of the coder and the decoder. Each 
part contains several tasks that can be executed concurrently (fig 9). Input and output 
values are sent and received using specific I/O HW components. The code has been 
prepared for an ARM based platform running uclinux. Using SCoPE and the proposed 
extensions, the target code was automatically integrated in the native co-simulation 
without any additional effort. However, this automation increases simulation time. To 
obtain the simulation overhead three different simulations have been performed:  

 

• A coder without I/O HW accesses (all SW) 
• A coder with I/O HW accessed by function calls 
• A coder with I/O HW accessed through pointers 

 
The result obtained is that the pointer access technique proposed in this paper dupli-
cates the simulation time cost of I/O accesses w.r.t HW communication techniques 
based on function calls (Table 2).  

  
º 

Pre-process 

Pre-filtering 

Frame-LSP 

Frame-Int. 

Vad. comp. 

Subframe cod. 

CN encoder 

Serializer 

Sid. coderword 

Post-filt. 

LPC dec. 

rxDTX dec. 

Serial dec. 

Subframe dec. 

Transmission 

Dhoming 

Coder 

Decoder 

HW input 

HW output 
  

Fig. 9. Coder – decoder task graph 

Bus model

Comm. If

RTOS model

Application SW

Memory Peripheral

Cache if Scratch-pad if

Peripheral



22 H. Posadas and E. Villar 

Table 2. Simulation time for the GSM coder (285 frames) 

All SW Function accesses Pointer accesses 

11.3 sec 12.1 sec 13.0 sec 

Table 3. GSM Performance information: time, power and processor utilization 

Estimated time (sec) MonoP SMP HMP Net 
Proc 1 60.2 s 32.2 55.08s 55.15s 
Proc 2 - 28s 5.2s 5.5s 
Total 63.6s 34.7s 59.8s 60s 

Estimated Energy 
(mJ) 

MonoP SMP HMP Net 

Proc 1 149 80 142 136 
Proc 2 - 69 77.4 13 
Total 153.4 218.1 219.4 218.2 

Processor utilization MonoP SMP HMP Net 
Proc 1 95% 92% 92% 93,00% 
Proc 2 - 82% 9% 8% 

 
 

The code has been used to explore different platform architectures in order to se-
lect the best one. Mono-processor architecture, multiprocessor symmetric and hetero-
geneous architectures, and network-based architectures has been explored. The ob-
tained results are shown in the following table (Table 3). 

Although the estimation technique is not part of this work, it is interesting to note 
that source-level estimation techniques have demonstrated to obtain errors lower than 
the 20% in timing and processor power consumption. This is considered a sufficient 
accuracy for system dimensioning and analysis at first steps of development. 

6   Conclusions 

Automatic integration of SW code developed to target platforms can be integrated in 
native co-simulations. To do so, direct I/O communications from the SW code must 
be intercepted and redirected to virtual platform models instead of the native host pe-
ripherals.  

I/O communications has been divided in two groups for native modeling: commu-
nications only requiring data load and store and communications required generating 
events. Modeling accesses to HW components only requiring data storage manage-
ment can be easily performed by using the memory mapping facilities of the native 
operating system. Modeling access requiring event generation needs handling the 
memory faults and injecting additional code in the original execution.  

Both techniques can be done using standard functions. The use of functions contained in 
the POSIX standard has been demonstrated. This characteristic makes the solution portable 
to a wide range of host computers, as Linux or Unix. The solution requires only setting a 
signal handler so they can be easily applied to any simulation engine. 



 HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components 23 

References 

1. Coware Platform Architect, http://www.coware.com 
2. ARM Realview Development Suite, http://www.arm.com 
3. Benini, L., Bogliolo, A., Menichelli, F.: MPARM: Exploring the Multi-Processor SoC De-

sign Space with SystemC. Journal of VLSI Signal Processing (2005) 
4. Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., Ponzino, M.: SystemC cosimu-

lation and emulation of multiprocessor SoC design. IEEE Computer (April 2003) 
5. Yi, Y., Kim, D., Ha, S.: Fast and time-accurate cosimulation with OS scheduler modeling. 

Design Automation of Embedded Systems (8) (2003) 
6. Kirchsteiger, C., Schweitzer, H., Weiss, R., Pistauer, M.: A Software Performance Simula-

tion Methodology for Rapid System Architecture Exploration. In: ICECS (2008) 
7. Schnerr, J., Bringmann, O., Viehl, A., Rosenstiel, W.: High-Performance Timing Simula-

tion of Embedded Software. In: Proc. of DAC (2008) 
8. Brandolese, C., Fornaciari, W., Salice, F., Sciuto, D.: Source-level execution time estima-

tion of C programs. In: Proc. of CoDes (2001) 
9. Kempf, T., Karur, K., Wallentowitz, S., Meyr, H.: A SW Perfornance Estimation Frame-

work for Early SL Design using Fine-Grained Instrumentation. In: Prof. of DATE (2006) 
10. Hwang, Y., Abdi, S., Gajski, D.: Cycle approximate Retargetable Performance Estimation 

at the Transaction Level. In: Proc. of DATE (2008) 
11. InterDesign Technologies, FastVeri,  

  http://www.interdesigntech.co.jp/english/ 
12. Gerstlauer, A., Yu, H., Gajski, D.D.: RTOS Modeling for System Level Design. In: Proc. 

of DATE. IEEE, Los Alamitos (2003) 
13. He, Z., Mok, A., Peng, C.: Timed RTOS modeling for embedded System Design. In: Proc. 

of RTAS. IEEE, Los Alamitos (2005) 
14. Yoo, S., Nicolescu, G., Gauthier, L.G., Jerraya, A.A.: Automatic generation of fast timed 

simulation models for operating systems in SoC design. In: Proc. of DATE (2002) 
15. Hassan, M.A., Yoshinori, S., Takeuchi, K.Y., Imai, M.: RTK-Spec TRON: A Simulation 

Model of an ITRON Based RTOS Kernel in SystemC. In: Proc of DATE (2005) 
16. Castillo, J., Fernández, V., Posadas, H., Quijano, D., Villar, E.: SystemC Platform Model-

ing for Behavioral Simulation and Performance Estimation of Embedded Systems. In: Be-
havioral Modeling for Embedded Systems and Technologies: Applications for Design and 
Implementation. IGI international (ed.)  

17. Wieferink, A., Leupers, R., Ascheid, G., Meyer, H., Michiels, T., Nohl, A., Kogel, T.: Re-
targetable generation of TLM bus interfaces for MPSoC platforms. In: CODES+ISSS 2005 
(2005) 

18. Gerin, P., Guérin, X., Pétrot, F.: Efficient Implementation of Native Software Simulation 
for MPSoC. In: Proc. of DATE (2008) 


	Automatic HW/SW Interface Modeling for Scratch-Pad and Memory Mapped HW Components in Native Source- Code Co-simulation
	Introduction
	Related Work
	Memory Remapping of HW Data Values
	Capturing Communication Events
	Capturing Signals
	Code Injection
	System Recovering

	Application into a Native Co-simulation Tool
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




